Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
9e307229
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
9e307229
编写于
7月 19, 2022
作者:
Z
zhangkaihuo
提交者:
GitHub
7月 19, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Standard name of sparse pool (#44344)
上级
f382eb06
变更
9
隐藏空白更改
内联
并排
Showing
9 changed file
with
152 addition
and
152 deletion
+152
-152
paddle/phi/api/yaml/sparse_api.yaml
paddle/phi/api/yaml/sparse_api.yaml
+2
-2
paddle/phi/api/yaml/sparse_bw_api.yaml
paddle/phi/api/yaml/sparse_bw_api.yaml
+8
-8
paddle/phi/kernels/sparse/cpu/pool_grad_kernel.cc
paddle/phi/kernels/sparse/cpu/pool_grad_kernel.cc
+19
-19
paddle/phi/kernels/sparse/cpu/pool_kernel.cc
paddle/phi/kernels/sparse/cpu/pool_kernel.cc
+28
-28
paddle/phi/kernels/sparse/gpu/pool_grad_kernel.cu
paddle/phi/kernels/sparse/gpu/pool_grad_kernel.cu
+19
-19
paddle/phi/kernels/sparse/gpu/pool_kernel.cu
paddle/phi/kernels/sparse/gpu/pool_kernel.cu
+28
-28
paddle/phi/kernels/sparse/pool_grad_kernel.h
paddle/phi/kernels/sparse/pool_grad_kernel.h
+14
-14
paddle/phi/kernels/sparse/pool_kernel.h
paddle/phi/kernels/sparse/pool_kernel.h
+16
-16
paddle/phi/tests/kernels/test_sparse_pool_dev_api.cc
paddle/phi/tests/kernels/test_sparse_pool_dev_api.cc
+18
-18
未找到文件。
paddle/phi/api/yaml/sparse_api.yaml
浏览文件 @
9e307229
...
...
@@ -316,10 +316,10 @@
args
:
(Tensor x, int[] kernel_sizes, int[] paddings, int[] dilations, int[] strides)
output
:
Tensor(out), Tensor(rulebook)
kernel
:
func
:
sparse_maxpool
{sparse_coo -> sparse_coo, dense}
func
:
maxpool_coo
{sparse_coo -> sparse_coo, dense}
layout
:
x
intermediate
:
rulebook
backward
:
sparse_
maxpool_grad
backward
:
maxpool_grad
-
api
:
mv
args
:
(Tensor x, Tensor vec)
...
...
paddle/phi/api/yaml/sparse_bw_api.yaml
浏览文件 @
9e307229
...
...
@@ -137,6 +137,13 @@
matmul_coo_dense_grad {sparse_coo, dense, dense -> sparse_coo, dense},
matmul_coo_coo_grad {sparse_coo, sparse_coo, sparse_coo -> sparse_coo, sparse_coo}
-
backward_api
:
maxpool_grad
forward
:
maxpool(Tensor x, int[] kernel_sizes, int[] paddings, int[] dilations, int[] strides) -> Tensor(out), Tensor(rulebook)
args
:
(Tensor x, Tensor rulebook, Tensor out, Tensor out_grad, int[] kernel_sizes)
output
:
Tensor(x_grad)
kernel
:
func
:
maxpool_coo_grad {sparse_coo, dense, sparse_coo, sparse_coo -> sparse_coo}
-
backward_api
:
multiply_grad
forward
:
multiply(Tensor x, Tensor y) -> Tensor(out)
args
:
(Tensor x, Tensor y, Tensor out_grad)
...
...
@@ -198,13 +205,6 @@
kernel
:
func
:
softmax_csr_grad{sparse_csr, sparse_csr -> sparse_csr}
-
backward_api
:
sparse_maxpool_grad
forward
:
sparse_maxpool(Tensor x, int[] kernel_sizes, int[] paddings, int[] dilations, int[] strides) -> Tensor(out), Tensor(rulebook)
args
:
(Tensor x, Tensor rulebook, Tensor out, Tensor out_grad, int[] kernel_sizes)
output
:
Tensor(x_grad)
kernel
:
func
:
sparse_maxpool_grad {sparse_coo, dense, sparse_coo, sparse_coo -> sparse_coo}
-
backward_api
:
sqrt_grad
forward
:
sqrt(Tensor x) -> Tensor(out)
args
:
(Tensor out, Tensor out_grad)
...
