test_program.py 10.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yu Yang 已提交
15
import unittest
16

17
from paddle.fluid.framework import Program, default_main_program, program_guard
18
import paddle
19
import paddle.fluid.layers as layers
20
import paddle.fluid as fluid
Y
Yu Yang 已提交
21

Y
Yu Yang 已提交
22 23
main_program = default_main_program()

Y
Yu Yang 已提交
24 25 26

class TestProgram(unittest.TestCase):
    def test_program(self):
Y
Yu Yang 已提交
27
        b = main_program.current_block()
Y
Yu Yang 已提交
28 29 30
        self.assertEqual(-1, b.parent_idx)
        self.assertEqual(0, b.idx)

W
Wu Yi 已提交
31
        b = main_program._create_block()
Y
Yu Yang 已提交
32 33 34
        self.assertEqual(1, b.idx)
        self.assertEqual(0, b.parent_idx)

W
Wu Yi 已提交
35
        b = main_program._create_block()
Y
Yu Yang 已提交
36 37 38
        self.assertEqual(2, b.idx)
        self.assertEqual(1, b.parent_idx)

W
Wu Yi 已提交
39
        main_program._rollback()
Y
Yu Yang 已提交
40

Y
Yu Yang 已提交
41
        b = main_program.current_block()
Y
Yu Yang 已提交
42 43 44
        self.assertEqual(1, b.idx)
        self.assertEqual(0, b.parent_idx)

W
Wu Yi 已提交
45
        b = main_program._create_block()
Y
Yu Yang 已提交
46 47 48
        self.assertEqual(3, b.idx)
        self.assertEqual(1, b.parent_idx)

W
Wu Yi 已提交
49
        main_program._rollback()
Y
Yu Yang 已提交
50
        b = main_program.current_block()
Y
Yu Yang 已提交
51 52 53
        self.assertEqual(1, b.idx)
        self.assertEqual(0, b.parent_idx)

Y
Yu Yang 已提交
54 55 56
    def test_program_clone(self):
        prog = Program()

57 58 59
        x = prog.global_block().create_var(
            name='X', shape=[1000, 784], dtype='float32'
        )
Y
Yu Yang 已提交
60

61 62 63
        y = prog.global_block().create_var(
            name='Y', shape=[784, 100], dtype='float32'
        )
Y
Yu Yang 已提交
64
        out = prog.global_block().create_var(name='Out', dtype='float32')
65 66 67
        prog.global_block().append_op(
            type="mul", inputs={'X': [x], 'Y': [y]}, outputs={'Out': [out]}
        )
Y
Yu Yang 已提交
68 69 70

        # FIXME(yuyang18): We manual compare the output string, since the order
        # of variable could be changed.
71 72
        print(prog)
        print(prog.clone())
Y
Yu Yang 已提交
73

74 75 76
    def test_parse_program_from_string(self):
        prog = Program()

77 78 79
        x = prog.global_block().create_var(
            name='X', shape=[1000, 784], dtype='float32'
        )
80

81 82 83
        y = prog.global_block().create_var(
            name='Y', shape=[784, 100], dtype='float32'
        )
84
        out = prog.global_block().create_var(name='Out', dtype='float32')
85 86 87
        prog.global_block().append_op(
            type="mul", inputs={'X': [x], 'Y': [y]}, outputs={'Out': [out]}
        )
88 89 90 91

        binary_str = prog.desc.serialize_to_string()
        prog_restored = Program.parse_from_string(binary_str)

92 93
        print(prog)
        print(prog_restored)
94

95 96 97
    def test_program_clone_with_parameter(self):
        main_program = Program()
        startup_program = Program()
98 99 100 101
        with program_guard(main_program, startup_program):
            d = layers.data(name='x', shape=[784], dtype='float32')
            hidden = layers.fc(input=d, size=100)
            layers.fc(input=hidden, size=100)
102 103 104 105

        new_program = main_program.clone()
        self.assertNotEqual(0, len(new_program.blocks[0].all_parameters()))

