distributed_py.cc 59.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <fcntl.h>
#ifdef _POSIX_C_SOURCE
#undef _POSIX_C_SOURCE
#endif

#ifdef _XOPEN_SOURCE
#undef _XOPEN_SOURCE
#endif

#include "paddle/fluid/distributed/collective/ProcessGroup.h"
25
#include "paddle/fluid/distributed/collective/ProcessGroupStream.h"
26
#include "paddle/fluid/distributed/collective/Types.h"
27
#include "paddle/fluid/distributed/collective/Utils.h"
28
#include "paddle/fluid/distributed/collective/reducer.h"
29 30 31 32 33 34 35
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/imperative/layer.h"
#include "paddle/fluid/pybind/distributed_py.h"
#include "paddle/fluid/pybind/eager_utils.h"
#include "paddle/phi/api/all.h"

36
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
37 38 39
#include "paddle/fluid/distributed/collective/ProcessGroupNCCL.h"
#endif

W
wuhuachaocoding 已提交
40 41 42 43
#if defined(PADDLE_WITH_MPI)
#include "paddle/fluid/distributed/collective/ProcessGroupMPI.h"
#endif

44 45 46 47
#if defined(PADDLE_WITH_ASCEND_CL)
#include "paddle/fluid/distributed/collective/ProcessGroupHCCL.h"
#endif

48 49 50 51
#if defined(PADDLE_WITH_CUSTOM_DEVICE)
#include "paddle/fluid/distributed/collective/ProcessGroupCustom.h"
#endif

52 53 54 55 56
#if defined(PADDLE_WITH_GLOO) && defined(PADDLE_WITH_PSCORE) && \
    (defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_ASCEND_CL))
#include "paddle/fluid/distributed/collective/ProcessGroupHeter.h"
#endif

57 58 59 60 61
#if defined(PADDLE_WITH_GLOO)
#include "paddle/fluid/distributed/collective/ProcessGroupGloo.h"
#include "paddle/fluid/distributed/store/tcp_store.h"
#endif

J
james 已提交
62 63 64 65
#if defined(PADDLE_WITH_XPU_BKCL)
#include "paddle/fluid/distributed/collective/ProcessGroupBKCL.h"
#endif

66 67
#include "paddle/phi/kernels/sync_batch_norm_kernel.h"

68 69 70 71 72 73 74
namespace py = pybind11;

namespace paddle {
namespace pybind {

using Tensor = paddle::experimental::Tensor;

75 76 77 78 79
std::shared_ptr<distributed::EagerReducer> CreateEagerReducer(
    py::handle py_tensors,
    const std::vector<std::vector<size_t>> &group_indices,
    const std::vector<bool> &is_sparse_gradient,
    std::shared_ptr<distributed::ProcessGroup> process_group,
80 81
    const std::vector<size_t> &group_size_limits,
    bool find_unused_parameters) {
82
  auto params = CastPyArg2VectorOfTensor(py_tensors.ptr(), 0);
83 84 85 86 87 88
  return std::make_shared<distributed::EagerReducer>(params,
                                                     group_indices,
                                                     is_sparse_gradient,
                                                     process_group,
                                                     group_size_limits,
                                                     find_unused_parameters);
89 90
}

91 92 93 94 95 96 97 98
#if defined(PADDLE_WITH_GLOO)
using ProcessGroupGloo = paddle::distributed::ProcessGroupGloo;
using GlooStore = paddle::distributed::ProcessGroupGloo::GlooStore;
using GlooOptions = paddle::distributed::ProcessGroupGloo::GlooOptions;
#endif

static std::string GLOO_SOCKET_IFNAME_ENV = "GLOO_SOCKET_IFNAME";  // NOLINT

99 100 101
static UNUSED void *use_ccl_comm_func =
    phi::detail::GetCCLComm(phi::CPUPlace());

102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
void BindDistributed(py::module *m) {
  py::enum_<distributed::ReduceOp>(*m, "ReduceOp")
      .value("SUM", distributed::ReduceOp::SUM)
      .value("AVG", distributed::ReduceOp::AVG)
      .value("MAX", distributed::ReduceOp::MAX)
      .value("MIN", distributed::ReduceOp::MIN)
      .value("PRODUCT", distributed::ReduceOp::PRODUCT);

  py::class_<distributed::AllreduceOptions>(*m, "AllreduceOptions")
      .def(py::init<>())
      .def_readwrite("reduce_op", &distributed::AllreduceOptions::reduce_op);

  py::class_<distributed::BroadcastOptions>(*m, "BroadcastOptions")
      .def(py::init<>())
      .def_readwrite("source_rank", &distributed::BroadcastOptions::source_rank)
      .def_readwrite("source_root",
                     &distributed::BroadcastOptions::source_root);

B
Baibaifan 已提交
120 121 122 123
  py::class_<distributed::BarrierOptions>(*m, "BarrierOptions")
      .def(py::init<>())
      .def_readwrite("place_ids", &distributed::BarrierOptions::place_ids);

124 125 126 127 128
  py::class_<distributed::ReduceOptions>(*m, "ReduceOptions")
      .def(py::init<>())
      .def_readwrite("reduce_op", &distributed::ReduceOptions::reduce_op)
      .def_readwrite("source_root", &distributed::ReduceOptions::root_rank);

129 130 131 132 133 134
  auto ProcessGroup =
      py::class_<distributed::ProcessGroup,
                 std::shared_ptr<distributed::ProcessGroup>>(*m, "ProcessGroup")
          .def("rank", &distributed::ProcessGroup::GetRank)
          .def("size", &distributed::ProcessGroup::GetSize)
          .def("name", &distributed::ProcessGroup::GetBackendName)
135
          .def(
L
LiYuRio 已提交
136
              "all_reduce",
137 138 139 140 141
              [](distributed::ProcessGroup &self,
                 py::handle py_tensor,
                 distributed::ReduceOp op,
                 bool sync_op) {
                auto tensor = CastPyArg2Tensor(py_tensor.ptr(), 0);
142
                auto p_dense =
143
                    std::dynamic_pointer_cast<phi::DenseTensor>(tensor.impl());
144 145 146 147
                auto *out_dense = p_dense.get();
                auto in_dense = *p_dense;
                distributed::AllreduceOptions opts{op};
                return self.AllReduce(out_dense, in_dense, opts, sync_op);
148 149 150 151 152 153
              },
              py::arg("tensor"),
              py::arg("op"),
              py::arg("sync_op"),
              py::call_guard<py::gil_scoped_release>())

154 155 156 157 158 159 160
          .def(
              "broadcast",
              [](distributed::ProcessGroup &self,
                 py::handle py_tensor,
                 int src,
                 bool sync_op) {
                auto tensor = CastPyArg2Tensor(py_tensor.ptr(), 0);
161
                auto p_dense =
162
                    std::dynamic_pointer_cast<phi::DenseTensor>(tensor.impl());
163 164 165 166
                auto *out_dense = p_dense.get();
                auto in_dense = *p_dense;
                distributed::BroadcastOptions opts{src};
                return self.Broadcast(out_dense, in_dense, opts, sync_op);
167 168 169 170 171 172
              },
              py::arg("tensor"),
              py::arg("src"),
              py::arg("sync_op"),
              py::call_guard<py::gil_scoped_release>())

