data_feed.cc 49.3 KB
Newer Older
W
Wang Guibao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

D
dongdaxiang 已提交
15 16 17 18 19
#if defined _WIN32 || defined __APPLE__
#else
#define _LINUX
#endif

20
#include "paddle/fluid/framework/data_feed.h"
D
dongdaxiang 已提交
21
#ifdef _LINUX
D
dongdaxiang 已提交
22
#include <stdio_ext.h>
H
hutuxian 已提交
23 24 25
#include <sys/mman.h>
#include <sys/stat.h>
#include <sys/types.h>
D
dongdaxiang 已提交
26
#endif
27
#include <utility>
28
#include "gflags/gflags.h"
W
Wang Guibao 已提交
29 30 31
#include "google/protobuf/io/zero_copy_stream_impl.h"
#include "google/protobuf/message.h"
#include "google/protobuf/text_format.h"
32 33
#include "io/fs.h"
#include "io/shell.h"
W
Wang Guibao 已提交
34 35
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/feed_fetch_type.h"
36
#include "paddle/fluid/framework/fleet/box_wrapper.h"
37
#include "paddle/fluid/framework/fleet/fleet_wrapper.h"
H
hutuxian 已提交
38
#include "paddle/fluid/platform/monitor.h"
39
#include "paddle/fluid/platform/timer.h"
W
Wang Guibao 已提交
40

H
hutuxian 已提交
41
USE_INT_STAT(STAT_total_feasign_num_in_mem);
W
Wang Guibao 已提交
42 43 44
namespace paddle {
namespace framework {

45
void RecordCandidateList::ReSize(size_t length) {
46 47 48 49 50 51 52 53 54
  mutex_.lock();
  capacity_ = length;
  CHECK(capacity_ > 0);  // NOLINT
  candidate_list_.clear();
  candidate_list_.resize(capacity_);
  full_ = false;
  cur_size_ = 0;
  total_size_ = 0;
  mutex_.unlock();
55 56 57
}

void RecordCandidateList::ReInit() {
58 59 60 61 62
  mutex_.lock();
  full_ = false;
  cur_size_ = 0;
  total_size_ = 0;
  mutex_.unlock();
63 64 65 66
}

void RecordCandidateList::AddAndGet(const Record& record,
                                    RecordCandidate* result) {
67
  mutex_.lock();
68
  size_t index = 0;
69
  ++total_size_;
70
  auto fleet_ptr = FleetWrapper::GetInstance();
71 72 73
  if (!full_) {
    candidate_list_[cur_size_++] = record;
    full_ = (cur_size_ == capacity_);
74
  } else {
75 76 77 78
    CHECK(cur_size_ == capacity_);
    index = fleet_ptr->LocalRandomEngine()() % total_size_;
    if (index < capacity_) {
      candidate_list_[index] = record;
79 80
    }
  }
81 82 83
  index = fleet_ptr->LocalRandomEngine()() % cur_size_;
  *result = candidate_list_[index];
  mutex_.unlock();
84 85
}

W
Wang Guibao 已提交
86 87 88 89
void DataFeed::AddFeedVar(Variable* var, const std::string& name) {
  CheckInit();
  for (size_t i = 0; i < use_slots_.size(); ++i) {
    if (name == use_slots_[i]) {
90 91 92 93 94
      if (var == nullptr) {
        feed_vec_[i] = nullptr;
      } else {
        feed_vec_[i] = var->GetMutable<LoDTensor>();
      }
W
Wang Guibao 已提交
95 96 97 98 99
    }
  }
}

bool DataFeed::SetFileList(const std::vector<std::string>& files) {
100
  std::unique_lock<std::mutex> lock(*mutex_for_pick_file_);
W
Wang Guibao 已提交
101
  CheckInit();
102 103
  // Do not set finish_set_filelist_ flag,
  // since a user may set file many times after init reader
W
Wang Guibao 已提交
104 105 106 107 108 109 110
  filelist_.assign(files.begin(), files.end());

  finish_set_filelist_ = true;
  return true;
}

void DataFeed::SetBatchSize(int batch_size) {
111 112 113
  PADDLE_ENFORCE_GT(batch_size, 0,
                    platform::errors::InvalidArgument(
                        "Batch size %d is illegal.", batch_size));
W
Wang Guibao 已提交
114 115 116 117
  default_batch_size_ = batch_size;
}

bool DataFeed::PickOneFile(std::string* filename) {
118 119 120 121 122 123 124
  PADDLE_ENFORCE_NOT_NULL(
      mutex_for_pick_file_,
      platform::errors::PreconditionNotMet(
          "You should call SetFileListMutex before PickOneFile"));
  PADDLE_ENFORCE_NOT_NULL(
      file_idx_, platform::errors::PreconditionNotMet(
                     "You should call SetFileListIndex before PickOneFile"));
125 126
  std::unique_lock<std::mutex> lock(*mutex_for_pick_file_);
  if (*file_idx_ == filelist_.size()) {
127
    VLOG(3) << "DataFeed::PickOneFile no more file to pick";
W
Wang Guibao 已提交
128 129
    return false;
  }
130 131
  VLOG(3) << "file_idx_=" << *file_idx_;
  *filename = filelist_[(*file_idx_)++];
W
Wang Guibao 已提交
132 133 134 135 136 137 138 139 140 141 142 143
  return true;
}

void DataFeed::CheckInit() {
  PADDLE_ENFORCE(finish_init_, "Initialization did not succeed.");
}

void DataFeed::CheckSetFileList() {
  PADDLE_ENFORCE(finish_set_filelist_, "Set filelist did not succeed.");
}

void DataFeed::CheckStart() {
144 145 146
  PADDLE_ENFORCE_EQ(finish_start_, true,
                    platform::errors::PreconditionNotMet(
                        "Datafeed has not started running yet."));
W
Wang Guibao 已提交
147 148
}

H
hutuxian 已提交
149 150 151 152 153 154 155
void DataFeed::AssignFeedVar(const Scope& scope) {
  CheckInit();
  for (size_t i = 0; i < use_slots_.size(); ++i) {
    feed_vec_[i] = scope.FindVar(use_slots_[i])->GetMutable<LoDTensor>();
  }
}

156 157 158 159 160 161 162 163 164 165 166 167
void DataFeed::CopyToFeedTensor(void* dst, const void* src, size_t size) {
  if (platform::is_cpu_place(this->place_)) {
    memcpy(dst, src, size);
  } else {
#ifdef PADDLE_WITH_CUDA
    cudaMemcpy(dst, src, size, cudaMemcpyHostToDevice);
#else
    PADDLE_THROW("Not supported GPU, Please compile WITH_GPU option");
#endif
  }
}

W
Wang Guibao 已提交
168 169 170 171
template <typename T>
void PrivateQueueDataFeed<T>::SetQueueSize(int queue_size) {
  PADDLE_ENFORCE(queue_size > 0, "Illegal queue size: %d.", queue_size);
  queue_size_ = queue_size;
172
  queue_ = paddle::framework::MakeChannel<T>();
J
jiaqi 已提交
173
  queue_->SetCapacity(queue_size);
W
Wang Guibao 已提交
174 175 176 177 178
}

template <typename T>
bool PrivateQueueDataFeed<T>::Start() {
  CheckSetFileList();
179 180
  read_thread_ = std::thread(&PrivateQueueDataFeed::ReadThread, this);
  read_thread_.detach();
W
Wang Guibao 已提交
181 182 183 184 185 186 187

  finish_start_ = true;
  return true;
}

template <typename T>
void PrivateQueueDataFeed<T>::ReadThread() {
D
dongdaxiang 已提交
188
#ifdef _LINUX
189 190 191 192 193 194 195
  std::string filename;
  while (PickOneFile(&filename)) {
    int err_no = 0;
    fp_ = fs_open_read(filename, &err_no, pipe_command_);
    __fsetlocking(&*fp_, FSETLOCKING_BYCALLER);
    T instance;
    while (ParseOneInstanceFromPipe(&instance)) {
196
      queue_->Put(instance);
197
    }
W
Wang Guibao 已提交
198
  }
199
  queue_->Close();
D
dongdaxiang 已提交
200
#endif
W
Wang Guibao 已提交
201 202 203 204
}

template <typename T>
int PrivateQueueDataFeed<T>::Next() {
X
xjqbest 已提交
205
#ifdef _LINUX
W
Wang Guibao 已提交
206 207 208 209
  CheckStart();
  int index = 0;
  T ins_vec;
  while (index < default_batch_size_) {
210 211
    T instance;
    if (!queue_->Get(instance)) {
W
Wang Guibao 已提交
212 213 214 215 216 217 218 219 220
      break;
    }
    AddInstanceToInsVec(&ins_vec, instance, index++);
  }
  batch_size_ = index;
  if (batch_size_ != 0) {
    PutToFeedVec(ins_vec);
  }
  return batch_size_;
X
xjqbest 已提交
221 222 223
#else
  return 0;
#endif
W
Wang Guibao 已提交
224 225
}