...
@@ -255,7 +255,7 @@
-
backward_api
:
fused_attention_grad
forward
:
fused_attention_csr(Tensor query, Tensor key, Tensor value, Tensor sparse_mask, Tensor key_padding_mask, Tensor attn_mask) -> Tensor(out), Tensor(softmax)
args
:
(Tensor query, Tensor key, Tensor value, Tensor softmax, Tensor out_grad)
output
:
Tensor(query_grad), Tensor(key_grad), Tensor(value_grad)
output
:
Tensor(query_grad), Tensor(key_grad), Tensor(value_grad)
kernel
:
func
:
fused_attention_csr_grad{dense, dense, dense, sparse_csr, dense -> dense, dense, dense}
layout
:
softmax
...
...
paddle/phi/kernels/sparse/cpu/
sparse_
pool_grad_kernel.cc
→
paddle/phi/kernels/sparse/cpu/pool_grad_kernel.cc
浏览文件 @
9e307229
...
...
@@ -12,7 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/phi/kernels/sparse/
sparse_
pool_grad_kernel.h"
#include "paddle/phi/kernels/sparse/pool_grad_kernel.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/tensor_utils.h"
...
...
@@ -25,13 +25,13 @@ namespace phi {
namespace
sparse
{
template
<
typename
T
,
typename
IntT
=
int
>
void
MaxPoolGradCPUKernel
(
const
CPUContext
&
dev_ctx
,
const
SparseCooTensor
&
x
,
const
DenseTensor
&
rulebook
,
const
SparseCooTensor
&
out
,
const
SparseCooTensor
&
out_grad
,
const
std
::
vector
<
int
>&
kernel_sizes
,
SparseCooTensor
*
x_grad
)
{
void
MaxPool
Coo
GradCPUKernel
(
const
CPUContext
&
dev_ctx
,
const
SparseCooTensor
&
x
,
const
DenseTensor
&
rulebook
,
const
SparseCooTensor
&
out
,
const
SparseCooTensor
&
out_grad
,
const
std
::
vector
<
int
>&
kernel_sizes
,
SparseCooTensor
*
x_grad
)
{
int
kernel_size
=
kernel_sizes
[
0
]
*
kernel_sizes
[
1
]
*
kernel_sizes
[
2
];
const
int
channels
=
x
.
dims
()[
4
];
int
rulebook_len
=
rulebook
.
dims
()[
1
];
...
...
@@ -75,16 +75,16 @@ void MaxPoolGradCPUKernel(const CPUContext& dev_ctx,
}
template
<
typename
T
,
typename
Context
>
void
MaxPoolGradKernel
(
const
Context
&
dev_ctx
,
const
SparseCooTensor
&
x
,
const
DenseTensor
&
rulebook
,
const
SparseCooTensor
&
out
,
const
SparseCooTensor
&
out_grad
,
const
std
::
vector
<
int
>&
kernel_sizes
,
SparseCooTensor
*
x_grad
)
{
void
MaxPool
Coo
GradKernel
(
const
Context
&
dev_ctx
,
const
SparseCooTensor
&
x
,
const
DenseTensor
&
rulebook
,
const
SparseCooTensor
&
out
,
const
SparseCooTensor
&
out_grad
,
const
std
::
vector
<
int
>&
kernel_sizes
,
SparseCooTensor
*
x_grad
)
{
PD_VISIT_INTEGRAL_TYPES
(
x
.
non_zero_indices
().
dtype
(),
"MaxPoolGradCPUKernel"
,
([
&
]
{
MaxPoolGradCPUKernel
<
T
,
data_t
>
(
x
.
non_zero_indices
().
dtype
(),
"MaxPool
Coo
GradCPUKernel"
,
([
&
]
{
MaxPool
Coo
GradCPUKernel
<
T
,
data_t
>
(
dev_ctx
,
x
,
rulebook
,
out
,
out_grad
,
kernel_sizes
,
x_grad
);
}));
}
...
...