173 174 175 176 177 178 179
          .def(
              "send",
              [](distributed::ProcessGroup &self,
                 py::handle py_tensor,
                 int dst,
                 bool sync_op) {
                auto tensor = CastPyArg2Tensor(py_tensor.ptr(), 0);
180
                auto p_dense =
181
                    std::dynamic_pointer_cast<phi::DenseTensor>(tensor.impl());
182 183
                auto *out_dense = p_dense.get();
                return self.Send(out_dense, dst, sync_op);
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
              },
              py::arg("tensor"),
              py::arg("dst"),
              py::arg("sync_op"),
              py::call_guard<py::gil_scoped_release>())

          .def(
              "send_partial",
              [](distributed::ProcessGroup &self,
                 py::handle py_tensor,
                 int dst_rank,
                 int nranks,
                 int rank_id,
                 bool sync_op) {
                auto tensor = CastPyArg2Tensor(py_tensor.ptr(), 0);
199
                auto p_dense =
200
                    std::dynamic_pointer_cast<phi::DenseTensor>(tensor.impl());
201
                int64_t numel = p_dense->numel();
202 203
                int64_t send_numel = numel / nranks;
                int64_t offset = send_numel * rank_id;
204 205 206
                auto *out_dense = p_dense.get();
                return self.SendPartial(
                    out_dense, dst_rank, offset, send_numel, sync_op);
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
              },
              py::arg("tensor"),
              py::arg("dst"),
              py::arg("num"),
              py::arg("id"),
              py::arg("sync_op"),
              py::call_guard<py::gil_scoped_release>())

          .def(
              "recv",
              [](distributed::ProcessGroup &self,
                 py::handle py_tensor,
                 int src,
                 bool sync_op) {
                auto tensor = CastPyArg2Tensor(py_tensor.ptr(), 0);
222
                auto p_dense =
223
                    std::dynamic_pointer_cast<phi::DenseTensor>(tensor.impl());
224 225
                auto *in_dense = p_dense.get();
                return self.Recv(in_dense, src, sync_op);
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
              },
              py::arg("tensor"),
              py::arg("src"),
              py::arg("sync_op"),
              py::call_guard<py::gil_scoped_release>())

          .def(
              "recv_partial",
              [](distributed::ProcessGroup &self,
                 py::handle py_tensor,
                 int src_rank,
                 int nranks,
                 int rank_id,
                 bool sync_op) {
                auto tensor = CastPyArg2Tensor(py_tensor.ptr(), 0);
241
                auto p_dense =
242
                    std::dynamic_pointer_cast<phi::DenseTensor>(tensor.impl());
243
                int64_t numel = p_dense->numel();
244 245
                int64_t recv_numel = numel / nranks;
                int64_t offset = recv_numel * rank_id;
246 247 248
                auto *out_dense = p_dense.get();
                return self.RecvPartial(
                    out_dense, src_rank, offset, recv_numel, sync_op);
249 250 251 252 253 254 255 256
              },
              py::arg("tensor"),
              py::arg("src"),
              py::arg("num"),
              py::arg("id"),
              py::arg("sync_op"),
              py::call_guard<py::gil_scoped_release>())

257 258
          .def(
              "all_gather",
259 260
              [](distributed::ProcessGroup &self,
                 py::handle py_out_tensor_list,
261
                 py::handle py_in_tensor,
262 263 264 265
                 bool sync_op) {
                auto out_tensor_list =
                    CastPyArg2VectorOfTensor(py_out_tensor_list.ptr(), 0);
                Tensor concat_out_tensor = paddle::concat(out_tensor_list, 0);
266
                auto p_out_tensor = std::dynamic_pointer_cast<phi::DenseTensor>(
267
                    concat_out_tensor.impl());
268 269 270 271 272 273
                auto *out_dense = p_out_tensor.get();

                auto in_tensor = CastPyArg2Tensor(py_in_tensor.ptr(), 0);
                auto p_in_tensor = std::dynamic_pointer_cast<phi::DenseTensor>(
                    in_tensor.impl());
                auto in_dense = *p_in_tensor;
274

275
                const auto &dev_ctx = self.GetDeviceContext(in_tensor.place());
276
                auto task = self.AllGather(out_dense, in_dense, sync_op);
277
                distributed::SplitTensor(dev_ctx, *out_dense, &out_tensor_list);
278
                task->UpdateWaitChain(dev_ctx);
279 280 281
                return task;
              },
              py::arg("out"),
282
              py::arg("in"),
283 284 285 286
              py::arg("sync_op"),
              py::call_guard<py::gil_scoped_release>())

          .def(
L
LiYuRio 已提交
287
              "all_gather_into_tensor",
288 289
              [](distributed::ProcessGroup &self,
                 py::handle py_out_tensor,
290
                 py::handle py_in_tensor,
291 292
                 bool sync_op) {
                auto out_tensor = CastPyArg2Tensor(py_out_tensor.ptr(), 0);
293
                auto p_out_tensor = std::dynamic_pointer_cast<phi::DenseTensor>(
294
                    out_tensor.impl());
295 296 297 298 299 300
                auto *out_dense = p_out_tensor.get();

                auto in_tensor = CastPyArg2Tensor(py_in_tensor.ptr(), 0);
                auto p_in_tensor = std::dynamic_pointer_cast<phi::DenseTensor>(
                    in_tensor.impl());
                auto in_dense = *p_in_tensor;
301

302
                return self.AllGather(out_dense, in_dense, sync_op);
303 304
              },
              py::arg("out"),
305
              py::arg("in"),
306 307 308
              py::arg("sync_op"),
              py::call_guard<py::gil_scoped_release>())

309
          .def(
L
LiYuRio 已提交
310
              "all_to_all",
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
              [](distributed::ProcessGroup &self,
                 py::handle py_in_tensor_list,
                 py::handle py_out_tensor_list,
                 bool sync_op) {
                auto in_tensor_list =
                    CastPyArg2VectorOfTensor(py_in_tensor_list.ptr(), 0);
                Tensor concat_in_tensor = paddle::concat(in_tensor_list, 0);
                auto in_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    concat_in_tensor.impl());
                std::vector<phi::DenseTensor> in_wrapper = {*in_dense};

                auto out_tensor_list =
                    CastPyArg2VectorOfTensor(py_out_tensor_list.ptr(), 0);
                Tensor concat_out_tensor = paddle::concat(out_tensor_list, 0);
                auto out_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    concat_out_tensor.impl());
                std::vector<phi::DenseTensor> out_wrapper = {*out_dense};

                // in_tensor_list should not be empty
330
                const auto &dev_ctx =
331 332 333
                    self.GetDeviceContext(in_tensor_list.back().place());
                auto task = self.AllToAll(in_wrapper, out_wrapper, sync_op);
                distributed::SplitTensor(dev_ctx, *out_dense, &out_tensor_list);
334
                task->UpdateWaitChain(dev_ctx);
335 336 337 338 339 340 341 342
                return task;
              },
              py::arg("in"),
              py::arg("out"),
              py::arg("sync_op"),
              py::call_guard<py::gil_scoped_release>())