226
// explicit instantiation
W
Wang Guibao 已提交
227 228
template class PrivateQueueDataFeed<std::vector<MultiSlotType>>;

229 230
template <typename T>
InMemoryDataFeed<T>::InMemoryDataFeed() {
231 232
  this->file_idx_ = nullptr;
  this->mutex_for_pick_file_ = nullptr;
J
jiaqi 已提交
233 234 235
  this->fp_ = nullptr;
  this->thread_id_ = 0;
  this->thread_num_ = 1;
236
  this->parse_ins_id_ = false;
237
  this->parse_content_ = false;
238 239 240
  this->parse_logkey_ = false;
  this->enable_pv_merge_ = false;
  this->current_phase_ = 1;  // 1:join ;0:update
J
jiaqi 已提交
241 242 243
  this->input_channel_ = nullptr;
  this->output_channel_ = nullptr;
  this->consume_channel_ = nullptr;
244 245 246 247
}

template <typename T>
bool InMemoryDataFeed<T>::Start() {
X
xjqbest 已提交
248
#ifdef _LINUX
J
jiaqi 已提交
249 250 251 252 253
  this->CheckSetFileList();
  if (output_channel_->Size() == 0 && input_channel_->Size() != 0) {
    std::vector<T> data;
    input_channel_->Read(data);
    output_channel_->Write(std::move(data));
254
  }
X
xjqbest 已提交
255
#endif
J
jiaqi 已提交
256
  this->finish_start_ = true;
257 258 259 260 261
  return true;
}

template <typename T>
int InMemoryDataFeed<T>::Next() {
X
xjqbest 已提交
262
#ifdef _LINUX
J
jiaqi 已提交
263 264 265 266 267
  this->CheckStart();
  CHECK(output_channel_ != nullptr);
  CHECK(consume_channel_ != nullptr);
  VLOG(3) << "output_channel_ size=" << output_channel_->Size()
          << ", consume_channel_ size=" << consume_channel_->Size()
X
xujiaqi01 已提交
268
          << ", thread_id=" << thread_id_;
269
  int index = 0;
D
dongdaxiang 已提交
270
  T instance;
J
jiaqi 已提交
271 272 273 274
  std::vector<T> ins_vec;
  ins_vec.reserve(this->default_batch_size_);
  while (index < this->default_batch_size_) {
    if (output_channel_->Size() == 0) {
D
dongdaxiang 已提交
275
      break;
276
    }
J
jiaqi 已提交
277 278 279 280
    output_channel_->Get(instance);
    ins_vec.push_back(instance);
    ++index;
    consume_channel_->Put(std::move(instance));
D
dongdaxiang 已提交
281
  }
J
jiaqi 已提交
282 283
  this->batch_size_ = index;
  VLOG(3) << "batch_size_=" << this->batch_size_
284
          << ", thread_id=" << thread_id_;
J
jiaqi 已提交
285
  if (this->batch_size_ != 0) {
D
dongdaxiang 已提交
286 287
    PutToFeedVec(ins_vec);
  } else {
J
jiaqi 已提交
288 289 290 291
    VLOG(3) << "finish reading, output_channel_ size="
            << output_channel_->Size()
            << ", consume_channel_ size=" << consume_channel_->Size()
            << ", thread_id=" << thread_id_;
D
dongdaxiang 已提交
292
  }
J
jiaqi 已提交
293
  return this->batch_size_;
X
xjqbest 已提交
294 295 296
#else
  return 0;
#endif
297 298
}

299
template <typename T>
J
jiaqi 已提交
300 301 302 303 304 305 306
void InMemoryDataFeed<T>::SetInputChannel(void* channel) {
  input_channel_ = static_cast<paddle::framework::ChannelObject<T>*>(channel);
}

template <typename T>
void InMemoryDataFeed<T>::SetOutputChannel(void* channel) {
  output_channel_ = static_cast<paddle::framework::ChannelObject<T>*>(channel);
307 308 309
}

template <typename T>
J
jiaqi 已提交
310 311
void InMemoryDataFeed<T>::SetConsumeChannel(void* channel) {
  consume_channel_ = static_cast<paddle::framework::ChannelObject<T>*>(channel);
312 313
}

314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
template <typename T>
void InMemoryDataFeed<T>::SetInputPvChannel(void* channel) {
  input_pv_channel_ =
      static_cast<paddle::framework::ChannelObject<PvInstance>*>(channel);
}

template <typename T>
void InMemoryDataFeed<T>::SetOutputPvChannel(void* channel) {
  output_pv_channel_ =
      static_cast<paddle::framework::ChannelObject<PvInstance>*>(channel);
}

template <typename T>
void InMemoryDataFeed<T>::SetConsumePvChannel(void* channel) {
  consume_pv_channel_ =
      static_cast<paddle::framework::ChannelObject<PvInstance>*>(channel);
}

332 333 334 335 336 337 338 339 340 341
template <typename T>
void InMemoryDataFeed<T>::SetThreadId(int thread_id) {
  thread_id_ = thread_id;
}

template <typename T>
void InMemoryDataFeed<T>::SetThreadNum(int thread_num) {
  thread_num_ = thread_num;
}

342 343 344 345 346
template <typename T>
void InMemoryDataFeed<T>::SetParseContent(bool parse_content) {
  parse_content_ = parse_content;
}

347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
template <typename T>
void InMemoryDataFeed<T>::SetParseLogKey(bool parse_logkey) {
  parse_logkey_ = parse_logkey;
}

template <typename T>
void InMemoryDataFeed<T>::SetEnablePvMerge(bool enable_pv_merge) {
  enable_pv_merge_ = enable_pv_merge;
}

template <typename T>
void InMemoryDataFeed<T>::SetCurrentPhase(int current_phase) {
  current_phase_ = current_phase;
}

362 363 364 365 366
template <typename T>
void InMemoryDataFeed<T>::SetParseInsId(bool parse_ins_id) {
  parse_ins_id_ = parse_ins_id;
}

367 368
template <typename T>
void InMemoryDataFeed<T>::LoadIntoMemory() {
D
dongdaxiang 已提交
369
#ifdef _LINUX
X
xujiaqi01 已提交
370
  VLOG(3) << "LoadIntoMemory() begin, thread_id=" << thread_id_;
371
  std::string filename;
J
jiaqi 已提交
372
  while (this->PickOneFile(&filename)) {
X
xujiaqi01 已提交
373 374
    VLOG(3) << "PickOneFile, filename=" << filename
            << ", thread_id=" << thread_id_;
H
hutuxian 已提交
375 376 377 378 379 380 381 382 383 384 385
#ifdef PADDLE_WITH_BOX_PS
    if (BoxWrapper::GetInstance()->UseAfsApi()) {
      this->fp_ = BoxWrapper::GetInstance()->afs_manager->GetFile(
          filename, this->pipe_command_);
    } else {
#endif
      int err_no = 0;
      this->fp_ = fs_open_read(filename, &err_no, this->pipe_command_);
#ifdef PADDLE_WITH_BOX_PS
    }
#endif
J
jiaqi 已提交
386 387 388
    CHECK(this->fp_ != nullptr);
    __fsetlocking(&*(this->fp_), FSETLOCKING_BYCALLER);
    paddle::framework::ChannelWriter<T> writer(input_channel_);
389
    T instance;
390 391
    platform::Timer timeline;
    timeline.Start();
D
dongdaxiang 已提交
392
    while (ParseOneInstanceFromPipe(&instance)) {
J
jiaqi 已提交
393 394
      writer << std::move(instance);
      instance = T();
395
    }
H
hutuxian 已提交
396 397 398 399 400 401
    STAT_ADD(STAT_total_feasign_num_in_mem, fea_num_);
    {
      std::lock_guard<std::mutex> flock(*mutex_for_fea_num_);
      *total_fea_num_ += fea_num_;
      fea_num_ = 0;
    }
J
jiaqi 已提交
402
    writer.Flush();
403
    timeline.Pause();
404 405
    VLOG(3) << "LoadIntoMemory() read all lines, file=" << filename
            << ", cost time=" << timeline.ElapsedSec()
406
            << " seconds, thread_id=" << thread_id_;
407
  }
X
xujiaqi01 已提交
408
  VLOG(3) << "LoadIntoMemory() end, thread_id=" << thread_id_;
D
dongdaxiang 已提交
409
#endif
410 411
}