@@ -92,10 +92,10 @@ void MaxPoolGradKernel(const Context& dev_ctx,
}
// namespace sparse
}
// namespace phi
PD_REGISTER_KERNEL
(
sparse_maxpool
_grad
,
PD_REGISTER_KERNEL
(
maxpool_coo
_grad
,
CPU
,
ALL_LAYOUT
,
phi
::
sparse
::
MaxPoolGradKernel
,
phi
::
sparse
::
MaxPool
Coo
GradKernel
,
float
,
double
)
{
kernel
->
InputAt
(
0
).
SetDataLayout
(
phi
::
DataLayout
::
SPARSE_COO
);
...
...
paddle/phi/kernels/sparse/cpu/
sparse_
pool_kernel.cc
→
paddle/phi/kernels/sparse/cpu/pool_kernel.cc
浏览文件 @
9e307229
...
...
@@ -12,7 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/phi/kernels/sparse/
sparse_
pool_kernel.h"
#include "paddle/phi/kernels/sparse/pool_kernel.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/tensor_meta.h"
...
...
@@ -30,14 +30,14 @@ namespace sparse {
* out: (N, D, H, W, OC)
**/
template
<
typename
T
,
typename
IntT
=
int
>
void
MaxPoolCPUKernel
(
const
CPUContext
&
dev_ctx
,
const
SparseCooTensor
&
x
,
const
std
::
vector
<
int
>&
kernel_sizes
,
const
std
::
vector
<
int
>&
paddings
,
const
std
::
vector
<
int
>&
dilations
,
const
std
::
vector
<
int
>&
strides
,
SparseCooTensor
*
out
,
DenseTensor
*
rulebook
)
{
void
MaxPoolC
ooC
PUKernel
(
const
CPUContext
&
dev_ctx
,
const
SparseCooTensor
&
x
,
const
std
::
vector
<
int
>&
kernel_sizes
,
const
std
::
vector
<
int
>&
paddings
,
const
std
::
vector
<
int
>&
dilations
,
const
std
::
vector
<
int
>&
strides
,
SparseCooTensor
*
out
,
DenseTensor
*
rulebook
)
{
const
auto
&
x_dims
=
x
.
dims
();
int
kernel_size
=
kernel_sizes
[
0
]
*
kernel_sizes
[
1
]
*
kernel_sizes
[
2
];
const
std
::
vector
<
int
>&
real_kernel_sizes
=
...
...
@@ -98,34 +98,34 @@ void MaxPoolCPUKernel(const CPUContext& dev_ctx,
}
template
<
typename
T
,
typename
Context
>
void
MaxPoolKernel
(
const
Context
&
dev_ctx
,
const
SparseCooTensor
&
x
,
const
std
::
vector
<
int
>&
kernel_sizes
,
const
std
::
vector
<
int
>&
paddings
,
const
std
::
vector
<
int
>&
dilations
,
const
std
::
vector
<
int
>&
strides
,
SparseCooTensor
*
out
,
DenseTensor
*
rulebook
)
{
void
MaxPool
Coo
Kernel
(
const
Context
&
dev_ctx
,
const
SparseCooTensor
&
x
,
const
std
::
vector
<
int
>&
kernel_sizes
,
const
std
::
vector
<
int
>&
paddings
,
const
std
::
vector
<
int
>&
dilations
,
const
std
::
vector
<
int
>&
strides
,
SparseCooTensor
*
out
,
DenseTensor
*
rulebook
)
{
PD_VISIT_INTEGRAL_TYPES
(
x
.
non_zero_indices
().
dtype
(),
"MaxPoolCPUKernel"
,
([
&
]
{
MaxPoolCPUKernel
<
T
,
data_t
>
(
dev_ctx
,
x
,
kernel_sizes
,
paddings
,
dilations
,
strides
,
out
,
rulebook
);
x
.
non_zero_indices
().
dtype
(),
"MaxPoolC
ooC
PUKernel"
,
([
&
]
{
MaxPoolC
ooC
PUKernel
<
T
,
data_t
>
(
dev_ctx
,
x
,
kernel_sizes
,
paddings
,
dilations
,
strides
,
out
,
rulebook
);
}));
}
}
// namespace sparse
}
// namespace phi
PD_REGISTER_KERNEL
(
sparse_maxpool
,
PD_REGISTER_KERNEL
(
maxpool_coo
,
CPU
,
ALL_LAYOUT
,
phi
::
sparse
::
MaxPoolKernel
,
phi
::
sparse
::
MaxPool
Coo
Kernel
,
float
,
double
)
{
kernel
->
InputAt
(
0
).
