test_program.py 9.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
Y
Yu Yang 已提交
16
import unittest
17

18
from paddle.fluid.framework import Program, default_main_program, program_guard, grad_var_name
19
import paddle
20
import paddle.fluid.layers as layers
21
import paddle.fluid as fluid
Y
Yu Yang 已提交
22

Y
Yu Yang 已提交
23 24
main_program = default_main_program()

Y
Yu Yang 已提交
25 26

class TestProgram(unittest.TestCase):
27

Y
Yu Yang 已提交
28
    def test_program(self):
Y
Yu Yang 已提交
29
        b = main_program.current_block()
Y
Yu Yang 已提交
30 31 32
        self.assertEqual(-1, b.parent_idx)
        self.assertEqual(0, b.idx)

W
Wu Yi 已提交
33
        b = main_program._create_block()
Y
Yu Yang 已提交
34 35 36
        self.assertEqual(1, b.idx)
        self.assertEqual(0, b.parent_idx)

W
Wu Yi 已提交
37
        b = main_program._create_block()
Y
Yu Yang 已提交
38 39 40
        self.assertEqual(2, b.idx)
        self.assertEqual(1, b.parent_idx)

W
Wu Yi 已提交
41
        main_program._rollback()
Y
Yu Yang 已提交
42

Y
Yu Yang 已提交
43
        b = main_program.current_block()
Y
Yu Yang 已提交
44 45 46
        self.assertEqual(1, b.idx)
        self.assertEqual(0, b.parent_idx)

W
Wu Yi 已提交
47
        b = main_program._create_block()
Y
Yu Yang 已提交
48 49 50
        self.assertEqual(3, b.idx)
        self.assertEqual(1, b.parent_idx)

W
Wu Yi 已提交
51
        main_program._rollback()
Y
Yu Yang 已提交
52
        b = main_program.current_block()
Y
Yu Yang 已提交
53 54 55
        self.assertEqual(1, b.idx)
        self.assertEqual(0, b.parent_idx)

Y
Yu Yang 已提交
56 57 58
    def test_program_clone(self):
        prog = Program()

59 60 61
        x = prog.global_block().create_var(name='X',
                                           shape=[1000, 784],
                                           dtype='float32')
Y
Yu Yang 已提交
62

63 64 65
        y = prog.global_block().create_var(name='Y',
                                           shape=[784, 100],
                                           dtype='float32')
Y
Yu Yang 已提交
66
        out = prog.global_block().create_var(name='Out', dtype='float32')
67 68 69 70 71 72
        prog.global_block().append_op(type="mul",
                                      inputs={
                                          'X': [x],
                                          'Y': [y]
                                      },
                                      outputs={'Out': [out]})
Y
Yu Yang 已提交
73 74 75

        # FIXME(yuyang18): We manual compare the output string, since the order
        # of variable could be changed.
76 77
        print(prog)
        print(prog.clone())
Y
Yu Yang 已提交
78

79 80 81
    def test_parse_program_from_string(self):
        prog = Program()

82 83 84
        x = prog.global_block().create_var(name='X',
                                           shape=[1000, 784],
                                           dtype='float32')
85

86 87 88
        y = prog.global_block().create_var(name='Y',
                                           shape=[784, 100],
                                           dtype='float32')
89
        out = prog.global_block().create_var(name='Out', dtype='float32')
90 91 92 93 94 95
        prog.global_block().append_op(type="mul",
                                      inputs={
                                          'X': [x],
                                          'Y': [y]
                                      },
                                      outputs={'Out': [out]})
96 97 98 99

        binary_str = prog.desc.serialize_to_string()
        prog_restored = Program.parse_from_string(binary_str)

100 101
        print(prog)
        print(prog_restored)
102

103 104 105
    def test_program_clone_with_parameter(self):
        main_program = Program()
        startup_program = Program()
106 107 108 109
        with program_guard(main_program, startup_program):
            d = layers.data(name='x', shape=[784], dtype='float32')
            hidden = layers.fc(input=d, size=100)
            layers.fc(input=hidden, size=100)
110 111 112 113

        new_program = main_program.clone()
        self.assertNotEqual(0, len(new_program.blocks[0].all_parameters()))