412
// explicit instantiation
J
jiaqi 已提交
413
template class InMemoryDataFeed<Record>;
414

W
Wang Guibao 已提交
415 416 417 418 419 420 421 422 423 424 425
void MultiSlotDataFeed::Init(
    const paddle::framework::DataFeedDesc& data_feed_desc) {
  finish_init_ = false;
  finish_set_filelist_ = false;
  finish_start_ = false;

  PADDLE_ENFORCE(data_feed_desc.has_multi_slot_desc(),
                 "Multi_slot_desc has not been set.");
  paddle::framework::MultiSlotDesc multi_slot_desc =
      data_feed_desc.multi_slot_desc();
  SetBatchSize(data_feed_desc.batch_size());
J
jiaqi 已提交
426 427
  // temporarily set queue size = batch size * 100
  SetQueueSize(data_feed_desc.batch_size() * 100);
W
Wang Guibao 已提交
428 429 430 431
  size_t all_slot_num = multi_slot_desc.slots_size();
  all_slots_.resize(all_slot_num);
  all_slots_type_.resize(all_slot_num);
  use_slots_index_.resize(all_slot_num);
432 433
  total_dims_without_inductive_.resize(all_slot_num);
  inductive_shape_index_.resize(all_slot_num);
W
Wang Guibao 已提交
434 435 436 437 438 439 440
  use_slots_.clear();
  use_slots_is_dense_.clear();
  for (size_t i = 0; i < all_slot_num; ++i) {
    const auto& slot = multi_slot_desc.slots(i);
    all_slots_[i] = slot.name();
    all_slots_type_[i] = slot.type();
    use_slots_index_[i] = slot.is_used() ? use_slots_.size() : -1;
441 442
    total_dims_without_inductive_[i] = 1;
    inductive_shape_index_[i] = -1;
W
Wang Guibao 已提交
443 444 445
    if (slot.is_used()) {
      use_slots_.push_back(all_slots_[i]);
      use_slots_is_dense_.push_back(slot.is_dense());
446 447
      std::vector<int> local_shape;
      if (slot.is_dense()) {
448
        for (int j = 0; j < slot.shape_size(); ++j) {
449 450
          if (slot.shape(j) > 0) {
            total_dims_without_inductive_[i] *= slot.shape(j);
451
          }
452 453
          if (slot.shape(j) == -1) {
            inductive_shape_index_[i] = j;
454
          }
455 456
        }
      }
457
      for (int j = 0; j < slot.shape_size(); ++j) {
458
        local_shape.push_back(slot.shape(j));
459 460
      }
      use_slots_shape_.push_back(local_shape);
W
Wang Guibao 已提交
461 462 463
    }
  }
  feed_vec_.resize(use_slots_.size());
464
  pipe_command_ = data_feed_desc.pipe_command();
W
Wang Guibao 已提交
465 466 467
  finish_init_ = true;
}

D
dongdaxiang 已提交
468
void MultiSlotDataFeed::ReadThread() {
469
#ifdef _LINUX
470 471 472 473
  std::string filename;
  while (PickOneFile(&filename)) {
    int err_no = 0;
    fp_ = fs_open_read(filename, &err_no, pipe_command_);
D
dongdaxiang 已提交
474
    CHECK(fp_ != nullptr);
475 476 477 478 479
    __fsetlocking(&*fp_, FSETLOCKING_BYCALLER);
    std::vector<MultiSlotType> instance;
    int ins_num = 0;
    while (ParseOneInstanceFromPipe(&instance)) {
      ins_num++;
480
      queue_->Put(instance);
481
    }
D
dongdaxiang 已提交
482
    VLOG(3) << "filename: " << filename << " inst num: " << ins_num;
D
dongdaxiang 已提交
483
  }
484
  queue_->Close();
485
#endif
D
dongdaxiang 已提交
486 487
}

W
Wang Guibao 已提交
488
bool MultiSlotDataFeed::CheckFile(const char* filename) {
489
#ifdef _LINUX
W
Wang Guibao 已提交
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
  CheckInit();  // get info of slots
  std::ifstream fin(filename);
  if (!fin.good()) {
    VLOG(1) << "error: open file<" << filename << "> fail";
    return false;
  }
  std::string line;
  int instance_cout = 0;
  std::string all_slots_alias = "";
  for (const auto& alias : all_slots_) {
    all_slots_alias += alias + " ";
  }
  std::string use_slots_alias = "";
  for (const auto& alias : use_slots_) {
    use_slots_alias += alias + " ";
  }
  VLOG(3) << "total slots num: " << all_slots_.size();
  VLOG(3) << "total slots alias: " << all_slots_alias;
  VLOG(3) << "used slots num: " << use_slots_.size();
  VLOG(3) << "used slots alias: " << use_slots_alias;
  while (getline(fin, line)) {
    ++instance_cout;
    const char* str = line.c_str();
    char* endptr = const_cast<char*>(str);
    int len = line.length();
    for (size_t i = 0; i < all_slots_.size(); ++i) {
X
xjqbest 已提交
516
      auto num = strtol(endptr, &endptr, 10);
W
Wang Guibao 已提交
517
      if (num < 0) {
518 519
        VLOG(0) << "error: the number of ids is a negative number: " << num;
        VLOG(0) << "please check line<" << instance_cout << "> in file<"
W
Wang Guibao 已提交
520 521 522
                << filename << ">";
        return false;
      } else if (num == 0) {
523
        VLOG(0)
W
Wang Guibao 已提交
524 525 526 527
            << "error: the number of ids can not be zero, you need "
               "padding it in data generator; or if there is something wrong"
               " with the data, please check if the data contains unresolvable "
               "characters.";
528
        VLOG(0) << "please check line<" << instance_cout << "> in file<"
W
Wang Guibao 已提交
529 530
                << filename << ">";
        return false;
X
xjqbest 已提交
531
      } else if (errno == ERANGE || num > INT_MAX) {
532 533
        VLOG(0) << "error: the number of ids greater than INT_MAX";
        VLOG(0) << "please check line<" << instance_cout << "> in file<"
W
Wang Guibao 已提交
534 535 536 537 538 539 540
                << filename << ">";
        return false;
      }
      if (all_slots_type_[i] == "float") {
        for (int i = 0; i < num; ++i) {
          strtof(endptr, &endptr);
          if (errno == ERANGE) {
541
            VLOG(0) << "error: the value is out of the range of "
W
Wang Guibao 已提交
542
                       "representable values for float";
543
            VLOG(0) << "please check line<" << instance_cout << "> in file<"
W
Wang Guibao 已提交
544 545 546 547
                    << filename << ">";
            return false;
          }
          if (i + 1 != num && endptr - str == len) {
548 549
            VLOG(0) << "error: there is a wrong with the number of ids.";
            VLOG(0) << "please check line<" << instance_cout << "> in file<"
W
Wang Guibao 已提交
550 551 552 553 554 555 556 557
                    << filename << ">";
            return false;
          }
        }
      } else if (all_slots_type_[i] == "uint64") {
        for (int i = 0; i < num; ++i) {
          strtoull(endptr, &endptr, 10);
          if (errno == ERANGE) {
558
            VLOG(0) << "error: the value is out of the range of "
W
Wang Guibao 已提交
559
                       "representable values for uint64_t";
560
            VLOG(0) << "please check line<" << instance_cout << "> in file<"
W
Wang Guibao 已提交
561 562 563 564
                    << filename << ">";
            return false;
          }
          if (i + 1 != num && endptr - str == len) {
565 566
            VLOG(0) << "error: there is a wrong with the number of ids.";
            VLOG(0) << "please check line<" << instance_cout << "> in file<"
W
Wang Guibao 已提交
567 568 569 570 571
                    << filename << ">";
            return false;
          }
        }
      } else {
572
        VLOG(0) << "error: this type<" << all_slots_type_[i]
W
Wang Guibao 已提交
573 574 575 576
                << "> is not supported";
        return false;
      }
    }
577 578 579
    // It may be added '\t' character to the end of the output of reduce
    // task when processes data by Hadoop(when the output of the reduce
    // task of Hadoop has only one field, it will add a '\t' at the end
580 581 582 583 584
    // of the line by default, and you can use this option to avoid it:
    // `-D mapred.textoutputformat.ignoreseparator=true`), which does
    // not affect the correctness of the data. Therefore, it should be
    // judged that the data is not normal when the end of each line of
    // data contains characters which are not spaces.
585 586 587 588 589 590 591 592
    while (endptr - str != len) {
      if (!isspace(*(endptr++))) {
        VLOG(0)
            << "error: there is some extra characters at the end of the line.";
        VLOG(0) << "please check line<" << instance_cout << "> in file<"
                << filename << ">";
        return false;
      }
W
Wang Guibao 已提交
593 594 595 596
    }
  }
  VLOG(3) << "instances cout: " << instance_cout;
  VLOG(3) << "The file format is correct";
597
#endif
W
Wang Guibao 已提交
598 599 600
  return true;
}