          .def(
L
LiYuRio 已提交
343
              "all_to_all_tensor",
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
              [](distributed::ProcessGroup &self,
                 py::handle py_in_tensor,
                 py::handle py_out_tensor,
                 bool sync_op) {
                auto in_tensor = CastPyArg2Tensor(py_in_tensor.ptr(), 0);
                auto in_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    in_tensor.impl());
                std::vector<phi::DenseTensor> in_wrapper = {*in_dense};

                auto out_tensor = CastPyArg2Tensor(py_out_tensor.ptr(), 0);
                auto out_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    out_tensor.impl());
                std::vector<phi::DenseTensor> out_wrapper = {*out_dense};

                return self.AllToAll(in_wrapper, out_wrapper, sync_op);
              },
              py::arg("in"),
              py::arg("out"),
              py::arg("sync_op"),
              py::call_guard<py::gil_scoped_release>())

365
          .def(
L
LiYuRio 已提交
366
              "all_to_all_single",
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
              [](distributed::ProcessGroup &self,
                 py::handle py_in_tensor,
                 py::handle py_out_tensor,
                 std::vector<int64_t> &in_sizes,
                 std::vector<int64_t> &out_sizes,
                 bool sync_op) {
                auto in_tensor = CastPyArg2Tensor(py_in_tensor.ptr(), 0);
                auto in_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    in_tensor.impl());
                std::vector<phi::DenseTensor> in_wrapper = {*in_dense};

                auto out_tensor = CastPyArg2Tensor(py_out_tensor.ptr(), 0);
                auto out_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    out_tensor.impl());
                std::vector<phi::DenseTensor> out_wrapper = {*out_dense};

                return self.AllToAllSingle(
                    in_wrapper, out_wrapper, in_sizes, out_sizes, sync_op);
              },
              py::arg("in"),
              py::arg("out"),
              py::arg("in_sizes"),
              py::arg("out_sizes"),
              py::arg("sync_op"),
              py::call_guard<py::gil_scoped_release>())

          .def(
              "reduce",
              [](distributed::ProcessGroup &self,
                 py::handle py_in_tensor,
                 int dst,
                 distributed::ReduceOp op,
                 bool sync_op) {
                auto in_tensor = CastPyArg2Tensor(py_in_tensor.ptr(), 0);
                distributed::ReduceOptions opts{op, dst};
                auto dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    in_tensor.impl());
                std::vector<phi::DenseTensor> tensors = {*dense};
                return self.Reduce(tensors, tensors, opts, sync_op);
              },
              py::arg("tensor"),
              py::arg("dst"),
              py::arg("op"),
              py::arg("sync_op"),
              py::call_guard<py::gil_scoped_release>())

          .def(
              "reduce_scatter",
              [](distributed::ProcessGroup &self,
                 py::handle py_in_tensor_list,
                 py::handle py_out_tensor,
                 distributed::ReduceOp op,
                 bool sync_op) {
                auto in_tensor_list =
                    CastPyArg2VectorOfTensor(py_in_tensor_list.ptr(), 0);
                Tensor concat_in_tensor = paddle::concat(in_tensor_list, 0);
                auto in_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    concat_in_tensor.impl());
                std::vector<phi::DenseTensor> in_wrapper = {*in_dense};

                auto out_tensor = CastPyArg2Tensor(py_out_tensor.ptr(), 0);
                auto out_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    out_tensor.impl());
                std::vector<phi::DenseTensor> out_wrapper = {*out_dense};

                distributed::ReduceScatterOptions opts{op};
                return self.ReduceScatter(
                    in_wrapper, out_wrapper, opts, sync_op);
              },
              py::arg("in"),
              py::arg("out"),
              py::arg("op"),
              py::arg("sync_op"),
              py::call_guard<py::gil_scoped_release>())

          .def(
              "reduce_scatter_tensor",
              [](distributed::ProcessGroup &self,
                 py::handle py_in_tensor,
                 py::handle py_out_tensor,
                 distributed::ReduceOp op,
                 bool sync_op) {
                auto in_tensor = CastPyArg2Tensor(py_in_tensor.ptr(), 0);
                auto in_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    in_tensor.impl());
                std::vector<phi::DenseTensor> in_wrapper = {*in_dense};

                auto out_tensor = CastPyArg2Tensor(py_out_tensor.ptr(), 0);
                auto out_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    out_tensor.impl());
                std::vector<phi::DenseTensor> out_wrapper = {*out_dense};

                distributed::ReduceScatterOptions opts{op};
                return self.ReduceScatter(
                    in_wrapper, out_wrapper, opts, sync_op);
              },
              py::arg("in"),
              py::arg("out"),
              py::arg("op"),
              py::arg("sync_op"),
              py::call_guard<py::gil_scoped_release>())

          .def(
              "scatter",
              [](distributed::ProcessGroup &self,
                 py::handle py_in_tensor_list,
                 py::handle py_out_tensor,
                 int src,
                 bool sync_op) {
                auto in_tensor_list =
                    CastPyArg2VectorOfTensor(py_in_tensor_list.ptr(), 0);
                Tensor concat_in_tensor = paddle::concat(in_tensor_list, 0);
                auto in_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    concat_in_tensor.impl());
                std::vector<phi::DenseTensor> in_wrapper = {*in_dense};

                auto out_tensor = CastPyArg2Tensor(py_out_tensor.ptr(), 0);
                auto out_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    out_tensor.impl());
                std::vector<phi::DenseTensor> out_wrapper = {*out_dense};

                distributed::ScatterOptions opts{src};
                return self.Scatter(in_wrapper, out_wrapper, opts, sync_op);
              },
              py::arg("in"),
              py::arg("out"),
              py::arg("src"),
              py::arg("sync_op"),
              py::call_guard<py::gil_scoped_release>())

          .def(
              "scatter_tensor",
              [](distributed::ProcessGroup &self,
                 py::handle py_in_tensor,
                 py::handle py_out_tensor,
                 int src,
                 bool sync_op) {
                auto in_tensor = CastPyArg2Tensor(py_in_tensor.ptr(), 0);
                auto in_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    in_tensor.impl());
                std::vector<phi::DenseTensor> in_wrapper = {*in_dense};

                auto out_tensor = CastPyArg2Tensor(py_out_tensor.ptr(), 0);
                auto out_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    out_tensor.impl());
                std::vector<phi::DenseTensor> out_wrapper = {*out_dense};

                distributed::ScatterOptions opts{src};
                return self.Scatter(in_wrapper, out_wrapper, opts, sync_op);
              },
              py::arg("in"),
              py::arg("out"),
              py::arg("src"),
              py::arg("sync_op"),
              py::call_guard<py::gil_scoped_release>())

L
LiYuRio 已提交
523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
          .def(
              "barrier",
              [](distributed::ProcessGroup &self, std::vector<int> place_ids) {
                distributed::BarrierOptions opts;
                opts.place_ids = place_ids;
                return self.Barrier(opts);
              },
              py::arg("place_ids") = std::vector<int>{},
              py::call_guard<py::gil_scoped_release>())