SetDataLayout
(
phi
::
DataLayout
::
SPARSE_COO
);
...
...
paddle/phi/kernels/sparse/gpu/
sparse_
pool_grad_kernel.cu
→
paddle/phi/kernels/sparse/gpu/pool_grad_kernel.cu
浏览文件 @
9e307229
...
...
@@ -12,7 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/phi/kernels/sparse/
sparse_
pool_grad_kernel.h"
#include "paddle/phi/kernels/sparse/pool_grad_kernel.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/backends/gpu/gpu_info.h"
...
...
@@ -52,13 +52,13 @@ __global__ void MaxPoolGradCudaKernel(const T* in_features_ptr,
}
template
<
typename
T
,
typename
IntT
=
int
>
void
MaxPoolGradGPUKernel
(
const
GPUContext
&
dev_ctx
,
const
SparseCooTensor
&
x
,
const
DenseTensor
&
rulebook
,
const
SparseCooTensor
&
out
,
const
SparseCooTensor
&
out_grad
,
const
std
::
vector
<
int
>&
kernel_sizes
,
SparseCooTensor
*
x_grad
)
{
void
MaxPool
Coo
GradGPUKernel
(
const
GPUContext
&
dev_ctx
,
const
SparseCooTensor
&
x
,
const
DenseTensor
&
rulebook
,
const
SparseCooTensor
&
out
,
const
SparseCooTensor
&
out_grad
,
const
std
::
vector
<
int
>&
kernel_sizes
,
SparseCooTensor
*
x_grad
)
{
int
kernel_size
=
kernel_sizes
[
0
]
*
kernel_sizes
[
1
]
*
kernel_sizes
[
2
];
const
int
in_channels
=
x
.
dims
()[
4
];
int
rulebook_len
=
rulebook
.
dims
()[
1
];
...
...
@@ -121,16 +121,16 @@ void MaxPoolGradGPUKernel(const GPUContext& dev_ctx,
}
template
<
typename
T
,
typename
Context
>
void
MaxPoolGradKernel
(
const
Context
&
dev_ctx
,
const
SparseCooTensor
&
x
,
const
DenseTensor
&
rulebook
,
const
SparseCooTensor
&
out
,
const
SparseCooTensor
&
out_grad
,
const
std
::
vector
<
int
>&
kernel_sizes
,
SparseCooTensor
*
x_grad
)
{
void
MaxPool
Coo
GradKernel
(
const
Context
&
dev_ctx
,
const
SparseCooTensor
&
x
,
const
DenseTensor
&
rulebook
,
const
SparseCooTensor
&
out
,
const
SparseCooTensor
&
out_grad
,
const
std
::
vector
<
int
>&
kernel_sizes
,
SparseCooTensor
*
x_grad
)
{
PD_VISIT_INTEGRAL_TYPES
(
x
.
non_zero_indices
().
dtype
(),
"MaxPoolGradGPUKernel"
,
([
&
]
{
MaxPoolGradGPUKernel
<
T
,
data_t
>
(
x
.
non_zero_indices
().
dtype
(),
"MaxPool
Coo
GradGPUKernel"
,
([
&
]
{
MaxPool
Coo
GradGPUKernel
<
T
,
data_t
>
(
dev_ctx
,
x
,
rulebook
,
out
,
out_grad
,
kernel_sizes
,
x_grad
);
}));
}
...
...
@@ -138,10 +138,10 @@ void MaxPoolGradKernel(const Context& dev_ctx,
}
// namespace sparse
}
// namespace phi
PD_REGISTER_KERNEL
(
sparse_maxpool
_grad
,
PD_REGISTER_KERNEL
(
maxpool_coo
_grad
,
GPU
,
ALL_LAYOUT
,
phi
::
sparse
::
MaxPoolGradKernel
,
phi
::
sparse
::
MaxPool
Coo
GradKernel
,
float
,
double
)
{
kernel
->
InputAt
(
0
).