D
dongdaxiang 已提交
601 602
bool MultiSlotDataFeed::ParseOneInstanceFromPipe(
    std::vector<MultiSlotType>* instance) {
603
#ifdef _LINUX
604 605 606
  thread_local string::LineFileReader reader;

  if (!reader.getline(&*(fp_.get()))) {
D
dongdaxiang 已提交
607 608
    return false;
  } else {
609 610 611
    int use_slots_num = use_slots_.size();
    instance->resize(use_slots_num);

D
dongdaxiang 已提交
612 613
    const char* str = reader.get();
    std::string line = std::string(str);
614
    // VLOG(3) << line;
D
dongdaxiang 已提交
615 616 617 618 619
    char* endptr = const_cast<char*>(str);
    int pos = 0;
    for (size_t i = 0; i < use_slots_index_.size(); ++i) {
      int idx = use_slots_index_[i];
      int num = strtol(&str[pos], &endptr, 10);
620 621 622 623 624 625 626 627
      PADDLE_ENFORCE_NE(
          num, 0,
          platform::errors::InvalidArgument(
              "The number of ids can not be zero, you need padding "
              "it in data generator; or if there is something wrong with "
              "the data, please check if the data contains unresolvable "
              "characters.\nplease check this error line: %s",
              str));
D
dongdaxiang 已提交
628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
      if (idx != -1) {
        (*instance)[idx].Init(all_slots_type_[i]);
        if ((*instance)[idx].GetType()[0] == 'f') {  // float
          for (int j = 0; j < num; ++j) {
            float feasign = strtof(endptr, &endptr);
            (*instance)[idx].AddValue(feasign);
          }
        } else if ((*instance)[idx].GetType()[0] == 'u') {  // uint64
          for (int j = 0; j < num; ++j) {
            uint64_t feasign = (uint64_t)strtoull(endptr, &endptr, 10);
            (*instance)[idx].AddValue(feasign);
          }
        }
        pos = endptr - str;
      } else {
        for (int j = 0; j <= num; ++j) {
D
dongdaxiang 已提交
644 645 646 647
          // pos = line.find_first_of(' ', pos + 1);
          while (line[pos + 1] != ' ') {
            pos++;
          }
D
dongdaxiang 已提交
648 649 650 651 652
        }
      }
    }
    return true;
  }
653 654 655
#else
  return true;
#endif
D
dongdaxiang 已提交
656 657
}

W
Wang Guibao 已提交
658
bool MultiSlotDataFeed::ParseOneInstance(std::vector<MultiSlotType>* instance) {
X
xjqbest 已提交
659
#ifdef _LINUX
W
Wang Guibao 已提交
660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
  std::string line;
  if (getline(file_, line)) {
    int use_slots_num = use_slots_.size();
    instance->resize(use_slots_num);
    // parse line
    const char* str = line.c_str();
    char* endptr = const_cast<char*>(str);
    int pos = 0;
    for (size_t i = 0; i < use_slots_index_.size(); ++i) {
      int idx = use_slots_index_[i];
      int num = strtol(&str[pos], &endptr, 10);
      PADDLE_ENFORCE(
          num,
          "The number of ids can not be zero, you need padding "
          "it in data generator; or if there is something wrong with "
          "the data, please check if the data contains unresolvable "
          "characters.\nplease check this error line: %s",
          str);
678

W
Wang Guibao 已提交
679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
      if (idx != -1) {
        (*instance)[idx].Init(all_slots_type_[i]);
        if ((*instance)[idx].GetType()[0] == 'f') {  // float
          for (int j = 0; j < num; ++j) {
            float feasign = strtof(endptr, &endptr);
            (*instance)[idx].AddValue(feasign);
          }
        } else if ((*instance)[idx].GetType()[0] == 'u') {  // uint64
          for (int j = 0; j < num; ++j) {
            uint64_t feasign = (uint64_t)strtoull(endptr, &endptr, 10);
            (*instance)[idx].AddValue(feasign);
          }
        }
        pos = endptr - str;
      } else {
        for (int j = 0; j <= num; ++j) {
          pos = line.find_first_of(' ', pos + 1);
        }
      }
    }
  } else {
    return false;
  }
X
xjqbest 已提交
702 703
#endif
  return false;
W
Wang Guibao 已提交
704 705 706 707 708
}

void MultiSlotDataFeed::AddInstanceToInsVec(
    std::vector<MultiSlotType>* ins_vec,
    const std::vector<MultiSlotType>& instance, int index) {
X
xjqbest 已提交
709
#ifdef _LINUX
W
Wang Guibao 已提交
710 711 712 713 714 715 716
  if (index == 0) {
    ins_vec->resize(instance.size());
    for (size_t i = 0; i < instance.size(); ++i) {
      (*ins_vec)[i].Init(instance[i].GetType());
      (*ins_vec)[i].InitOffset();
    }
  }
717

W
Wang Guibao 已提交
718 719 720
  for (size_t i = 0; i < instance.size(); ++i) {
    (*ins_vec)[i].AddIns(instance[i]);
  }
X
xjqbest 已提交
721
#endif
W
Wang Guibao 已提交
722 723 724 725
}

void MultiSlotDataFeed::PutToFeedVec(
    const std::vector<MultiSlotType>& ins_vec) {
X
xjqbest 已提交
726
#ifdef _LINUX
W
Wang Guibao 已提交
727
  for (size_t i = 0; i < use_slots_.size(); ++i) {
728 729 730
    if (feed_vec_[i] == nullptr) {
      continue;
    }
W
Wang Guibao 已提交
731 732 733
    const auto& type = ins_vec[i].GetType();
    const auto& offset = ins_vec[i].GetOffset();
    int total_instance = static_cast<int>(offset.back());
734

W
Wang Guibao 已提交
735 736
    if (type[0] == 'f') {  // float
      const auto& feasign = ins_vec[i].GetFloatData();
737 738 739
      float* tensor_ptr =
          feed_vec_[i]->mutable_data<float>({total_instance, 1}, this->place_);
      CopyToFeedTensor(tensor_ptr, &feasign[0], total_instance * sizeof(float));
W
Wang Guibao 已提交
740 741 742
    } else if (type[0] == 'u') {  // uint64
      // no uint64_t type in paddlepaddle
      const auto& feasign = ins_vec[i].GetUint64Data();
743
      int64_t* tensor_ptr = feed_vec_[i]->mutable_data<int64_t>(
744 745 746
          {total_instance, 1}, this->place_);
      CopyToFeedTensor(tensor_ptr, &feasign[0],
                       total_instance * sizeof(int64_t));
747
    }
748

749 750 751
    LoD data_lod{offset};
    feed_vec_[i]->set_lod(data_lod);
    if (use_slots_is_dense_[i]) {
752 753 754 755
      if (inductive_shape_index_[i] != -1) {
        use_slots_shape_[i][inductive_shape_index_[i]] =
            total_instance / total_dims_without_inductive_[i];
      }
756
      feed_vec_[i]->Resize(framework::make_ddim(use_slots_shape_[i]));
W
Wang Guibao 已提交
757 758
    }
  }
X
xjqbest 已提交
759
#endif
W
Wang Guibao 已提交
760 761
}

762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
void MultiSlotInMemoryDataFeed::Init(
    const paddle::framework::DataFeedDesc& data_feed_desc) {
  finish_init_ = false;
  finish_set_filelist_ = false;
  finish_start_ = false;