106 107
    def test_program_inference_optimize(self):
        def net():
108 109 110 111 112 113 114
            reader = fluid.layers.py_reader(
                capacity=10,
                shapes=[[-1, 10], [-1, 1]],
                lod_levels=[0, 0],
                dtypes=['float32', 'int64'],
                use_double_buffer=True,
            )
115 116
            in_data, label = fluid.layers.read_file(reader)
            predict_label = fluid.layers.fc(in_data, size=2, act='softmax')
117
            loss = paddle.mean(
118 119
                fluid.layers.cross_entropy(input=predict_label, label=label)
            )
120 121 122 123 124 125 126 127

            optimizer = fluid.optimizer.Adam()
            optimizer.minimize(loss)

        startup_program = fluid.Program()
        main_program = fluid.Program()
        with fluid.program_guard(main_program, startup_program):
            net()
W
Wu Yi 已提交
128 129
        no_read_program = main_program._inference_optimize()
        keep_read_program = main_program._inference_optimize(
130 131
            prune_read_op=False
        )
132 133 134 135 136 137 138 139 140
        no_read_ops = no_read_program.global_block().ops
        keep_read_ops = keep_read_program.global_block().ops
        self.assertEqual(len(keep_read_ops) - len(no_read_ops), 2)
        self.assertEqual(keep_read_ops[0].type, 'create_double_buffer_reader')
        self.assertEqual(keep_read_ops[1].type, 'read')

        for i in range(len(no_read_ops)):
            self.assertEqual(no_read_ops[i].type, keep_read_ops[i + 2].type)

141 142 143 144
    def test_program_all_parameters(self):
        program = fluid.default_main_program()
        data = fluid.data(name='x', shape=[None, 13], dtype='float32')
        hidden = fluid.layers.fc(input=data, size=10)
145
        loss = paddle.mean(hidden)
146 147 148 149 150 151 152 153
        fluid.optimizer.SGD(learning_rate=0.01).minimize(loss)

        # NOTE: here the parameters are fc_0.w_0 and fc_0.b_0
        param_list = program.all_parameters()
        self.assertEqual(len(param_list), 2)
        self.assertEqual(param_list[0].name, "fc_0.w_0")
        self.assertEqual(param_list[1].name, "fc_0.b_0")

154 155 156
    def test_prune_with_input_type_error(self):
        program = fluid.default_main_program()
        feed_var_names = [2, 3, 4]
157 158 159
        self.assertRaises(
            ValueError, program._prune_with_input, feed_var_names, []
        )
160 161 162 163 164 165 166 167 168

    def test_random_seed_error(self):
        program = fluid.default_main_program()
        with self.assertRaises(ValueError):
            program.random_seed = "seed"

    def test_copy_info_from_error(self):
        program = fluid.default_main_program()
        self.assertRaises(TypeError, program._copy_param_info_from, "program")
169 170 171
        self.assertRaises(
            TypeError, program._copy_dist_param_info_from, "program"
        )
172

173 174
    def test_remove_training_info(self):
        def net():
175 176 177 178 179 180 181
            reader = fluid.layers.py_reader(
                capacity=10,
                shapes=[[-1, 10], [-1, 1]],
                lod_levels=[0, 0],
                dtypes=['float32', 'int64'],
                use_double_buffer=True,
            )
182 183
            in_data, label = fluid.layers.read_file(reader)
            predict_label = fluid.layers.fc(in_data, size=2, act='softmax')
184
            loss = paddle.mean(
185 186
                fluid.layers.cross_entropy(input=predict_label, label=label)
            )
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202

            optimizer = fluid.optimizer.Adam()
            optimizer.minimize(loss)

        main_program = fluid.Program()
        with fluid.program_guard(main_program):
            net()

        removed_program = main_program._remove_training_info()

        for i in range(removed_program.num_blocks):
            block = removed_program.block(i)
            for var in block.desc.all_vars():
                self.assertFalse(var.has_is_parameter())
                self.assertFalse(var.has_stop_gradient())