SetDataLayout
(
phi
::
DataLayout
::
SPARSE_COO
);
...
...
paddle/phi/kernels/sparse/gpu/
sparse_
pool_kernel.cu
→
paddle/phi/kernels/sparse/gpu/pool_kernel.cu
浏览文件 @
9e307229
...
...
@@ -12,7 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/phi/kernels/sparse/
sparse_
pool_kernel.h"
#include "paddle/phi/kernels/sparse/pool_kernel.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/tensor_meta.h"
...
...
@@ -48,14 +48,14 @@ __global__ void MaxPoolCudaKernel(const T* in_features_ptr,
* out: (N, D, H, W, OC)
**/
template
<
typename
T
,
typename
IntT
=
int
>
void
MaxPoolGPUKernel
(
const
GPUContext
&
dev_ctx
,
const
SparseCooTensor
&
x
,
const
std
::
vector
<
int
>&
kernel_sizes
,
const
std
::
vector
<
int
>&
paddings
,
const
std
::
vector
<
int
>&
dilations
,
const
std
::
vector
<
int
>&
strides
,
SparseCooTensor
*
out
,
DenseTensor
*
rulebook
)
{
void
MaxPool
Coo
GPUKernel
(
const
GPUContext
&
dev_ctx
,
const
SparseCooTensor
&
x
,
const
std
::
vector
<
int
>&
kernel_sizes
,
const
std
::
vector
<
int
>&
paddings
,
const
std
::
vector
<
int
>&
dilations
,
const
std
::
vector
<
int
>&
strides
,
SparseCooTensor
*
out
,
DenseTensor
*
rulebook
)
{
const
auto
&
x_dims
=
x
.
dims
();
int
kernel_size
=
kernel_sizes
[
0
]
*
kernel_sizes
[
1
]
*
kernel_sizes
[
2
];
const
std
::
vector
<
int
>&
real_kernel_sizes
=
...
...
@@ -127,34 +127,34 @@ void MaxPoolGPUKernel(const GPUContext& dev_ctx,
}
template
<
typename
T
,
typename
Context
>
void
MaxPoolKernel
(
const
Context
&
dev_ctx
,
const
SparseCooTensor
&
x
,
const
std
::
vector
<
int
>&
kernel_sizes
,
const
std
::
vector
<
int
>&
paddings
,
const
std
::
vector
<
int
>&
dilations
,
const
std
::
vector
<
int
>&
strides
,
SparseCooTensor
*
out
,
DenseTensor
*
rulebook
)
{
void
MaxPool
Coo
Kernel
(
const
Context
&
dev_ctx
,
const
SparseCooTensor
&
x
,
const
std
::
vector
<
int
>&
kernel_sizes
,
const
std
::
vector
<
int
>&
paddings
,
const
std
::
vector
<
int
>&
dilations
,
const
std
::
vector
<
int
>&
strides
,
SparseCooTensor
*
out
,
DenseTensor
*
rulebook
)
{
PD_VISIT_INTEGRAL_TYPES
(
x
.
non_zero_indices
().
dtype
(),
"MaxPoolGPUKernel"
,
([
&
]
{
MaxPoolGPUKernel
<
T
,
data_t
>
(
dev_ctx
,
x
,
kernel_sizes
,
paddings
,
dilations
,
strides
,
out
,
rulebook
);
x
.
non_zero_indices
().
dtype
(),
"MaxPool
Coo
GPUKernel"
,
([
&
]
{
MaxPool
Coo
GPUKernel
<
T
,
data_t
>
(
dev_ctx
,
x
,
kernel_sizes
,
paddings
,
dilations
,
strides
,
out
,
rulebook
);
}));
}
}
// namespace sparse
}
// namespace phi
PD_REGISTER_KERNEL
(
sparse_maxpool
,
PD_REGISTER_KERNEL
(
maxpool_coo
,
GPU
,
ALL_LAYOUT
,
phi
::
sparse
::
MaxPoolKernel
,
phi
::
sparse
::
MaxPool
Coo
Kernel
,
float
,
double
,
phi
::
dtype
::
float16
)
{
...
...
paddle/phi/kernels/sparse/
sparse_
pool_grad_kernel.h
→
paddle/phi/kernels/sparse/pool_grad_kernel.h
浏览文件 @
9e307229
...