  PADDLE_ENFORCE(data_feed_desc.has_multi_slot_desc(),
                 "Multi_slot_desc has not been set.");
  paddle::framework::MultiSlotDesc multi_slot_desc =
      data_feed_desc.multi_slot_desc();
  SetBatchSize(data_feed_desc.batch_size());
  size_t all_slot_num = multi_slot_desc.slots_size();
  all_slots_.resize(all_slot_num);
  all_slots_type_.resize(all_slot_num);
  use_slots_index_.resize(all_slot_num);
777 778
  total_dims_without_inductive_.resize(all_slot_num);
  inductive_shape_index_.resize(all_slot_num);
779 780 781 782 783 784 785
  use_slots_.clear();
  use_slots_is_dense_.clear();
  for (size_t i = 0; i < all_slot_num; ++i) {
    const auto& slot = multi_slot_desc.slots(i);
    all_slots_[i] = slot.name();
    all_slots_type_[i] = slot.type();
    use_slots_index_[i] = slot.is_used() ? use_slots_.size() : -1;
786 787
    total_dims_without_inductive_[i] = 1;
    inductive_shape_index_[i] = -1;
788 789 790
    if (slot.is_used()) {
      use_slots_.push_back(all_slots_[i]);
      use_slots_is_dense_.push_back(slot.is_dense());
791 792
      std::vector<int> local_shape;
      if (slot.is_dense()) {
793
        for (int j = 0; j < slot.shape_size(); ++j) {
794 795
          if (slot.shape(j) > 0) {
            total_dims_without_inductive_[i] *= slot.shape(j);
796
          }
797 798
          if (slot.shape(j) == -1) {
            inductive_shape_index_[i] = j;
799
          }
800 801
        }
      }
802
      for (int j = 0; j < slot.shape_size(); ++j) {
803
        local_shape.push_back(slot.shape(j));
804 805
      }
      use_slots_shape_.push_back(local_shape);
806 807 808
    }
  }
  feed_vec_.resize(use_slots_.size());
H
hutuxian 已提交
809 810 811 812 813 814 815 816 817 818 819 820 821
  const int kEstimatedFeasignNumPerSlot = 5;  // Magic Number
  for (size_t i = 0; i < all_slot_num; i++) {
    batch_float_feasigns_.push_back(std::vector<float>());
    batch_uint64_feasigns_.push_back(std::vector<uint64_t>());
    batch_float_feasigns_[i].reserve(default_batch_size_ *
                                     kEstimatedFeasignNumPerSlot);
    batch_uint64_feasigns_[i].reserve(default_batch_size_ *
                                      kEstimatedFeasignNumPerSlot);
    offset_.push_back(std::vector<size_t>());
    offset_[i].reserve(default_batch_size_ +
                       1);  // Each lod info will prepend a zero
  }
  visit_.resize(all_slot_num, false);
822 823
  pipe_command_ = data_feed_desc.pipe_command();
  finish_init_ = true;
824
  input_type_ = data_feed_desc.input_type();
825 826
}

827 828 829 830 831 832 833 834 835 836 837 838 839 840
void MultiSlotInMemoryDataFeed::GetMsgFromLogKey(const std::string& log_key,
                                                 uint64_t* search_id,
                                                 uint32_t* cmatch,
                                                 uint32_t* rank) {
  std::string searchid_str = log_key.substr(16, 16);
  *search_id = (uint64_t)strtoull(searchid_str.c_str(), NULL, 16);

  std::string cmatch_str = log_key.substr(11, 3);
  *cmatch = (uint32_t)strtoul(cmatch_str.c_str(), NULL, 16);

  std::string rank_str = log_key.substr(14, 2);
  *rank = (uint32_t)strtoul(rank_str.c_str(), NULL, 16);
}

J
jiaqi 已提交
841
bool MultiSlotInMemoryDataFeed::ParseOneInstanceFromPipe(Record* instance) {
X
xjqbest 已提交
842
#ifdef _LINUX
843 844 845 846 847 848 849
  thread_local string::LineFileReader reader;

  if (!reader.getline(&*(fp_.get()))) {
    return false;
  } else {
    const char* str = reader.get();
    std::string line = std::string(str);
850
    // VLOG(3) << line;
851 852
    char* endptr = const_cast<char*>(str);
    int pos = 0;
853 854 855 856 857 858 859 860 861 862 863 864
    if (parse_ins_id_) {
      int num = strtol(&str[pos], &endptr, 10);
      CHECK(num == 1);  // NOLINT
      pos = endptr - str + 1;
      size_t len = 0;
      while (str[pos + len] != ' ') {
        ++len;
      }
      instance->ins_id_ = std::string(str + pos, len);
      pos += len + 1;
      VLOG(3) << "ins_id " << instance->ins_id_;
    }
865 866 867 868 869 870 871 872 873 874 875 876
    if (parse_content_) {
      int num = strtol(&str[pos], &endptr, 10);
      CHECK(num == 1);  // NOLINT
      pos = endptr - str + 1;
      size_t len = 0;
      while (str[pos + len] != ' ') {
        ++len;
      }
      instance->content_ = std::string(str + pos, len);
      pos += len + 1;
      VLOG(3) << "content " << instance->content_;
    }
877 878 879 880 881 882 883 884 885 886 887 888 889 890 891
    if (parse_logkey_) {
      int num = strtol(&str[pos], &endptr, 10);
      CHECK(num == 1);  // NOLINT
      pos = endptr - str + 1;
      size_t len = 0;
      while (str[pos + len] != ' ') {
        ++len;
      }
      // parse_logkey
      std::string log_key = std::string(str + pos, len);
      uint64_t search_id;
      uint32_t cmatch;
      uint32_t rank;
      GetMsgFromLogKey(log_key, &search_id, &cmatch, &rank);

H
hutuxian 已提交
892
      instance->ins_id_ = log_key;
893 894 895 896 897
      instance->search_id = search_id;
      instance->cmatch = cmatch;
      instance->rank = rank;
      pos += len + 1;
    }
898 899 900 901 902 903 904 905 906 907 908
    for (size_t i = 0; i < use_slots_index_.size(); ++i) {
      int idx = use_slots_index_[i];
      int num = strtol(&str[pos], &endptr, 10);
      PADDLE_ENFORCE(
          num,
          "The number of ids can not be zero, you need padding "
          "it in data generator; or if there is something wrong with "
          "the data, please check if the data contains unresolvable "
          "characters.\nplease check this error line: %s",
          str);
      if (idx != -1) {
J
jiaqi 已提交
909
        if (all_slots_type_[i][0] == 'f') {  // float
910 911
          for (int j = 0; j < num; ++j) {
            float feasign = strtof(endptr, &endptr);
J
jiaqi 已提交
912
            // if float feasign is equal to zero, ignore it
913 914
            // except when slot is dense
            if (fabs(feasign) < 1e-6 && !use_slots_is_dense_[i]) {
J
jiaqi 已提交
915 916 917 918 919
              continue;
            }
            FeatureKey f;
            f.float_feasign_ = feasign;
            instance->float_feasigns_.push_back(FeatureItem(f, idx));
920
          }
J
jiaqi 已提交
921
        } else if (all_slots_type_[i][0] == 'u') {  // uint64
922 923
          for (int j = 0; j < num; ++j) {
            uint64_t feasign = (uint64_t)strtoull(endptr, &endptr, 10);
J
jiaqi 已提交
924
            // if uint64 feasign is equal to zero, ignore it
925 926
            // except when slot is dense
            if (feasign == 0 && !use_slots_is_dense_[i]) {
J
jiaqi 已提交
927 928 929 930 931
              continue;
            }
            FeatureKey f;
            f.uint64_feasign_ = feasign;
            instance->uint64_feasigns_.push_back(FeatureItem(f, idx));
932 933 934 935 936 937 938 939 940 941 942 943
          }
        }
        pos = endptr - str;
      } else {
        for (int j = 0; j <= num; ++j) {
          // pos = line.find_first_of(' ', pos + 1);
          while (line[pos + 1] != ' ') {
            pos++;
          }
        }
      }
    }
J
jiaqi 已提交
944 945
    instance->float_feasigns_.shrink_to_fit();
    instance->uint64_feasigns_.shrink_to_fit();
H
hutuxian 已提交
946
    fea_num_ += instance->uint64_feasigns_.size();
947 948
    return true;
  }
X
xjqbest 已提交
949 950 951
#else
  return false;
#endif
952 953
}