          // TODO(liyurui): Interface below will be removed in the future.
          .def(
              "allreduce",
              [](distributed::ProcessGroup &self,
                 py::handle py_tensor,
                 distributed::ReduceOp op) {
                auto tensor = CastPyArg2Tensor(py_tensor.ptr(), 0);
                distributed::AllreduceOptions opts;
                opts.reduce_op = op;
                auto dense =
                    std::dynamic_pointer_cast<phi::DenseTensor>(tensor.impl());
                std::vector<phi::DenseTensor> tensors = {*dense};
                return self.AllReduce(tensors, tensors, opts);
              },
              py::arg("tensor"),
              py::arg("op") = distributed::ReduceOp::SUM,
              py::call_guard<py::gil_scoped_release>())

          .def(
              "broadcast",
              [](distributed::ProcessGroup &self,
                 py::handle py_tensor,
                 int source_rank) {
                auto tensor = CastPyArg2Tensor(py_tensor.ptr(), 0);
                distributed::BroadcastOptions opts;
                opts.source_rank = source_rank;
                auto dense =
                    std::dynamic_pointer_cast<phi::DenseTensor>(tensor.impl());
                std::vector<phi::DenseTensor> tensors = {*dense};
                return self.Broadcast(tensors, tensors, opts);
              },
              py::arg("tensor"),
              py::arg("source_rank"),
              py::call_guard<py::gil_scoped_release>())

          .def(
              "send",
              [](distributed::ProcessGroup &self,
                 py::handle py_tensor,
                 int dst) {
                auto tensor = CastPyArg2Tensor(py_tensor.ptr(), 0);
                auto dense =
                    std::dynamic_pointer_cast<phi::DenseTensor>(tensor.impl());
                std::vector<phi::DenseTensor> tensors = {*dense};
                return self.Send(tensors, dst);
              },
              py::arg("tensor"),
              py::arg("dst"),
              py::call_guard<py::gil_scoped_release>())

          .def(
              "send_partial",
              [](distributed::ProcessGroup &self,
                 py::handle py_tensor,
                 int dst_rank,
                 int nranks,
                 int rank_id) {
                auto tensor = CastPyArg2Tensor(py_tensor.ptr(), 0);
                auto dense =
                    std::dynamic_pointer_cast<phi::DenseTensor>(tensor.impl());
                int64_t numel = (*dense).numel();
                int64_t send_numel = numel / nranks;
                int64_t offset = send_numel * rank_id;
                return self.Send_Partial(*dense, dst_rank, offset, send_numel);
              },
              py::arg("tensor"),
              py::arg("dst"),
              py::arg("num"),
              py::arg("id"),
              py::call_guard<py::gil_scoped_release>())

          .def(
              "recv",
              [](distributed::ProcessGroup &self,
                 py::handle py_tensor,
                 int src) {
                auto tensor = CastPyArg2Tensor(py_tensor.ptr(), 0);
                auto dense =
                    std::dynamic_pointer_cast<phi::DenseTensor>(tensor.impl());
                std::vector<phi::DenseTensor> tensors = {*dense};
                return self.Recv(tensors, src);
              },
              py::arg("tensor"),
              py::arg("src"),
              py::call_guard<py::gil_scoped_release>())

          .def(
              "recv_partial",
              [](distributed::ProcessGroup &self,
                 py::handle py_tensor,
                 int src_rank,
                 int nranks,
                 int rank_id) {
                auto tensor = CastPyArg2Tensor(py_tensor.ptr(), 0);
                auto dense =
                    std::dynamic_pointer_cast<phi::DenseTensor>(tensor.impl());
                int64_t numel = (*dense).numel();
                int64_t recv_numel = numel / nranks;
                int64_t offset = recv_numel * rank_id;
                return self.Recv_Partial(*dense, src_rank, offset, recv_numel);
              },
              py::arg("tensor"),
              py::arg("src"),
              py::arg("num"),
              py::arg("id"),
              py::call_guard<py::gil_scoped_release>())

          .def(
              "all_gather",
              [](distributed::ProcessGroup &self,
                 py::handle py_in_tensor,
                 py::handle py_out_tensor) {
                auto in_tensor = CastPyArg2Tensor(py_in_tensor.ptr(), 0);
                auto out_tensor = CastPyArg2Tensor(py_out_tensor.ptr(), 0);
                auto in_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    in_tensor.impl());
                auto out_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    out_tensor.impl());
                std::vector<phi::DenseTensor> in_tensors = {*in_dense};
                std::vector<phi::DenseTensor> out_tensors = {*out_dense};
                return self.AllGather(in_tensors, out_tensors);
              },
              py::arg("in"),
              py::arg("out"),
              py::call_guard<py::gil_scoped_release>())

          .def(
              "all_gather_partial",
              [](distributed::ProcessGroup &self,
                 py::handle py_in_tensor,
                 py::handle py_out_tensor,
                 int nranks,
                 int rank_id) {
                auto in_tensor = CastPyArg2Tensor(py_in_tensor.ptr(), 0);
                auto out_tensor = CastPyArg2Tensor(py_out_tensor.ptr(), 0);
                auto in_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    in_tensor.impl());
                auto out_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    out_tensor.impl());
                std::vector<phi::DenseTensor> in_tensors = {*in_dense};
                std::vector<phi::DenseTensor> out_tensors = {*out_dense};
                int64_t numel = (*in_dense).numel();
                int64_t send_numel = numel / nranks;
                int64_t offset = send_numel * rank_id;
                return self.AllGather_Partial(
                    in_tensors, out_tensors, offset, send_numel);
              },
              py::arg("in"),
              py::arg("out"),
              py::arg("num"),
              py::arg("id"),
              py::call_guard<py::gil_scoped_release>())

          .def(
              "alltoall",
              [](distributed::ProcessGroup &self,
                 py::handle py_in_tensor,
                 py::handle py_out_tensor) {
                auto in_tensor = CastPyArg2Tensor(py_in_tensor.ptr(), 0);
                auto out_tensor = CastPyArg2Tensor(py_out_tensor.ptr(), 0);
                auto in_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    in_tensor.impl());
                auto out_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    out_tensor.impl());
                std::vector<phi::DenseTensor> in_tensors = {*in_dense};
                std::vector<phi::DenseTensor> out_tensors = {*out_dense};
                return self.AllToAll(in_tensors, out_tensors);
              },
              py::arg("in"),
              py::arg("out"),
              py::call_guard<py::gil_scoped_release>())

          .def(
              "alltoall_single",
              [](distributed::ProcessGroup &self,
                 py::handle py_in_tensor,
                 py::handle py_out_tensor,
                 std::vector<int64_t> in_sizes,
                 std::vector<int64_t> out_sizes) {
                auto in_tensor = CastPyArg2Tensor(py_in_tensor.ptr(), 0);
                auto out_tensor = CastPyArg2Tensor(py_out_tensor.ptr(), 0);
                auto in_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    in_tensor.impl());
                auto out_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    out_tensor.impl());
                std::vector<phi::DenseTensor> in_tensors = {*in_dense};
                std::vector<phi::DenseTensor> out_tensors = {*out_dense};
                return self.AllToAll_Single(
                    in_tensors, out_tensors, in_sizes, out_sizes);
              },
              py::arg("in"),
              py::arg("out"),
              py::arg("in_sizes"),
              py::arg("out_sizes"),
              py::call_guard<py::gil_scoped_release>())