...
@@ -22,23 +22,23 @@ namespace phi {
namespace
sparse
{
template
<
typename
T
,
typename
Context
>
void
MaxPoolGradKernel
(
const
Context
&
dev_ctx
,
const
SparseCooTensor
&
x
,
const
DenseTensor
&
rulebook
,
const
SparseCooTensor
&
out
,
const
SparseCooTensor
&
out_grad
,
const
std
::
vector
<
int
>&
kernel_sizes
,
SparseCooTensor
*
x_grad
);
void
MaxPool
Coo
GradKernel
(
const
Context
&
dev_ctx
,
const
SparseCooTensor
&
x
,
const
DenseTensor
&
rulebook
,
const
SparseCooTensor
&
out
,
const
SparseCooTensor
&
out_grad
,
const
std
::
vector
<
int
>&
kernel_sizes
,
SparseCooTensor
*
x_grad
);
template
<
typename
T
,
typename
Context
>
SparseCooTensor
MaxPoolGrad
(
const
Context
&
dev_ctx
,
const
SparseCooTensor
&
x
,
const
DenseTensor
&
rulebook
,
const
SparseCooTensor
&
out
,
const
SparseCooTensor
&
out_grad
,
const
std
::
vector
<
int
>&
kernel_sizes
)
{
SparseCooTensor
MaxPool
Coo
Grad
(
const
Context
&
dev_ctx
,
const
SparseCooTensor
&
x
,
const
DenseTensor
&
rulebook
,
const
SparseCooTensor
&
out
,
const
SparseCooTensor
&
out_grad
,
const
std
::
vector
<
int
>&
kernel_sizes
)
{
SparseCooTensor
x_grad
;
MaxPoolGradKernel
<
T
,
Context
>
(
MaxPool
Coo
GradKernel
<
T
,
Context
>
(
dev_ctx
,
x
,
rulebook
,
out
,
out_grad
,
kernel_sizes
,
&
x_grad
);
return
x_grad
;
}
...
...
paddle/phi/kernels/sparse/
sparse_
pool_kernel.h
→
paddle/phi/kernels/sparse/pool_kernel.h
浏览文件 @
9e307229
...
...
@@ -22,25 +22,25 @@ namespace phi {
namespace
sparse
{
template
<
typename
T
,
typename
Context
>
void
MaxPoolKernel
(
const
Context
&
dev_ctx
,
const
SparseCooTensor
&
x
,
const
std
::
vector
<
int
>&
kernel_sizes
,
const
std
::
vector
<
int
>&
paddings
,
const
std
::
vector
<
int
>&
dilations
,
const
std
::
vector
<
int
>&
strides
,
SparseCooTensor
*
out
,
DenseTensor
*
rulebook
);
void
MaxPool
Coo
Kernel
(
const
Context
&
dev_ctx
,
const
SparseCooTensor
&
x
,
const
std
::
vector
<
int
>&
kernel_sizes
,
const
std
::
vector
<
int
>&
paddings
,
const
std
::
vector
<
int
>&
dilations
,
const
std
::
vector
<
int
>&
strides
,
SparseCooTensor
*
out
,
DenseTensor
*
rulebook
);
template
<
typename
T
,
typename
Context
>
SparseCooTensor
MaxPool
(
const
Context
&
dev_ctx
,
const
SparseCooTensor
&
x
,
const
std
::
vector
<
int
>&
kernel_sizes
,
const
std
::
vector
<
int
>&
paddings
,
const
std
::
vector
<
int
>&
dilations
,
const
std
::
vector
<
int
>&
strides
,
DenseTensor
*
rulebook
)
{
SparseCooTensor
MaxPool
Coo
(
const
Context
&
dev_ctx
,
const
SparseCooTensor
&
x
,
const
std
::
vector
<
int
>&
kernel_sizes
,
const
std
::
vector
<
int
>&
paddings
,
const
std
::
vector
<
int
>&
dilations
,
const
std
::
vector
<
int
>&
strides
,
DenseTensor
*
rulebook
)
{
SparseCooTensor
coo
;
MaxPoolKernel
<
T
,
Context
>
(
MaxPool
Coo
Kernel
<
T
,
Context
>
(
dev_ctx
,
x
,
kernel_sizes
,
paddings
,
dilations
,
strides
,
&
coo
,
rulebook
);
return
coo
;
}
...