J
jiaqi 已提交
954
bool MultiSlotInMemoryDataFeed::ParseOneInstance(Record* instance) {
X
xjqbest 已提交
955
#ifdef _LINUX
956 957
  std::string line;
  if (getline(file_, line)) {
958
    VLOG(3) << line;
959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974
    // parse line
    const char* str = line.c_str();
    char* endptr = const_cast<char*>(str);
    int pos = 0;
    for (size_t i = 0; i < use_slots_index_.size(); ++i) {
      int idx = use_slots_index_[i];
      int num = strtol(&str[pos], &endptr, 10);
      PADDLE_ENFORCE(
          num,
          "The number of ids can not be zero, you need padding "
          "it in data generator; or if there is something wrong with "
          "the data, please check if the data contains unresolvable "
          "characters.\nplease check this error line: %s",
          str);

      if (idx != -1) {
J
jiaqi 已提交
975
        if (all_slots_type_[i][0] == 'f') {  // float
976 977
          for (int j = 0; j < num; ++j) {
            float feasign = strtof(endptr, &endptr);
J
jiaqi 已提交
978 979 980 981 982 983
            if (fabs(feasign) < 1e-6) {
              continue;
            }
            FeatureKey f;
            f.float_feasign_ = feasign;
            instance->float_feasigns_.push_back(FeatureItem(f, idx));
984
          }
J
jiaqi 已提交
985
        } else if (all_slots_type_[i][0] == 'u') {  // uint64
986 987
          for (int j = 0; j < num; ++j) {
            uint64_t feasign = (uint64_t)strtoull(endptr, &endptr, 10);
J
jiaqi 已提交
988 989 990 991 992 993
            if (feasign == 0) {
              continue;
            }
            FeatureKey f;
            f.uint64_feasign_ = feasign;
            instance->uint64_feasigns_.push_back(FeatureItem(f, idx));
994 995 996 997 998 999 1000 1001 1002
          }
        }
        pos = endptr - str;
      } else {
        for (int j = 0; j <= num; ++j) {
          pos = line.find_first_of(' ', pos + 1);
        }
      }
    }
J
jiaqi 已提交
1003 1004 1005
    instance->float_feasigns_.shrink_to_fit();
    instance->uint64_feasigns_.shrink_to_fit();
    return true;
1006 1007 1008
  } else {
    return false;
  }
X
xjqbest 已提交
1009 1010
#endif
  return false;
1011 1012
}

J
jiaqi 已提交
1013 1014
void MultiSlotInMemoryDataFeed::PutToFeedVec(
    const std::vector<Record>& ins_vec) {
X
xjqbest 已提交
1015
#ifdef _LINUX
H
hutuxian 已提交
1016 1017 1018 1019 1020 1021
  for (size_t i = 0; i < batch_float_feasigns_.size(); ++i) {
    batch_float_feasigns_[i].clear();
    batch_uint64_feasigns_[i].clear();
    offset_[i].clear();
    offset_[i].push_back(0);
  }
1022 1023 1024 1025
  ins_content_vec_.clear();
  ins_content_vec_.reserve(ins_vec.size());
  ins_id_vec_.clear();
  ins_id_vec_.reserve(ins_vec.size());
J
jiaqi 已提交
1026 1027
  for (size_t i = 0; i < ins_vec.size(); ++i) {
    auto& r = ins_vec[i];
1028 1029
    ins_id_vec_.push_back(r.ins_id_);
    ins_content_vec_.push_back(r.content_);
J
jiaqi 已提交
1030
    for (auto& item : r.float_feasigns_) {
H
hutuxian 已提交
1031 1032
      batch_float_feasigns_[item.slot()].push_back(item.sign().float_feasign_);
      visit_[item.slot()] = true;
J
jiaqi 已提交
1033 1034
    }
    for (auto& item : r.uint64_feasigns_) {
H
hutuxian 已提交
1035 1036 1037
      batch_uint64_feasigns_[item.slot()].push_back(
          item.sign().uint64_feasign_);
      visit_[item.slot()] = true;
J
jiaqi 已提交
1038 1039 1040
    }
    for (size_t j = 0; j < use_slots_.size(); ++j) {
      const auto& type = all_slots_type_[j];
H
hutuxian 已提交
1041 1042
      if (visit_[j]) {
        visit_[j] = false;
J
jiaqi 已提交
1043 1044 1045
      } else {
        // fill slot value with default value 0
        if (type[0] == 'f') {  // float
H
hutuxian 已提交
1046
          batch_float_feasigns_[j].push_back(0.0);
J
jiaqi 已提交
1047
        } else if (type[0] == 'u') {  // uint64
H
hutuxian 已提交
1048
          batch_uint64_feasigns_[j].push_back(0);
J
jiaqi 已提交
1049 1050 1051 1052
        }
      }
      // get offset of this ins in this slot
      if (type[0] == 'f') {  // float
H
hutuxian 已提交
1053
        offset_[j].push_back(batch_float_feasigns_[j].size());
J
jiaqi 已提交
1054
      } else if (type[0] == 'u') {  // uint64
H
hutuxian 已提交
1055
        offset_[j].push_back(batch_uint64_feasigns_[j].size());
J
jiaqi 已提交
1056
      }
1057 1058 1059 1060
    }
  }

  for (size_t i = 0; i < use_slots_.size(); ++i) {
1061 1062 1063
    if (feed_vec_[i] == nullptr) {
      continue;
    }
H
hutuxian 已提交
1064
    int total_instance = offset_[i].back();
J
jiaqi 已提交
1065
    const auto& type = all_slots_type_[i];
1066
    if (type[0] == 'f') {  // float
H
hutuxian 已提交
1067
      float* feasign = batch_float_feasigns_[i].data();
1068 1069 1070
      float* tensor_ptr =
          feed_vec_[i]->mutable_data<float>({total_instance, 1}, this->place_);
      CopyToFeedTensor(tensor_ptr, feasign, total_instance * sizeof(float));
1071 1072
    } else if (type[0] == 'u') {  // uint64
      // no uint64_t type in paddlepaddle
H
hutuxian 已提交
1073
      uint64_t* feasign = batch_uint64_feasigns_[i].data();
1074
      int64_t* tensor_ptr = feed_vec_[i]->mutable_data<int64_t>(
1075 1076
          {total_instance, 1}, this->place_);
      CopyToFeedTensor(tensor_ptr, feasign, total_instance * sizeof(int64_t));
1077
    }
H
hutuxian 已提交
1078
    auto& slot_offset = offset_[i];
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
    if (this->input_type_ == 0) {
      LoD data_lod{slot_offset};
      feed_vec_[i]->set_lod(data_lod);
    } else if (this->input_type_ == 1) {
      if (!use_slots_is_dense_[i]) {
        std::vector<size_t> tmp_offset;
        PADDLE_ENFORCE_EQ(slot_offset.size(), 2,
                          platform::errors::InvalidArgument(
                              "In batch reader, the sparse tensor lod size "
                              "must be 2, but received %d",
                              slot_offset.size()));
        const auto& max_size = slot_offset[1];
        tmp_offset.reserve(max_size + 1);
        for (unsigned int k = 0; k <= max_size; k++) {
          tmp_offset.emplace_back(k);
        }
        slot_offset = tmp_offset;
        LoD data_lod{slot_offset};
        feed_vec_[i]->set_lod(data_lod);
      }
    }
1100
    if (use_slots_is_dense_[i]) {
1101 1102 1103 1104
      if (inductive_shape_index_[i] != -1) {
        use_slots_shape_[i][inductive_shape_index_[i]] =
            total_instance / total_dims_without_inductive_[i];
      }
1105
      feed_vec_[i]->Resize(framework::make_ddim(use_slots_shape_[i]));
1106 1107
    }
  }
X
xjqbest 已提交
1108
#endif
1109 1110
}

H
hutuxian 已提交
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
template <typename T>
void PrivateInstantDataFeed<T>::PutToFeedVec() {
  for (size_t i = 0; i < use_slots_.size(); ++i) {
    const auto& type = ins_vec_[i].GetType();
    const auto& offset = ins_vec_[i].GetOffset();
    int total_instance = static_cast<int>(offset.back());

    if (type[0] == 'f') {  // float
      const auto& feasign = ins_vec_[i].GetFloatData();
1121 1122 1123
      float* tensor_ptr =
          feed_vec_[i]->mutable_data<float>({total_instance, 1}, this->place_);
      CopyToFeedTensor(tensor_ptr, &feasign[0], total_instance * sizeof(float));
H
hutuxian 已提交
1124 1125 1126 1127
    } else if (type[0] == 'u') {  // uint64
      // no uint64_t type in paddlepaddle
      const auto& feasign = ins_vec_[i].GetUint64Data();
      int64_t* tensor_ptr = feed_vec_[i]->mutable_data<int64_t>(
1128 1129 1130
          {total_instance, 1}, this->place_);
      CopyToFeedTensor(tensor_ptr, &feasign[0],
                       total_instance * sizeof(int64_t));
H
hutuxian 已提交
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
    }