          .def(
              "reduce",
              [](distributed::ProcessGroup &self,
                 py::handle py_in_tensor,
                 int dst,
                 distributed::ReduceOp op) {
                auto in_tensor = CastPyArg2Tensor(py_in_tensor.ptr(), 0);
                distributed::ReduceOptions opts;
                opts.reduce_op = op;
                opts.root_rank = dst;
                auto dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    in_tensor.impl());
                std::vector<phi::DenseTensor> tensors = {*dense};
                return self.Reduce(tensors, tensors, opts);
              },
              py::arg("tensor"),
              py::arg("dst"),
              py::arg("op") = distributed::ReduceOp::SUM,
              py::call_guard<py::gil_scoped_release>())

          .def(
              "scatter",
              [](distributed::ProcessGroup &self,
                 py::handle py_in_tensor,
                 py::handle py_out_tensor,
                 int src) {
                auto in_tensor = CastPyArg2Tensor(py_in_tensor.ptr(), 0);
                auto out_tensor = CastPyArg2Tensor(py_out_tensor.ptr(), 0);
                distributed::ScatterOptions opts;
                opts.root_rank = src;
                auto in_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    in_tensor.impl());
                auto out_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    out_tensor.impl());
                std::vector<phi::DenseTensor> in_tensors = {*in_dense};
                std::vector<phi::DenseTensor> out_tensors = {*out_dense};
                return self.Scatter(in_tensors, out_tensors, opts);
              },
              py::arg("in"),
              py::arg("out"),
              py::arg("src"),
770
              py::call_guard<py::gil_scoped_release>());
771

772 773 774 775
  auto ProcessGroupStream =
      py::class_<distributed::ProcessGroupStream,
                 std::shared_ptr<distributed::ProcessGroupStream>>(
          *m, "ProcessGroupStream", ProcessGroup)
776
          .def(
L
LiYuRio 已提交
777
              "all_gather_on_calc_stream",
778
              [](distributed::ProcessGroupStream &self,
779 780
                 py::handle py_out_tensor_list,
                 py::handle py_in_tensor) {
781 782 783
                auto out_tensor_list =
                    CastPyArg2VectorOfTensor(py_out_tensor_list.ptr(), 0);
                Tensor concat_out_tensor = paddle::concat(out_tensor_list, 0);
784
                auto p_out_tensor = std::dynamic_pointer_cast<phi::DenseTensor>(
785
                    concat_out_tensor.impl());
786 787 788 789 790 791
                auto *out_dense = p_out_tensor.get();

                auto in_tensor = CastPyArg2Tensor(py_in_tensor.ptr(), 0);
                auto p_in_tensor = std::dynamic_pointer_cast<phi::DenseTensor>(
                    in_tensor.impl());
                auto in_dense = *p_in_tensor;
792

793
                const auto &dev_ctx =
794
                    self.GetDeviceContext(in_tensor.place(), true);
795 796
                auto task = self.AllGather(out_dense,
                                           in_dense,
797 798 799 800 801 802
                                           /*sync_op*/ true,
                                           /*use_calc_stream*/ true);
                distributed::SplitTensor(dev_ctx, *out_dense, &out_tensor_list);
                return task;
              },
              py::arg("out"),
803
              py::arg("in"),
804 805 806
              py::call_guard<py::gil_scoped_release>())

          .def(
L
LiYuRio 已提交
807
              "all_gather_into_tensor_on_calc_stream",
808
              [](distributed::ProcessGroupStream &self,
809 810
                 py::handle py_out_tensor,
                 py::handle py_in_tensor) {
811
                auto out_tensor = CastPyArg2Tensor(py_out_tensor.ptr(), 0);
812
                auto p_out_tensor = std::dynamic_pointer_cast<phi::DenseTensor>(
813
                    out_tensor.impl());
814
                auto *out_dense = p_out_tensor.get();
815

816 817 818 819 820 821 822
                auto in_tensor = CastPyArg2Tensor(py_in_tensor.ptr(), 0);
                auto p_in_tensor = std::dynamic_pointer_cast<phi::DenseTensor>(
                    in_tensor.impl());
                auto in_dense = *p_in_tensor;

                return self.AllGather(out_dense,
                                      in_dense,
823 824 825 826
                                      /*sync_op*/ true,
                                      /*use_calc_stream*/ true);
              },
              py::arg("out"),
827
              py::arg("in"),
828 829
              py::call_guard<py::gil_scoped_release>())

830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860
          .def(
              "all_gather_partial_on_calc_stream",
              [](distributed::ProcessGroupStream &self,
                 py::handle py_in_tensor,
                 py::handle py_out_tensor,
                 int nranks,
                 int rank_id) {
                auto in_tensor = CastPyArg2Tensor(py_in_tensor.ptr(), 0);
                auto out_tensor = CastPyArg2Tensor(py_out_tensor.ptr(), 0);
                auto in_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    in_tensor.impl());
                auto out_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    out_tensor.impl());
                std::vector<phi::DenseTensor> in_tensors = {*in_dense};
                std::vector<phi::DenseTensor> out_tensors = {*out_dense};
                int64_t numel = (*in_dense).numel();
                int64_t send_numel = numel / nranks;
                int64_t offset = send_numel * rank_id;
                return self.AllGather_Partial(in_tensors,
                                              out_tensors,
                                              offset,
                                              send_numel,
                                              /*sync_op*/ true,
                                              /*use_calc_stream*/ true);
              },
              py::arg("in"),
              py::arg("out"),
              py::arg("num"),
              py::arg("id"),
              py::call_guard<py::gil_scoped_release>())

861
          .def(
L
LiYuRio 已提交
862
              "all_reduce_on_calc_stream",
863 864 865 866
              [](distributed::ProcessGroupStream &self,
                 py::handle py_tensor,
                 distributed::ReduceOp op) {
                auto tensor = CastPyArg2Tensor(py_tensor.ptr(), 0);
867
                auto p_dense =
868
                    std::dynamic_pointer_cast<phi::DenseTensor>(tensor.impl());
869 870 871 872 873
                auto in_dense = *p_dense;
                auto *out_dense = p_dense.get();
                distributed::AllreduceOptions opts{op};
                return self.AllReduce(out_dense,
                                      in_dense,
874 875 876 877 878
                                      opts,
                                      /*sync_op*/ true,
                                      /*use_calc_stream*/ true);
              },
              py::arg("tensor"),
L
LiYuRio 已提交
879
              py::arg("op") = distributed::ReduceOp::SUM,
880 881
              py::call_guard<py::gil_scoped_release>())

882
          .def(
L
LiYuRio 已提交
883
              "all_to_all_on_calc_stream",
884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
              [](distributed::ProcessGroupStream &self,
                 py::handle py_in_tensor_list,
                 py::handle py_out_tensor_list) {
                auto in_tensor_list =
                    CastPyArg2VectorOfTensor(py_in_tensor_list.ptr(), 0);
                Tensor concat_in_tensor = paddle::concat(in_tensor_list, 0);
                auto in_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    concat_in_tensor.impl());
                std::vector<phi::DenseTensor> in_wrapper = {*in_dense};

                auto out_tensor_list =
                    CastPyArg2VectorOfTensor(py_out_tensor_list.ptr(), 0);
                Tensor concat_out_tensor = paddle::concat(out_tensor_list, 0);
                auto out_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    concat_out_tensor.impl());
                std::vector<phi::DenseTensor> out_wrapper = {*out_dense};

