pool_grad_kernel.cu 5.4 KB
Newer Older
Z
zhangkaihuo 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/phi/kernels/sparse/pool_grad_kernel.h"
16

Z
zhangkaihuo 已提交
17 18 19 20
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/backends/gpu/gpu_info.h"
#include "paddle/phi/backends/gpu/gpu_launch_config.h"
#include "paddle/phi/core/kernel_registry.h"
21
#include "paddle/phi/core/tensor_utils.h"
22
#include "paddle/phi/core/visit_type.h"
23
#include "paddle/phi/kernels/empty_kernel.h"
Z
zhangkaihuo 已提交
24 25 26 27 28 29 30
#include "paddle/phi/kernels/funcs/math_function.h"
#include "paddle/phi/kernels/funcs/pooling.h"
#include "paddle/phi/kernels/funcs/sparse/convolution.h"

namespace phi {
namespace sparse {

31
template <typename T, typename IntT = int>
Z
zhangkaihuo 已提交
32 33 34
__global__ void MaxPoolGradCudaKernel(const T* in_features_ptr,
                                      const T* out_features_ptr,
                                      const T* out_grad_ptr,
35
                                      const IntT* rulebook_ptr,
Z
zhangkaihuo 已提交
36 37 38 39 40 41 42 43
                                      const int n,
                                      const int rulebook_len,
                                      const int channels,
                                      T* x_grad_ptr) {
  phi::funcs::MaxPoolGrad<T> grad_functor;
  CUDA_KERNEL_LOOP_TYPE(i, n * channels, int64_t) {
    int real_i = i / channels;
    int c = i - real_i * channels;
44 45
    IntT in_i = rulebook_ptr[real_i];
    IntT out_i = rulebook_ptr[real_i + rulebook_len];
Z
zhangkaihuo 已提交
46 47 48 49 50 51 52 53
    grad_functor.compute(in_features_ptr[in_i * channels + c],
                         out_features_ptr[out_i * channels + c],
                         out_grad_ptr[out_i * channels + c],
                         1,
                         &x_grad_ptr[in_i * channels + c]);
  }
}

54
template <typename T, typename IntT = int>
55 56 57
void MaxPoolCooGradGPUKernel(const GPUContext& dev_ctx,
                             const SparseCooTensor& x,
                             const DenseTensor& rulebook,
58
                             const DenseTensor& counter,
59 60 61 62
                             const SparseCooTensor& out,
                             const SparseCooTensor& out_grad,
                             const std::vector<int>& kernel_sizes,
                             SparseCooTensor* x_grad) {
Z
zhangkaihuo 已提交
63 64 65
  int kernel_size = kernel_sizes[0] * kernel_sizes[1] * kernel_sizes[2];
  const int in_channels = x.dims()[4];
  int rulebook_len = rulebook.dims()[1];
66
  const IntT* rulebook_ptr = rulebook.data<IntT>();
67 68 69
  std::vector<int> offsets(kernel_size + 1);
  const int* counter_ptr = counter.data<int>();
  phi::funcs::sparse::PrefixSum(counter_ptr, &offsets[0], kernel_size);
Z
zhangkaihuo 已提交
70

71 72 73
  const T* in_features_ptr = x.values().data<T>();
  const T* out_features_ptr = out.values().data<T>();
  const T* out_grad_ptr = out_grad.values().data<T>();
74
  // TODO(zhangkaihuo): call phi::sparse::EmptyLike
75
  DenseTensor x_grad_indices = phi::EmptyLike<IntT>(dev_ctx, x.indices());
76
  DenseTensor x_grad_values = phi::EmptyLike<T>(dev_ctx, x.values());
77 78 79 80
  x_grad->SetMember(x_grad_indices, x_grad_values, x.dims(), true);
  T* x_grad_ptr = x_grad_values.data<T>();
  phi::funcs::SetConstant<GPUContext, T> set_zero;
  set_zero(dev_ctx, &x_grad_values, static_cast<T>(0.0f));
81 82
  phi::Copy<GPUContext>(
      dev_ctx, x.indices(), dev_ctx.GetPlace(), false, &x_grad_indices);
Z
zhangkaihuo 已提交
83 84

  for (int i = 0; i < kernel_size; i++) {
85
    if (counter_ptr[i] <= 0) {
Z
zhangkaihuo 已提交
86 87 88 89
      continue;
    }

    auto config = phi::backends::gpu::GetGpuLaunchConfig1D(
90
        dev_ctx, counter_ptr[i] * in_channels, 1);
91 92 93 94 95 96 97
    MaxPoolGradCudaKernel<T, IntT>
        <<<config.block_per_grid.x,
           config.thread_per_block.x,
           0,
           dev_ctx.stream()>>>(in_features_ptr,
                               out_features_ptr,
                               out_grad_ptr,
98 99
                               rulebook_ptr + offsets[i],
                               counter_ptr[i],
100 101 102
                               rulebook_len,
                               in_channels,
                               x_grad_ptr);
Z
zhangkaihuo 已提交
103 104 105
  }
}

106
template <typename T, typename Context>
107 108 109
void MaxPoolCooGradKernel(const Context& dev_ctx,
                          const SparseCooTensor& x,
                          const DenseTensor& rulebook,
110
                          const DenseTensor& counter,
111 112 113 114
                          const SparseCooTensor& out,
                          const SparseCooTensor& out_grad,
                          const std::vector<int>& kernel_sizes,
                          SparseCooTensor* x_grad) {
Z
zhangkaihuo 已提交
115
  PD_VISIT_BASE_INTEGRAL_TYPES(
116
      x.indices().dtype(), "MaxPoolCooGradGPUKernel", ([&] {
117
        MaxPoolCooGradGPUKernel<T, data_t>(
118
            dev_ctx, x, rulebook, counter, out, out_grad, kernel_sizes, x_grad);
119 120 121
      }));
}

Z
zhangkaihuo 已提交
122 123 124
}  // namespace sparse
}  // namespace phi

125
PD_REGISTER_KERNEL(maxpool_coo_grad,
Z
zhangkaihuo 已提交
126 127
                   GPU,
                   ALL_LAYOUT,
128
                   phi::sparse::MaxPoolCooGradKernel,
Z
zhangkaihuo 已提交
129 130 131 132
                   float,
                   double) {
  kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_COO);
}