    LoD data_lod{offset};
    feed_vec_[i]->set_lod(data_lod);
    if (use_slots_is_dense_[i]) {
      int64_t total_dims = 1;
      for (const auto e : use_slots_shape_[i]) {
        total_dims *= e;
      }
      PADDLE_ENFORCE(
          total_dims == total_instance,
          "The actual data size of slot[%s] doesn't match its declaration",
          use_slots_[i].c_str());
      feed_vec_[i]->Resize(framework::make_ddim(use_slots_shape_[i]));
    }
  }
}

template <typename T>
int PrivateInstantDataFeed<T>::Next() {
  if (ParseOneMiniBatch()) {
    PutToFeedVec();
    return ins_vec_[0].GetBatchSize();
  }
  Postprocess();

  std::string filename;
  if (!PickOneFile(&filename)) {
    return -1;
  }
  if (!Preprocess(filename)) {
    return -1;
  }

  PADDLE_ENFORCE(true == ParseOneMiniBatch(), "Fail to parse mini-batch data");
  PutToFeedVec();
  return ins_vec_[0].GetBatchSize();
}

template <typename T>
void PrivateInstantDataFeed<T>::Init(const DataFeedDesc& data_feed_desc) {
  finish_init_ = false;
  finish_set_filelist_ = false;
  finish_start_ = false;

  PADDLE_ENFORCE(data_feed_desc.has_multi_slot_desc(),
                 "Multi_slot_desc has not been set.");
  paddle::framework::MultiSlotDesc multi_slot_desc =
      data_feed_desc.multi_slot_desc();
  SetBatchSize(data_feed_desc.batch_size());
  size_t all_slot_num = multi_slot_desc.slots_size();
  all_slots_.resize(all_slot_num);
  all_slots_type_.resize(all_slot_num);
  use_slots_index_.resize(all_slot_num);
  multi_inductive_shape_index_.resize(all_slot_num);
  use_slots_.clear();
  use_slots_is_dense_.clear();
  for (size_t i = 0; i < all_slot_num; ++i) {
    const auto& slot = multi_slot_desc.slots(i);
    all_slots_[i] = slot.name();
    all_slots_type_[i] = slot.type();
    use_slots_index_[i] = slot.is_used() ? use_slots_.size() : -1;
    if (slot.is_used()) {
      use_slots_.push_back(all_slots_[i]);
      use_slots_is_dense_.push_back(slot.is_dense());
      std::vector<int> local_shape;
      if (slot.is_dense()) {
1198
        for (int j = 0; j < slot.shape_size(); ++j) {
H
hutuxian 已提交
1199 1200 1201 1202 1203
          if (slot.shape(j) == -1) {
            multi_inductive_shape_index_[i].push_back(j);
          }
        }
      }
1204
      for (int j = 0; j < slot.shape_size(); ++j) {
H
hutuxian 已提交
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
        local_shape.push_back(slot.shape(j));
      }
      use_slots_shape_.push_back(local_shape);
    }
  }
  feed_vec_.resize(use_slots_.size());
  ins_vec_.resize(use_slots_.size());

  finish_init_ = true;
}

template class PrivateInstantDataFeed<std::vector<MultiSlotType>>;

bool MultiSlotFileInstantDataFeed::Preprocess(const std::string& filename) {
  fd_ = open(filename.c_str(), O_RDONLY);
  PADDLE_ENFORCE(fd_ != -1, "Fail to open file: %s", filename.c_str());

  struct stat sb;
  fstat(fd_, &sb);
  end_ = static_cast<size_t>(sb.st_size);

  buffer_ =
      reinterpret_cast<char*>(mmap(NULL, end_, PROT_READ, MAP_PRIVATE, fd_, 0));
  PADDLE_ENFORCE(buffer_ != MAP_FAILED, strerror(errno));

  offset_ = 0;
  return true;
}

bool MultiSlotFileInstantDataFeed::Postprocess() {
  if (buffer_ != nullptr) {
    munmap(buffer_, end_);
    buffer_ = nullptr;
  }
  if (fd_ != -1) {
    close(fd_);
    fd_ = -1;
    end_ = 0;
    offset_ = 0;
  }
  return true;
}

bool MultiSlotFileInstantDataFeed::ParseOneMiniBatch() {
  if (offset_ == end_) {
    return false;
  }

  batch_size_ = 0;
  while (batch_size_ < default_batch_size_ && offset_ < end_) {
    for (size_t i = 0; i < use_slots_index_.size(); ++i) {
      int idx = use_slots_index_[i];
      char type = all_slots_type_[i][0];

      uint16_t num = *reinterpret_cast<uint16_t*>(buffer_ + offset_);
      PADDLE_ENFORCE(
          num,
          "The number of ids can not be zero, you need padding "
          "it in data generator; or if there is something wrong with "
          "the data, please check if the data contains unresolvable "
          "characters.");
      offset_ += sizeof(uint16_t);

      if (idx != -1) {
        int inductive_size = multi_inductive_shape_index_[i].size();
        if (UNLIKELY(batch_size_ == 0)) {
          ins_vec_[idx].Init(all_slots_type_[i], default_batch_size_ * num);
          ins_vec_[idx].InitOffset(default_batch_size_);
          uint64_t* inductive_shape =
              reinterpret_cast<uint64_t*>(buffer_ + offset_);
          for (int inductive_id = 0; inductive_id < inductive_size;
               ++inductive_id) {
            use_slots_shape_[i][multi_inductive_shape_index_[i][inductive_id]] =
                static_cast<int>(*(inductive_shape + inductive_id));
          }
        }
        num -= inductive_size;
        offset_ += sizeof(uint64_t) * inductive_size;

        if (type == 'f') {
          ins_vec_[idx].AppendValues(
              reinterpret_cast<float*>(buffer_ + offset_), num);
          offset_ += num * sizeof(float);
        } else if (type == 'u') {
          ins_vec_[idx].AppendValues(
              reinterpret_cast<uint64_t*>(buffer_ + offset_), num);
          offset_ += num * sizeof(uint64_t);
        }
      } else {
        if (type == 'f') {
          offset_ += num * sizeof(float);
        } else if (type == 'u') {
          offset_ += num * sizeof(uint64_t);
        }
      }
    }
    ++batch_size_;
    // OPTIMIZE: It is better to insert check codes between instances for format
    // checking
  }

  PADDLE_ENFORCE(batch_size_ == default_batch_size_ || offset_ == end_,
                 "offset_ != end_");
  return true;
}
#endif

1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
bool PaddleBoxDataFeed::Start() {
#ifdef _LINUX
  int phase = GetCurrentPhase();  // join: 1, update: 0
  this->CheckSetFileList();
  if (enable_pv_merge_ && phase == 1) {
    // join phase : input_pv_channel to output_pv_channel
    if (output_pv_channel_->Size() == 0 && input_pv_channel_->Size() != 0) {
      std::vector<PvInstance> data;
      input_pv_channel_->Read(data);
      output_pv_channel_->Write(std::move(data));
    }
  } else {
    // input_channel to output
    if (output_channel_->Size() == 0 && input_channel_->Size() != 0) {
      std::vector<Record> data;
      input_channel_->Read(data);
      output_channel_->Write(std::move(data));
    }
  }
#endif
  this->finish_start_ = true;
  return true;
}

int PaddleBoxDataFeed::Next() {
#ifdef _LINUX
  int phase = GetCurrentPhase();  // join: 1, update: 0
  this->CheckStart();
  if (enable_pv_merge_ && phase == 1) {
    // join phase : output_pv_channel to consume_pv_channel
    CHECK(output_pv_channel_ != nullptr);
    CHECK(consume_pv_channel_ != nullptr);
    VLOG(3) << "output_pv_channel_ size=" << output_pv_channel_->Size()
            << ", consume_pv_channel_ size=" << consume_pv_channel_->Size()
            << ", thread_id=" << thread_id_;
    int index = 0;
    PvInstance pv_instance;
    std::vector<PvInstance> pv_vec;
    pv_vec.reserve(this->pv_batch_size_);
    while (index < this->pv_batch_size_) {
      if (output_pv_channel_->Size() == 0) {
        break;
      }
      output_pv_channel_->Get(pv_instance);
      pv_vec.push_back(pv_instance);
      ++index;
      consume_pv_channel_->Put(std::move(pv_instance));
    }
    this->batch_size_ = index;
    VLOG(3) << "pv_batch_size_=" << this->batch_size_
            << ", thread_id=" << thread_id_;
    if (this->batch_size_ != 0) {
      PutToFeedVec(pv_vec);
    } else {
      VLOG(3) << "finish reading, output_pv_channel_ size="
              << output_pv_channel_->Size()
              << ", consume_pv_channel_ size=" << consume_pv_channel_->Size()
              << ", thread_id=" << thread_id_;
    }
    return this->batch_size_;
  } else {
    this->batch_size_ = MultiSlotInMemoryDataFeed::Next();
    return this->batch_size_;
  }
#else
  return 0;
#endif
}

