test_program.py 11.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yu Yang 已提交
15
import unittest
16

17
from paddle.fluid.framework import Program, default_main_program, program_guard
18
import paddle
19
import paddle.fluid.layers as layers
20
import paddle.fluid as fluid
Y
Yu Yang 已提交
21

Y
Yu Yang 已提交
22 23
main_program = default_main_program()

Y
Yu Yang 已提交
24 25

class TestProgram(unittest.TestCase):
26

Y
Yu Yang 已提交
27
    def test_program(self):
Y
Yu Yang 已提交
28
        b = main_program.current_block()
Y
Yu Yang 已提交
29 30 31
        self.assertEqual(-1, b.parent_idx)
        self.assertEqual(0, b.idx)

W
Wu Yi 已提交
32
        b = main_program._create_block()
Y
Yu Yang 已提交
33 34 35
        self.assertEqual(1, b.idx)
        self.assertEqual(0, b.parent_idx)

W
Wu Yi 已提交
36
        b = main_program._create_block()
Y
Yu Yang 已提交
37 38 39
        self.assertEqual(2, b.idx)
        self.assertEqual(1, b.parent_idx)

W
Wu Yi 已提交
40
        main_program._rollback()
Y
Yu Yang 已提交
41

Y
Yu Yang 已提交
42
        b = main_program.current_block()
Y
Yu Yang 已提交
43 44 45
        self.assertEqual(1, b.idx)
        self.assertEqual(0, b.parent_idx)

W
Wu Yi 已提交
46
        b = main_program._create_block()
Y
Yu Yang 已提交
47 48 49
        self.assertEqual(3, b.idx)
        self.assertEqual(1, b.parent_idx)

W
Wu Yi 已提交
50
        main_program._rollback()
Y
Yu Yang 已提交
51
        b = main_program.current_block()
Y
Yu Yang 已提交
52 53 54
        self.assertEqual(1, b.idx)
        self.assertEqual(0, b.parent_idx)

Y
Yu Yang 已提交
55 56 57
    def test_program_clone(self):
        prog = Program()

58 59 60
        x = prog.global_block().create_var(name='X',
                                           shape=[1000, 784],
                                           dtype='float32')
Y
Yu Yang 已提交
61

62 63 64
        y = prog.global_block().create_var(name='Y',
                                           shape=[784, 100],
                                           dtype='float32')
Y
Yu Yang 已提交
65
        out = prog.global_block().create_var(name='Out', dtype='float32')
66 67 68 69 70 71
        prog.global_block().append_op(type="mul",
                                      inputs={
                                          'X': [x],
                                          'Y': [y]
                                      },
                                      outputs={'Out': [out]})
Y
Yu Yang 已提交
72 73 74

        # FIXME(yuyang18): We manual compare the output string, since the order
        # of variable could be changed.
75 76
        print(prog)
        print(prog.clone())
Y
Yu Yang 已提交
77

78 79 80
    def test_parse_program_from_string(self):
        prog = Program()

81 82 83
        x = prog.global_block().create_var(name='X',
                                           shape=[1000, 784],
                                           dtype='float32')
84

85 86 87
        y = prog.global_block().create_var(name='Y',
                                           shape=[784, 100],
                                           dtype='float32')
88
        out = prog.global_block().create_var(name='Out', dtype='float32')
89 90 91 92 93 94
        prog.global_block().append_op(type="mul",
                                      inputs={
                                          'X': [x],
                                          'Y': [y]
                                      },
                                      outputs={'Out': [out]})
95 96 97 98

        binary_str = prog.desc.serialize_to_string()
        prog_restored = Program.parse_from_string(binary_str)

99 100
        print(prog)
        print(prog_restored)
101

102 103 104
    def test_program_clone_with_parameter(self):
        main_program = Program()
        startup_program = Program()
105 106 107 108
        with program_guard(main_program, startup_program):
            d = layers.data(name='x', shape=[784], dtype='float32')
            hidden = layers.fc(input=d, size=100)
            layers.fc(input=hidden, size=100)
109 110 111 112

        new_program = main_program.clone()
        self.assertNotEqual(0, len(new_program.blocks[0].all_parameters()))