                // in_tensor_list must not be empty
902
                const auto &dev_ctx = self.GetDeviceContext(
903 904 905 906 907 908 909 910 911 912 913 914 915
                    in_tensor_list.back().place(), /*use_calc_stream*/ true);
                auto task = self.AllToAll(in_wrapper,
                                          out_wrapper,
                                          /*sync_op*/ true,
                                          /*use_calc_stream*/ true);
                distributed::SplitTensor(dev_ctx, *out_dense, &out_tensor_list);
                return task;
              },
              py::arg("in"),
              py::arg("out"),
              py::call_guard<py::gil_scoped_release>())

          .def(
L
LiYuRio 已提交
916
              "all_to_all_tensor_on_calc_stream",
917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
              [](distributed::ProcessGroupStream &self,
                 py::handle py_in_tensor,
                 py::handle py_out_tensor) {
                auto in_tensor = CastPyArg2Tensor(py_in_tensor.ptr(), 0);
                auto in_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    in_tensor.impl());
                std::vector<phi::DenseTensor> in_wrapper = {*in_dense};

                auto out_tensor = CastPyArg2Tensor(py_out_tensor.ptr(), 0);
                auto out_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    out_tensor.impl());
                std::vector<phi::DenseTensor> out_wrapper = {*out_dense};

                return self.AllToAll(in_wrapper,
                                     out_wrapper,
                                     /*sync_op*/ true,
                                     /*use_calc_stream*/ true);
              },
              py::arg("in"),
              py::arg("out"),
              py::call_guard<py::gil_scoped_release>())

          .def(
L
LiYuRio 已提交
940
              "all_to_all_single_on_calc_stream",
941 942 943
              [](distributed::ProcessGroupStream &self,
                 py::handle py_in_tensor,
                 py::handle py_out_tensor,
944 945
                 std::vector<int64_t> &in_sizes,
                 std::vector<int64_t> &out_sizes) {
946
                auto in_tensor = CastPyArg2Tensor(py_in_tensor.ptr(), 0);
947 948 949 950
                auto in_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    in_tensor.impl());
                std::vector<phi::DenseTensor> in_wrapper = {*in_dense};

951
                auto out_tensor = CastPyArg2Tensor(py_out_tensor.ptr(), 0);
952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974
                auto out_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    out_tensor.impl());
                std::vector<phi::DenseTensor> out_wrapper = {*out_dense};

                return self.AllToAllSingle(in_wrapper,
                                           out_wrapper,
                                           in_sizes,
                                           out_sizes,
                                           /*sync_op*/ true,
                                           /*use_calc_stream*/ true);
              },
              py::arg("in"),
              py::arg("out"),
              py::arg("in_sizes"),
              py::arg("out_sizes"),
              py::call_guard<py::gil_scoped_release>())

          .def(
              "broadcast_on_calc_stream",
              [](distributed::ProcessGroupStream &self,
                 py::handle py_tensor,
                 int src) {
                auto tensor = CastPyArg2Tensor(py_tensor.ptr(), 0);
975
                auto p_dense =
976
                    std::dynamic_pointer_cast<phi::DenseTensor>(tensor.impl());
977 978 979 980 981
                auto *out_dense = p_dense.get();
                auto in_dense = *p_dense;
                distributed::BroadcastOptions opts{src};
                return self.Broadcast(out_dense,
                                      in_dense,
982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
                                      opts,
                                      /*sync_op*/ true,
                                      /*use_calc_stream*/ true);
              },
              py::arg("tensor"),
              py::arg("src"),
              py::call_guard<py::gil_scoped_release>())

          .def(
              "reduce_on_calc_stream",
              [](distributed::ProcessGroupStream &self,
                 py::handle py_in_tensor,
                 int dst,
                 distributed::ReduceOp op) {
                auto in_tensor = CastPyArg2Tensor(py_in_tensor.ptr(), 0);
                distributed::ReduceOptions opts{op, dst};
                auto dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    in_tensor.impl());
                std::vector<phi::DenseTensor> tensors = {*dense};
                return self.Reduce(tensors,
                                   tensors,
                                   opts,
                                   /*sync_op*/ true,
                                   /*use_calc_stream*/ true);
              },
              py::arg("tensor"),
              py::arg("dst"),
              py::arg("op"),
              py::call_guard<py::gil_scoped_release>())

          .def(
              "reduce_scatter_on_calc_stream",
              [](distributed::ProcessGroupStream &self,
                 py::handle py_in_tensor_list,
                 py::handle py_out_tensor,
                 distributed::ReduceOp op) {
                auto in_tensor_list =
                    CastPyArg2VectorOfTensor(py_in_tensor_list.ptr(), 0);
                Tensor concat_in_tensor = paddle::concat(in_tensor_list, 0);
                auto in_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    concat_in_tensor.impl());
                std::vector<phi::DenseTensor> in_wrapper = {*in_dense};

                auto out_tensor = CastPyArg2Tensor(py_out_tensor.ptr(), 0);
                auto out_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    out_tensor.impl());
                std::vector<phi::DenseTensor> out_wrapper = {*out_dense};

                distributed::ReduceScatterOptions opts{op};
                return self.ReduceScatter(in_wrapper,
                                          out_wrapper,
                                          opts,
                                          /*sync_op*/ true,
                                          /*use_calc_stream*/ true);
              },
              py::arg("in"),
              py::arg("out"),
              py::arg("op"),
              py::call_guard<py::gil_scoped_release>())

          .def(
              "reduce_scatter_tensor_on_calc_stream",
              [](distributed::ProcessGroupStream &self,
                 py::handle py_in_tensor,
                 py::handle py_out_tensor,
                 distributed::ReduceOp op) {
                auto in_tensor = CastPyArg2Tensor(py_in_tensor.ptr(), 0);
1049 1050
                auto in_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    in_tensor.impl());
1051 1052 1053
                std::vector<phi::DenseTensor> in_wrapper = {*in_dense};

                auto out_tensor = CastPyArg2Tensor(py_out_tensor.ptr(), 0);
1054 1055
                auto out_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    out_tensor.impl());
1056 1057 1058 1059 1060 1061 1062 1063
                std::vector<phi::DenseTensor> out_wrapper = {*out_dense};

                distributed::ReduceScatterOptions opts{op};
                return self.ReduceScatter(in_wrapper,
                                          out_wrapper,
                                          opts,
                                          /*sync_op*/ true,
                                          /*use_calc_stream*/ true);
1064 1065 1066
              },
              py::arg("in"),
              py::arg("out"),
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
              py::arg("op"),
              py::call_guard<py::gil_scoped_release>())