void PaddleBoxDataFeed::Init(const DataFeedDesc& data_feed_desc) {
  MultiSlotInMemoryDataFeed::Init(data_feed_desc);
  rank_offset_name_ = data_feed_desc.rank_offset();
  pv_batch_size_ = data_feed_desc.pv_batch_size();
}

void PaddleBoxDataFeed::GetRankOffset(const std::vector<PvInstance>& pv_vec,
                                      int ins_number) {
  int index = 0;
  int max_rank = 3;  // the value is setting
  int row = ins_number;
  int col = max_rank * 2 + 1;
  int pv_num = pv_vec.size();

  std::vector<int> rank_offset_mat(row * col, -1);
  rank_offset_mat.shrink_to_fit();

  for (int i = 0; i < pv_num; i++) {
    auto pv_ins = pv_vec[i];
    int ad_num = pv_ins->ads.size();
    int index_start = index;
    for (int j = 0; j < ad_num; ++j) {
      auto ins = pv_ins->ads[j];
      int rank = -1;
      if ((ins->cmatch == 222 || ins->cmatch == 223) &&
          ins->rank <= static_cast<uint32_t>(max_rank) && ins->rank != 0) {
        rank = ins->rank;
      }

      rank_offset_mat[index * col] = rank;
      if (rank > 0) {
        for (int k = 0; k < ad_num; ++k) {
          auto cur_ins = pv_ins->ads[k];
          int fast_rank = -1;
          if ((cur_ins->cmatch == 222 || cur_ins->cmatch == 223) &&
              cur_ins->rank <= static_cast<uint32_t>(max_rank) &&
              cur_ins->rank != 0) {
            fast_rank = cur_ins->rank;
          }

          if (fast_rank > 0) {
            int m = fast_rank - 1;
            rank_offset_mat[index * col + 2 * m + 1] = cur_ins->rank;
            rank_offset_mat[index * col + 2 * m + 2] = index_start + k;
          }
        }
      }
      index += 1;
    }
  }

  int* rank_offset = rank_offset_mat.data();
  int* tensor_ptr = rank_offset_->mutable_data<int>({row, col}, this->place_);
  CopyToFeedTensor(tensor_ptr, rank_offset, row * col * sizeof(int));
}

void PaddleBoxDataFeed::AssignFeedVar(const Scope& scope) {
  MultiSlotInMemoryDataFeed::AssignFeedVar(scope);
  // set rank offset memory
  int phase = GetCurrentPhase();  // join: 1, update: 0
  if (enable_pv_merge_ && phase == 1) {
    rank_offset_ = scope.FindVar(rank_offset_name_)->GetMutable<LoDTensor>();
  }
}

void PaddleBoxDataFeed::PutToFeedVec(const std::vector<PvInstance>& pv_vec) {
#ifdef _LINUX
  int ins_number = 0;
  std::vector<Record*> ins_vec;
  for (auto& pv : pv_vec) {
    ins_number += pv->ads.size();
    for (auto ins : pv->ads) {
      ins_vec.push_back(ins);
    }
  }
  GetRankOffset(pv_vec, ins_number);
  PutToFeedVec(ins_vec);
#endif
}

int PaddleBoxDataFeed::GetCurrentPhase() {
#ifdef PADDLE_WITH_BOX_PS
  auto box_ptr = paddle::framework::BoxWrapper::GetInstance();
1464 1465 1466 1467 1468
  if (box_ptr->Mode() == 1) {  // For AucRunner
    return 1;
  } else {
    return box_ptr->Phase();
  }
1469 1470 1471 1472 1473 1474 1475 1476
#else
  LOG(WARNING) << "It should be complied with BOX_PS...";
  return current_phase_;
#endif
}

void PaddleBoxDataFeed::PutToFeedVec(const std::vector<Record*>& ins_vec) {
#ifdef _LINUX
H
hutuxian 已提交
1477 1478 1479 1480 1481 1482
  for (size_t i = 0; i < batch_float_feasigns_.size(); ++i) {
    batch_float_feasigns_[i].clear();
    batch_uint64_feasigns_[i].clear();
    offset_[i].clear();
    offset_[i].push_back(0);
  }
1483 1484 1485 1486 1487 1488 1489 1490 1491
  ins_content_vec_.clear();
  ins_content_vec_.reserve(ins_vec.size());
  ins_id_vec_.clear();
  ins_id_vec_.reserve(ins_vec.size());
  for (size_t i = 0; i < ins_vec.size(); ++i) {
    auto r = ins_vec[i];
    ins_id_vec_.push_back(r->ins_id_);
    ins_content_vec_.push_back(r->content_);
    for (auto& item : r->float_feasigns_) {
H
hutuxian 已提交
1492 1493
      batch_float_feasigns_[item.slot()].push_back(item.sign().float_feasign_);
      visit_[item.slot()] = true;
1494 1495
    }
    for (auto& item : r->uint64_feasigns_) {
H
hutuxian 已提交
1496 1497 1498
      batch_uint64_feasigns_[item.slot()].push_back(
          item.sign().uint64_feasign_);
      visit_[item.slot()] = true;
1499 1500 1501
    }
    for (size_t j = 0; j < use_slots_.size(); ++j) {
      const auto& type = all_slots_type_[j];
H
hutuxian 已提交
1502 1503
      if (visit_[j]) {
        visit_[j] = false;
1504 1505 1506
      } else {
        // fill slot value with default value 0
        if (type[0] == 'f') {  // float
H
hutuxian 已提交
1507
          batch_float_feasigns_[j].push_back(0.0);
1508
        } else if (type[0] == 'u') {  // uint64
H
hutuxian 已提交
1509
          batch_uint64_feasigns_[j].push_back(0);
1510 1511 1512 1513
        }
      }
      // get offset of this ins in this slot
      if (type[0] == 'f') {  // float
H
hutuxian 已提交
1514
        offset_[j].push_back(batch_float_feasigns_[j].size());
1515
      } else if (type[0] == 'u') {  // uint64
H
hutuxian 已提交
1516
        offset_[j].push_back(batch_uint64_feasigns_[j].size());
1517 1518 1519 1520 1521 1522 1523 1524
      }
    }
  }

  for (size_t i = 0; i < use_slots_.size(); ++i) {
    if (feed_vec_[i] == nullptr) {
      continue;
    }
H
hutuxian 已提交
1525
    int total_instance = offset_[i].back();
1526 1527
    const auto& type = all_slots_type_[i];
    if (type[0] == 'f') {  // float
H
hutuxian 已提交
1528
      float* feasign = batch_float_feasigns_[i].data();
1529 1530 1531 1532 1533
      float* tensor_ptr =
          feed_vec_[i]->mutable_data<float>({total_instance, 1}, this->place_);
      CopyToFeedTensor(tensor_ptr, feasign, total_instance * sizeof(float));
    } else if (type[0] == 'u') {  // uint64
      // no uint64_t type in paddlepaddle
H
hutuxian 已提交
1534
      uint64_t* feasign = batch_uint64_feasigns_[i].data();
1535 1536 1537 1538
      int64_t* tensor_ptr = feed_vec_[i]->mutable_data<int64_t>(
          {total_instance, 1}, this->place_);
      CopyToFeedTensor(tensor_ptr, feasign, total_instance * sizeof(int64_t));
    }
H
hutuxian 已提交
1539
    auto& slot_offset = offset_[i];
1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552
    LoD data_lod{slot_offset};
    feed_vec_[i]->set_lod(data_lod);
    if (use_slots_is_dense_[i]) {
      if (inductive_shape_index_[i] != -1) {
        use_slots_shape_[i][inductive_shape_index_[i]] =
            total_instance / total_dims_without_inductive_[i];
      }
      feed_vec_[i]->Resize(framework::make_ddim(use_slots_shape_[i]));
    }
  }
#endif
}

W
Wang Guibao 已提交
1553 1554
}  // namespace framework
}  // namespace paddle