113
    def test_program_inference_optimize(self):
114

115
        def net():
116 117 118 119 120
            reader = fluid.layers.py_reader(capacity=10,
                                            shapes=[[-1, 10], [-1, 1]],
                                            lod_levels=[0, 0],
                                            dtypes=['float32', 'int64'],
                                            use_double_buffer=True)
121 122
            in_data, label = fluid.layers.read_file(reader)
            predict_label = fluid.layers.fc(in_data, size=2, act='softmax')
123
            loss = paddle.mean(
124
                fluid.layers.cross_entropy(input=predict_label, label=label))
125 126 127 128 129 130 131 132

            optimizer = fluid.optimizer.Adam()
            optimizer.minimize(loss)

        startup_program = fluid.Program()
        main_program = fluid.Program()
        with fluid.program_guard(main_program, startup_program):
            net()
W
Wu Yi 已提交
133 134
        no_read_program = main_program._inference_optimize()
        keep_read_program = main_program._inference_optimize(
X
Xin Pan 已提交
135
            prune_read_op=False)
136 137 138 139 140 141 142 143 144
        no_read_ops = no_read_program.global_block().ops
        keep_read_ops = keep_read_program.global_block().ops
        self.assertEqual(len(keep_read_ops) - len(no_read_ops), 2)
        self.assertEqual(keep_read_ops[0].type, 'create_double_buffer_reader')
        self.assertEqual(keep_read_ops[1].type, 'read')

        for i in range(len(no_read_ops)):
            self.assertEqual(no_read_ops[i].type, keep_read_ops[i + 2].type)

145 146 147 148
    def test_program_all_parameters(self):
        program = fluid.default_main_program()
        data = fluid.data(name='x', shape=[None, 13], dtype='float32')
        hidden = fluid.layers.fc(input=data, size=10)
149
        loss = paddle.mean(hidden)
150 151 152 153 154 155 156 157
        fluid.optimizer.SGD(learning_rate=0.01).minimize(loss)

        # NOTE: here the parameters are fc_0.w_0 and fc_0.b_0
        param_list = program.all_parameters()
        self.assertEqual(len(param_list), 2)
        self.assertEqual(param_list[0].name, "fc_0.w_0")
        self.assertEqual(param_list[1].name, "fc_0.b_0")

158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
    def test_prune_with_input_type_error(self):
        program = fluid.default_main_program()
        feed_var_names = [2, 3, 4]
        self.assertRaises(ValueError, program._prune_with_input, feed_var_names,
                          [])

    def test_random_seed_error(self):
        program = fluid.default_main_program()
        with self.assertRaises(ValueError):
            program.random_seed = "seed"

    def test_copy_info_from_error(self):
        program = fluid.default_main_program()
        self.assertRaises(TypeError, program._copy_param_info_from, "program")
        self.assertRaises(TypeError, program._copy_dist_param_info_from,
                          "program")

175
    def test_remove_training_info(self):
176

177
        def net():
178 179 180 181 182
            reader = fluid.layers.py_reader(capacity=10,
                                            shapes=[[-1, 10], [-1, 1]],
                                            lod_levels=[0, 0],
                                            dtypes=['float32', 'int64'],
                                            use_double_buffer=True)
183 184
            in_data, label = fluid.layers.read_file(reader)
            predict_label = fluid.layers.fc(in_data, size=2, act='softmax')
185
            loss = paddle.mean(
186
                fluid.layers.cross_entropy(input=predict_label, label=label))
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202

            optimizer = fluid.optimizer.Adam()
            optimizer.minimize(loss)

        main_program = fluid.Program()
        with fluid.program_guard(main_program):
            net()

        removed_program = main_program._remove_training_info()

        for i in range(removed_program.num_blocks):
            block = removed_program.block(i)
            for var in block.desc.all_vars():
                self.assertFalse(var.has_is_parameter())
                self.assertFalse(var.has_stop_gradient())