          .def(
              "scatter_on_calc_stream",
              [](distributed::ProcessGroupStream &self,
                 py::handle py_in_tensor_list,
                 py::handle py_out_tensor,
                 int src) {
                auto in_tensor_list =
                    CastPyArg2VectorOfTensor(py_in_tensor_list.ptr(), 0);
                Tensor concat_in_tensor = paddle::concat(in_tensor_list, 0);
                auto in_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    concat_in_tensor.impl());
                std::vector<phi::DenseTensor> in_wrapper = {*in_dense};

                auto out_tensor = CastPyArg2Tensor(py_out_tensor.ptr(), 0);
                auto out_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    out_tensor.impl());
                std::vector<phi::DenseTensor> out_wrapper = {*out_dense};

                distributed::ScatterOptions opts{src};
                return self.Scatter(in_wrapper,
                                    out_wrapper,
                                    opts,
                                    /*sync_op*/ true,
                                    /*use_calc_stream*/ true);
              },
              py::arg("in"),
              py::arg("out"),
              py::arg("src"),
              py::call_guard<py::gil_scoped_release>())

          .def(
              "scatter_tensor_on_calc_stream",
              [](distributed::ProcessGroupStream &self,
                 py::handle py_in_tensor,
                 py::handle py_out_tensor,
                 int src) {
                auto in_tensor = CastPyArg2Tensor(py_in_tensor.ptr(), 0);
                auto in_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    in_tensor.impl());
                std::vector<phi::DenseTensor> in_wrapper = {*in_dense};

                auto out_tensor = CastPyArg2Tensor(py_out_tensor.ptr(), 0);
                auto out_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    out_tensor.impl());
                std::vector<phi::DenseTensor> out_wrapper = {*out_dense};

                distributed::ScatterOptions opts{src};
                return self.Scatter(in_wrapper,
                                    out_wrapper,
                                    opts,
                                    /*sync_op*/ true,
                                    /*use_calc_stream*/ true);
              },
              py::arg("in"),
              py::arg("out"),
              py::arg("src"),
1126 1127
              py::call_guard<py::gil_scoped_release>())

1128 1129 1130 1131 1132 1133
          .def(
              "send_on_calc_stream",
              [](distributed::ProcessGroupStream &self,
                 py::handle py_tensor,
                 int dst) {
                auto tensor = CastPyArg2Tensor(py_tensor.ptr(), 0);
1134
                auto p_dense =
1135
                    std::dynamic_pointer_cast<phi::DenseTensor>(tensor.impl());
1136 1137
                auto *out_dense = p_dense.get();
                return self.Send(out_dense,
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
                                 dst,
                                 /*sync_op*/ true,
                                 /*use_calc_stream*/ true);
              },
              py::arg("tensor"),
              py::arg("dst"),
              py::call_guard<py::gil_scoped_release>())

          .def(
              "send_partial_on_calc_stream",
              [](distributed::ProcessGroupStream &self,
                 py::handle py_tensor,
                 int dst_rank,
                 int nranks,
                 int rank_id) {
                auto tensor = CastPyArg2Tensor(py_tensor.ptr(), 0);
1154
                auto p_dense =
1155
                    std::dynamic_pointer_cast<phi::DenseTensor>(tensor.impl());
1156
                int64_t numel = p_dense->numel();
1157 1158
                int64_t send_numel = numel / nranks;
                int64_t offset = send_numel * rank_id;
1159 1160 1161 1162 1163 1164 1165
                auto *out_dense = p_dense.get();
                return self.SendPartial(out_dense,
                                        dst_rank,
                                        offset,
                                        send_numel,
                                        /*sync_op*/ true,
                                        /*use_calc_stream*/ true);
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
              },
              py::arg("tensor"),
              py::arg("dst"),
              py::arg("num"),
              py::arg("id"),
              py::call_guard<py::gil_scoped_release>())

          .def(
              "recv_on_calc_stream",
              [](distributed::ProcessGroupStream &self,
                 py::handle py_tensor,
                 int src) {
                auto tensor = CastPyArg2Tensor(py_tensor.ptr(), 0);
1179
                auto p_dense =
1180
                    std::dynamic_pointer_cast<phi::DenseTensor>(tensor.impl());
1181 1182
                auto *in_dense = p_dense.get();
                return self.Recv(in_dense,
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
                                 src,
                                 /*sync_op*/ true,
                                 /*use_calc_stream*/ true);
              },
              py::arg("tensor"),
              py::arg("src"),
              py::call_guard<py::gil_scoped_release>())

          .def(
              "recv_partial_on_calc_stream",
              [](distributed::ProcessGroupStream &self,
                 py::handle py_tensor,
                 int src_rank,
                 int nranks,
                 int rank_id) {
                auto tensor = CastPyArg2Tensor(py_tensor.ptr(), 0);
1199
                auto p_dense =
1200
                    std::dynamic_pointer_cast<phi::DenseTensor>(tensor.impl());
1201
                int64_t numel = p_dense->numel();
1202 1203
                int64_t recv_numel = numel / nranks;
                int64_t offset = recv_numel * rank_id;
1204 1205 1206 1207 1208 1209 1210
                auto *out_dense = p_dense.get();
                return self.RecvPartial(out_dense,
                                        src_rank,
                                        offset,
                                        recv_numel,
                                        /*sync_op*/ true,
                                        /*use_calc_stream*/ true);
1211 1212 1213 1214 1215
              },
              py::arg("tensor"),
              py::arg("src"),
              py::arg("num"),
              py::arg("id"),
1216 1217
              py::call_guard<py::gil_scoped_release>());

1218
#if defined(PADDLE_WITH_RCCL) || defined(PADDLE_WITH_NCCL)
1219 1220 1221
  auto processGroupNCCL =
      py::class_<distributed::ProcessGroupNCCL,
                 std::shared_ptr<distributed::ProcessGroupNCCL>>(
1222
          *m, "ProcessGroupNCCL", ProcessGroupStream)
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
          .def(py::init<const std::shared_ptr<distributed::Store> &,
                        int,
                        int,
                        const platform::CUDAPlace &,
                        int>(),
               py::arg("store"),
               py::arg("rank"),
               py::arg("world_size"),
               py::arg("place"),
               py::arg("group_id") = 0,
               py::call_guard<py::gil_scoped_release>());

  processGroupNCCL.def_static(
      "group_start", []() { distributed::ProcessGroupNCCL::GroupStart(); });
  processGroupNCCL.def_static(
      "group_end", []() { distributed::ProcessGroupNCCL::GroupEnd(); });

1240
#endif
1241

W
wuhuachaocoding 已提交
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
#if defined(PADDLE_WITH_MPI)
  py::class_<distributed::ProcessGroupMPI,
             std::shared_ptr<distributed::ProcessGroupMPI>>(
      *m, "ProcessGroupMPI", ProcessGroup)
      .def_static(
          "create",
          [](const std::vector<int> &ranks,
             int gid) -> std::shared_ptr<distributed::ProcessGroupMPI> {
            return paddle::distributed::ProcessGroupMPI::CreateProcessGroupMPI(
                ranks, gid);
          })
      .def("get_rank",
           &distributed::ProcessGroup::GetRank,
           py::call_guard<py::gil_scoped_release>())
      .def("get_world_size",
           &distributed::ProcessGroup::GetSize,
           py::call_guard<py::gil_scoped_release>());
#endif