Y
Yu Yang 已提交
203

L
Leo Chen 已提交
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
def build_program():
    main_program = paddle.static.Program()
    startuo_program = paddle.static.Program()
    with paddle.utils.unique_name.guard():
        with paddle.static.program_guard(main_program, startuo_program):
            x = paddle.static.data(name='x', shape=[3, 2, 1])
            out = paddle.static.nn.fc(x=x, size=1, num_flatten_dims=2)
    return main_program


class TestProgramProto(unittest.TestCase):
    def test_update_op(self):
        program = build_program()
        a = program.desc.serialize_to_string()
        program.current_block().ops[0]._set_attr('use_mkldnn', True)
        self.assertTrue(program.desc.need_update())
        b = program.desc.serialize_to_string()
        self.assertFalse(a == b)

    def test_update_var(self):
        program = build_program()
        a = program.desc.serialize_to_string()
        program.current_block().var("x").desc.set_stop_gradient(False)
        self.assertTrue(program.desc.need_update())
        b = program.desc.serialize_to_string()
        self.assertFalse(a == b)

    # it seems the attrs of framework::VarDesc is not write to proto,
    # except for persistable/need_check_feed/is_parameter/stop_gradient
    def test_update_var_attr(self):
        program = build_program()
        a = program.desc.serialize_to_string()
        program.current_block().var("x").desc._set_attr("a", 1)
        self.assertFalse(program.desc.need_update())
        b = program.desc.serialize_to_string()
        self.assertTrue(a == b)  # not affected


L
Leo Chen 已提交
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
class TestProgramHash(unittest.TestCase):
    def build_program(self):
        main_program = paddle.static.Program()
        startuo_program = paddle.static.Program()
        with paddle.utils.unique_name.guard():
            with paddle.static.program_guard(main_program, startuo_program):
                x = paddle.static.data(name='x', shape=[3, 2, 1])
                out = paddle.static.nn.fc(x=x, size=1, num_flatten_dims=2)
        return main_program

    def test_program_need_update(self):
        program = self.build_program()
        self.assertTrue(program.desc.need_update())
        program.desc.flush()
        self.assertFalse(program.desc.need_update())

    def test_program_hash_equal(self):
        programs = []
        for i in range(2):
            programs.append(self.build_program())
        program1, program2 = programs[0], programs[1]
        # why not write as below?
        # since the callstack attribute are not equal
265 266
        # program1 = self.build_program()
        # program2 = self.build_program()
L
Leo Chen 已提交
267 268 269 270 271 272 273

        self.assertTrue(program1.desc.need_update())
        self.assertTrue(program2.desc.need_update())
        # two program with same content
        self.assertFalse(id(program1) == id(program2))
        # print(program1, program2)
        self.assertTrue(
274 275
            program1.desc.cached_hash_str() == program2.desc.cached_hash_str()
        )
L
Leo Chen 已提交
276 277 278 279 280 281 282 283 284

        self.assertFalse(program1.desc.need_update())
        self.assertFalse(program2.desc.need_update())

    def test_program_clone(self):
        program = self.build_program()
        program_clone = program.clone()

        self.assertFalse(id(program) == id(program_clone))
285 286 287 288
        self.assertTrue(
            program.desc.cached_hash_str()
            == program_clone.desc.cached_hash_str()
        )
L
Leo Chen 已提交
289 290 291 292 293 294 295 296 297 298 299 300 301 302

    def test_program_update(self):
        program = self.build_program()
        hash1 = program.desc.cached_hash_str()
        id1 = id(program)
        # change mul's attr
        program.current_block().ops[0]._set_attr('use_mkldnn', True)
        program.current_block().ops[0]._set_attr('scale_x', 2.0)
        hash2 = program.desc.cached_hash_str()
        id2 = id(program)
        self.assertTrue(id1 == id2)
        self.assertFalse(hash1 == hash2)


Y
Yu Yang 已提交
303 304
if __name__ == '__main__':
    unittest.main()