Y
Yu Yang 已提交
203

L
Leo Chen 已提交
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
def build_program():
    main_program = paddle.static.Program()
    startuo_program = paddle.static.Program()
    with paddle.utils.unique_name.guard():
        with paddle.static.program_guard(main_program, startuo_program):
            x = paddle.static.data(name='x', shape=[3, 2, 1])
            out = paddle.static.nn.fc(x=x, size=1, num_flatten_dims=2)
    return main_program


class TestProgramProto(unittest.TestCase):

    def test_update_op(self):
        program = build_program()
        a = program.desc.serialize_to_string()
        program.current_block().ops[0]._set_attr('use_mkldnn', True)
        self.assertTrue(program.desc.need_update())
        b = program.desc.serialize_to_string()
        self.assertFalse(a == b)

    def test_update_var(self):
        program = build_program()
        a = program.desc.serialize_to_string()
        program.current_block().var("x").desc.set_stop_gradient(False)
        self.assertTrue(program.desc.need_update())
        b = program.desc.serialize_to_string()
        self.assertFalse(a == b)

    # it seems the attrs of framework::VarDesc is not write to proto,
    # except for persistable/need_check_feed/is_parameter/stop_gradient
    def test_update_var_attr(self):
        program = build_program()
        a = program.desc.serialize_to_string()
        program.current_block().var("x").desc._set_attr("a", 1)
        self.assertFalse(program.desc.need_update())
        b = program.desc.serialize_to_string()
        self.assertTrue(a == b)  # not affected


L
Leo Chen 已提交
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
class TestProgramHash(unittest.TestCase):

    def build_program(self):
        main_program = paddle.static.Program()
        startuo_program = paddle.static.Program()
        with paddle.utils.unique_name.guard():
            with paddle.static.program_guard(main_program, startuo_program):
                x = paddle.static.data(name='x', shape=[3, 2, 1])
                out = paddle.static.nn.fc(x=x, size=1, num_flatten_dims=2)
        return main_program

    def test_program_need_update(self):
        program = self.build_program()
        self.assertTrue(program.desc.need_update())
        program.desc.flush()
        self.assertFalse(program.desc.need_update())

    def test_program_hash_equal(self):
        programs = []
        for i in range(2):
            programs.append(self.build_program())
        program1, program2 = programs[0], programs[1]
        # why not write as below?
        # since the callstack attribute are not equal
        #program1 = self.build_program()
        #program2 = self.build_program()

        self.assertTrue(program1.desc.need_update())
        self.assertTrue(program2.desc.need_update())
        # two program with same content
        self.assertFalse(id(program1) == id(program2))
        # print(program1, program2)
        self.assertTrue(
            program1.desc.cached_hash_str() == program2.desc.cached_hash_str())

        self.assertFalse(program1.desc.need_update())
        self.assertFalse(program2.desc.need_update())

    def test_program_clone(self):
        program = self.build_program()
        program_clone = program.clone()

        self.assertFalse(id(program) == id(program_clone))
        self.assertTrue(program.desc.cached_hash_str() ==
                        program_clone.desc.cached_hash_str())

    def test_program_update(self):
        program = self.build_program()
        hash1 = program.desc.cached_hash_str()
        id1 = id(program)
        # change mul's attr
        program.current_block().ops[0]._set_attr('use_mkldnn', True)
        program.current_block().ops[0]._set_attr('scale_x', 2.0)
        hash2 = program.desc.cached_hash_str()
        id2 = id(program)
        self.assertTrue(id1 == id2)
        self.assertFalse(hash1 == hash2)


Y
Yu Yang 已提交
302 303
if __name__ == '__main__':
    unittest.main()