1261 1262 1263 1264 1265
#if defined(PADDLE_WITH_GLOO) && defined(PADDLE_WITH_PSCORE) && \
    (defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_ASCEND_CL))
  py::class_<distributed::ProcessGroupHeter,
             std::shared_ptr<distributed::ProcessGroupHeter>>(
      *m, "ProcessGroupHeter", ProcessGroup)
1266 1267 1268
      .def(py::init<const std::shared_ptr<distributed::Store> &,
                    int,
                    int,
1269 1270 1271 1272 1273
#if defined(PADDLE_WITH_ASCEND_CL)
                    const platform::NPUPlace &,
#else
                    const platform::CUDAPlace &,
#endif
1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
                    int,
                    int,
                    int,
                    int,
                    int,
                    bool,
                    std::string,
                    int,
                    int>(),
           py::arg("store"),
           py::arg("rank"),
           py::arg("world_size"),
           py::arg("place"),
           py::arg("gid") = 0,
           py::arg("local_rank") = 0,
           py::arg("local_size") = 1,
           py::arg("gloo_rank") = 0,
           py::arg("gloo_size") = 1,
           py::arg("with_switch") = false,
           py::arg("switch_endpoint") = "",
           py::arg("src_rank") = "",
           py::arg("dst_rank") = "",
           py::call_guard<py::gil_scoped_release>());
1297
#endif
1298

1299 1300 1301 1302
#if defined(PADDLE_WITH_ASCEND_CL)
  py::class_<distributed::ProcessGroupHCCL,
             std::shared_ptr<distributed::ProcessGroupHCCL>>(
      *m, "ProcessGroupHCCL", ProcessGroup)
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
      .def(py::init<const std::shared_ptr<distributed::Store> &,
                    int,
                    int,
                    const platform::NPUPlace &,
                    int>(),
           py::arg("store"),
           py::arg("rank"),
           py::arg("world_size"),
           py::arg("place"),
           py::arg("group_id") = 0,
1313
           py::call_guard<py::gil_scoped_release>());
1314

1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
#endif

#if defined(PADDLE_WITH_CUSTOM_DEVICE)
  py::class_<distributed::ProcessGroupCustom,
             std::shared_ptr<distributed::ProcessGroupCustom>>(
      *m, "ProcessGroupCustom", ProcessGroup)
      .def(py::init<const std::shared_ptr<distributed::Store> &,
                    int,
                    int,
                    const platform::CustomPlace &,
                    int>(),
           py::arg("store"),
           py::arg("rank"),
           py::arg("world_size"),
           py::arg("place"),
           py::arg("group_id") = 0,
           py::call_guard<py::gil_scoped_release>());

1333 1334
#endif

J
james 已提交
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
#if defined(PADDLE_WITH_XPU_BKCL)
  auto processGroupBKCL =
      py::class_<distributed::ProcessGroupBKCL,
                 std::shared_ptr<distributed::ProcessGroupBKCL>>(
          *m, "ProcessGroupBKCL", ProcessGroup)
          .def(py::init<const std::shared_ptr<distributed::Store> &,
                        int,
                        int,
                        const platform::XPUPlace &,
                        int>(),
               py::arg("store"),
               py::arg("rank"),
               py::arg("world_size"),
               py::arg("place"),
               py::arg("group_id") = 0,
               py::call_guard<py::gil_scoped_release>());
#endif

1353 1354 1355
  py::class_<distributed::ProcessGroup::Task,
             std::shared_ptr<distributed::ProcessGroup::Task>>(*m, "task")
      .def("is_completed", &distributed::ProcessGroup::Task::IsCompleted)
1356
      .def("is_sync", &distributed::ProcessGroup::Task::IsSync)
1357 1358
      .def("wait",
           &distributed::ProcessGroup::Task::Wait,
1359 1360
           py::arg("timeout") = kWaitTimeout,
           py::call_guard<py::gil_scoped_release>())
1361 1362
      .def("synchronize",
           &distributed::ProcessGroup::Task::Synchronize,
1363 1364
           py::call_guard<py::gil_scoped_release>());

1365 1366 1367
#if defined(PADDLE_WITH_GLOO)
  py::class_<ProcessGroupGloo, std::shared_ptr<ProcessGroupGloo>>(
      *m, "ProcessGroupGloo", ProcessGroup)
1368 1369 1370 1371 1372
      .def(py::init<const std::shared_ptr<paddle::distributed::Store> &,
                    int,
                    int,
                    const platform::CPUPlace &,
                    int,
1373
                    std::shared_ptr<GlooOptions> &>(),
1374
           py::call_guard<py::gil_scoped_release>())
1375
      .def(py::init([](const std::shared_ptr<paddle::distributed::Store> &store,
1376 1377 1378 1379
                       int rank,
                       int world_size,
                       const platform::CPUPlace &place,
                       int gid) {
1380 1381 1382 1383 1384 1385 1386 1387
             auto opts = GlooOptions::create();
             char *ifname = getenv(GLOO_SOCKET_IFNAME_ENV.c_str());
             if (ifname && strlen(ifname) > 1) {
               opts->device = ProcessGroupGloo::createDeviceForInterface(
                   std::string(ifname));
             } else {
               opts->device = ProcessGroupGloo::createDefaultDevice();
             }
1388 1389
             return std::make_shared<ProcessGroupGloo>(
                 store, rank, world_size, place, gid, opts);
1390
           }),
1391 1392 1393 1394 1395
           py::arg("store"),
           py::arg("rank"),
           py::arg("world_size"),
           py::arg("place"),
           py::arg("group_id") = 0,
1396
           py::call_guard<py::gil_scoped_release>())
1397 1398 1399 1400
      .def_static("create_default_device",
                  &ProcessGroupGloo::createDefaultDevice);
#endif

1401 1402
  m->def(
      "eager_assign_group_by_size",
1403 1404
      [](py::handle py_tensors,
         std::vector<bool> is_sparse_gradient,
1405 1406 1407 1408 1409 1410
         std::vector<size_t> group_size_limits,
         std::vector<int64_t> tensor_indices) {
        auto tensors = CastPyArg2VectorOfTensor(py_tensors.ptr(), 0);
        return distributed::Eager_AssignGroupBySize(
            tensors, is_sparse_gradient, group_size_limits, tensor_indices);
      },
1411 1412
      py::arg("tensors"),
      py::arg("is_sparse_gradient"),
1413 1414 1415
      py::arg("group_size_limits") = std::vector<size_t>{25 * 1024 * 1024},
      py::arg("tensor_indices") = std::vector<int64_t>{},
      py::call_guard<py::gil_scoped_release>());
1416 1417

  py::class_<distributed::EagerReducer,
1418 1419
             std::shared_ptr<distributed::EagerReducer>>(
      *m, "EagerReducer", R"DOC()DOC")
1420
      .def(py::init(&CreateEagerReducer))
1421 1422
      .def(
          "prepare_for_backward",
1423
          [](distributed::EagerReducer &self, py::handle py_tensors) {
1424
            auto params = CastPyArg2VectorOfTensor(py_tensors.ptr(), 0);
1425
            self.PrepareForBackward(params);
1426
          },
1427 1428
          py::arg("tensors"),
          py::call_guard<py::gil_scoped_release>());
1429 1430 1431 1432
}

}  // end namespace pybind
}  // namespace paddle