114
    def test_program_inference_optimize(self):
115

116
        def net():
117 118 119 120 121
            reader = fluid.layers.py_reader(capacity=10,
                                            shapes=[[-1, 10], [-1, 1]],
                                            lod_levels=[0, 0],
                                            dtypes=['float32', 'int64'],
                                            use_double_buffer=True)
122 123
            in_data, label = fluid.layers.read_file(reader)
            predict_label = fluid.layers.fc(in_data, size=2, act='softmax')
124
            loss = paddle.mean(
125
                fluid.layers.cross_entropy(input=predict_label, label=label))
126 127 128 129 130 131 132 133

            optimizer = fluid.optimizer.Adam()
            optimizer.minimize(loss)

        startup_program = fluid.Program()
        main_program = fluid.Program()
        with fluid.program_guard(main_program, startup_program):
            net()
W
Wu Yi 已提交
134 135
        no_read_program = main_program._inference_optimize()
        keep_read_program = main_program._inference_optimize(
X
Xin Pan 已提交
136
            prune_read_op=False)
137 138 139 140 141 142 143 144 145
        no_read_ops = no_read_program.global_block().ops
        keep_read_ops = keep_read_program.global_block().ops
        self.assertEqual(len(keep_read_ops) - len(no_read_ops), 2)
        self.assertEqual(keep_read_ops[0].type, 'create_double_buffer_reader')
        self.assertEqual(keep_read_ops[1].type, 'read')

        for i in range(len(no_read_ops)):
            self.assertEqual(no_read_ops[i].type, keep_read_ops[i + 2].type)

146 147 148 149
    def test_program_all_parameters(self):
        program = fluid.default_main_program()
        data = fluid.data(name='x', shape=[None, 13], dtype='float32')
        hidden = fluid.layers.fc(input=data, size=10)
150
        loss = paddle.mean(hidden)
151 152 153 154 155 156 157 158
        fluid.optimizer.SGD(learning_rate=0.01).minimize(loss)

        # NOTE: here the parameters are fc_0.w_0 and fc_0.b_0
        param_list = program.all_parameters()
        self.assertEqual(len(param_list), 2)
        self.assertEqual(param_list[0].name, "fc_0.w_0")
        self.assertEqual(param_list[1].name, "fc_0.b_0")

159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
    def test_prune_with_input_type_error(self):
        program = fluid.default_main_program()
        feed_var_names = [2, 3, 4]
        self.assertRaises(ValueError, program._prune_with_input, feed_var_names,
                          [])

    def test_random_seed_error(self):
        program = fluid.default_main_program()
        with self.assertRaises(ValueError):
            program.random_seed = "seed"

    def test_copy_info_from_error(self):
        program = fluid.default_main_program()
        self.assertRaises(TypeError, program._copy_param_info_from, "program")
        self.assertRaises(TypeError, program._copy_dist_param_info_from,
                          "program")

176
    def test_remove_training_info(self):
177

178
        def net():
179 180 181 182 183
            reader = fluid.layers.py_reader(capacity=10,
                                            shapes=[[-1, 10], [-1, 1]],
                                            lod_levels=[0, 0],
                                            dtypes=['float32', 'int64'],
                                            use_double_buffer=True)
184 185
            in_data, label = fluid.layers.read_file(reader)
            predict_label = fluid.layers.fc(in_data, size=2, act='softmax')
186
            loss = paddle.mean(
187
                fluid.layers.cross_entropy(input=predict_label, label=label))
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203

            optimizer = fluid.optimizer.Adam()
            optimizer.minimize(loss)

        main_program = fluid.Program()
        with fluid.program_guard(main_program):
            net()

        removed_program = main_program._remove_training_info()

        for i in range(removed_program.num_blocks):
            block = removed_program.block(i)
            for var in block.desc.all_vars():
                self.assertFalse(var.has_is_parameter())
                self.assertFalse(var.has_stop_gradient())

Y
Yu Yang 已提交
204

L
Leo Chen 已提交
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
def build_program():
    main_program = paddle.static.Program()
    startuo_program = paddle.static.Program()
    with paddle.utils.unique_name.guard():
        with paddle.static.program_guard(main_program, startuo_program):
            x = paddle.static.data(name='x', shape=[3, 2, 1])
            out = paddle.static.nn.fc(x=x, size=1, num_flatten_dims=2)
    return main_program


class TestProgramProto(unittest.TestCase):

    def test_update_op(self):
        program = build_program()
        a = program.desc.serialize_to_string()
        program.current_block().ops[0]._set_attr('use_mkldnn', True)
        self.assertTrue(program.desc.need_update())
        b = program.desc.serialize_to_string()
        self.assertFalse(a == b)

    def test_update_var(self):
        program = build_program()
        a = program.desc.serialize_to_string()
        program.current_block().var("x").desc.set_stop_gradient(False)
        self.assertTrue(program.desc.need_update())
        b = program.desc.serialize_to_string()
        self.assertFalse(a == b)

    # it seems the attrs of framework::VarDesc is not write to proto,
    # except for persistable/need_check_feed/is_parameter/stop_gradient
    def test_update_var_attr(self):
        program = build_program()
        a = program.desc.serialize_to_string()
        program.current_block().var("x").desc._set_attr("a", 1)
        self.assertFalse(program.desc.need_update())
        b = program.desc.serialize_to_string()
        self.assertTrue(a == b)  # not affected


Y
Yu Yang 已提交
244 245
if __name__ == '__main__':
    unittest.main()