...
paddle/phi/tests/kernels/test_sparse_pool_dev_api.cc
浏览文件 @
9e307229
...
...
@@ -23,8 +23,8 @@ limitations under the License. */
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/tensor_utils.h"
#include "paddle/phi/kernels/sparse/coalesce_kernel.h"
#include "paddle/phi/kernels/sparse/
sparse_
pool_grad_kernel.h"
#include "paddle/phi/kernels/sparse/
sparse_
pool_kernel.h"
#include "paddle/phi/kernels/sparse/pool_grad_kernel.h"
#include "paddle/phi/kernels/sparse/pool_kernel.h"
namespace
phi
{
namespace
tests
{
...
...
@@ -91,13 +91,13 @@ void TestMaxPoolBase(const std::vector<IntT>& indices,
if
(
!
std
::
is_same
<
T
,
phi
::
dtype
::
float16
>::
value
)
{
DenseTensor
rulebook
;
SparseCooTensor
out
=
sparse
::
MaxPool
<
T
>
(
dev_ctx_cpu
,
x_tensor
,
kernel_sizes
,
paddings
,
dilations
,
strides
,
&
rulebook
);
SparseCooTensor
out
=
sparse
::
MaxPool
Coo
<
T
>
(
dev_ctx_cpu
,
x_tensor
,
kernel_sizes
,
paddings
,
dilations
,
strides
,
&
rulebook
);
ASSERT_EQ
(
correct_out_dims
.
size
(),
out
.
dims
().
size
());
for
(
int
i
=
0
;
i
<
correct_out_dims
.
size
();
i
++
)
{
...
...
@@ -113,7 +113,7 @@ void TestMaxPoolBase(const std::vector<IntT>& indices,
f_verify
(
out
.
non_zero_elements
().
data
<
T
>
(),
correct_out_features
);
if
(
backward
)
{
SparseCooTensor
x_grad
=
sparse
::
MaxPoolGrad
<
T
>
(
SparseCooTensor
x_grad
=
sparse
::
MaxPool
Coo
Grad
<
T
>
(
dev_ctx_cpu
,
x_tensor
,
rulebook
,
out
,
out
,
kernel_sizes
);
f_verify
(
x_grad
.
non_zero_elements
().
data
<
T
>
(),
features_grad
);
}
...
...
@@ -151,13 +151,13 @@ void TestMaxPoolBase(const std::vector<IntT>& indices,
SparseCooTensor
d_x_tensor
(
d_indices_tensor
,
d_features_tensor
,
x_dims
);
DenseTensor
d_rulebook
;
SparseCooTensor
d_out
=
sparse
::
MaxPool
<
T
>
(
dev_ctx_gpu
,
d_x_tensor
,
kernel_sizes
,
paddings
,
dilations
,
strides
,
&
d_rulebook
);
SparseCooTensor
d_out
=
sparse
::
MaxPool
Coo
<
T
>
(
dev_ctx_gpu
,
d_x_tensor
,
kernel_sizes
,
paddings
,
dilations
,
strides
,
&
d_rulebook
);
SparseCooTensor
tmp_d_out
=
sparse
::
Coalesce
<
T
>
(
dev_ctx_gpu
,
d_out
);
ASSERT_EQ
(
correct_out_dims
.
size
(),
d_out
.
dims
().
size
());
...
...
@@ -191,7 +191,7 @@ void TestMaxPoolBase(const std::vector<IntT>& indices,
f_verify
(
h_features_tensor
.
data
<
T
>
(),
correct_out_features
);
if
(
backward
)
{
SparseCooTensor
x_grad
=
sparse
::
MaxPoolGrad
<
T
>
(
SparseCooTensor
x_grad
=
sparse
::
MaxPool
Coo
Grad
<
T
>
(
dev_ctx_gpu
,
d_x_tensor
,
d_rulebook
,
d_out
,
d_out
,
kernel_sizes
);
DenseTensor
h_features_grad
=
phi
::
EmptyLike
<
T
>
(
dev_ctx_cpu
,
x_grad
.
non_zero_elements
());
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录