pool_grad_kernel.cu 5.9 KB
Newer Older
Z
zhangkaihuo 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/phi/kernels/sparse/pool_grad_kernel.h"
16

Z
zhangkaihuo 已提交
17 18 19 20
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/backends/gpu/gpu_info.h"
#include "paddle/phi/backends/gpu/gpu_launch_config.h"
#include "paddle/phi/core/kernel_registry.h"
21
#include "paddle/phi/core/tensor_utils.h"
22
#include "paddle/phi/core/visit_type.h"
23
#include "paddle/phi/kernels/empty_kernel.h"
Z
zhangkaihuo 已提交
24 25 26 27 28 29 30
#include "paddle/phi/kernels/funcs/math_function.h"
#include "paddle/phi/kernels/funcs/pooling.h"
#include "paddle/phi/kernels/funcs/sparse/convolution.h"

namespace phi {
namespace sparse {

31
template <typename T, typename IntT = int>
Z
zhangkaihuo 已提交
32 33 34
__global__ void MaxPoolGradCudaKernel(const T* in_features_ptr,
                                      const T* out_features_ptr,
                                      const T* out_grad_ptr,
35
                                      const IntT* rulebook_ptr,
Z
zhangkaihuo 已提交
36 37 38 39 40 41 42 43
                                      const int n,
                                      const int rulebook_len,
                                      const int channels,
                                      T* x_grad_ptr) {
  phi::funcs::MaxPoolGrad<T> grad_functor;
  CUDA_KERNEL_LOOP_TYPE(i, n * channels, int64_t) {
    int real_i = i / channels;
    int c = i - real_i * channels;
44 45
    IntT in_i = rulebook_ptr[real_i];
    IntT out_i = rulebook_ptr[real_i + rulebook_len];
Z
zhangkaihuo 已提交
46 47 48 49 50 51 52 53
    grad_functor.compute(in_features_ptr[in_i * channels + c],
                         out_features_ptr[out_i * channels + c],
                         out_grad_ptr[out_i * channels + c],
                         1,
                         &x_grad_ptr[in_i * channels + c]);
  }
}

54
template <typename T, typename IntT = int>
55 56 57 58 59 60 61
void MaxPoolCooGradGPUKernel(const GPUContext& dev_ctx,
                             const SparseCooTensor& x,
                             const DenseTensor& rulebook,
                             const SparseCooTensor& out,
                             const SparseCooTensor& out_grad,
                             const std::vector<int>& kernel_sizes,
                             SparseCooTensor* x_grad) {
Z
zhangkaihuo 已提交
62 63 64
  int kernel_size = kernel_sizes[0] * kernel_sizes[1] * kernel_sizes[2];
  const int in_channels = x.dims()[4];
  int rulebook_len = rulebook.dims()[1];
65 66
  const IntT* rulebook_ptr = rulebook.data<IntT>();
  std::vector<IntT> offsets(kernel_size + 1), counter(kernel_size, 0),
Z
zhangkaihuo 已提交
67
      h_counter(rulebook_len, 0);
Z
zhangkaihuo 已提交
68 69
  phi::backends::gpu::GpuMemcpyAsync(&h_counter[0],
                                     rulebook_ptr,
70
                                     rulebook_len * sizeof(IntT),
Z
zhangkaihuo 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
#ifdef PADDLE_WITH_HIP
                                     hipMemcpyDeviceToHost,
#else
                                     cudaMemcpyDeviceToHost,
#endif

                                     dev_ctx.stream());
  dev_ctx.Wait();
  for (int i = 0; i < rulebook_len; i++) {
    counter[h_counter[i]] += 1;
  }
  phi::funcs::sparse::PrefixSum(&counter[0], &offsets[0], kernel_size);

  const T* in_features_ptr = x.non_zero_elements().data<T>();
  const T* out_features_ptr = out.non_zero_elements().data<T>();
86 87 88 89 90 91 92 93 94 95 96 97 98 99
  const T* out_grad_ptr = out_grad.non_zero_elements().data<T>();
  // TODO(zhangkaihuo): call phi::sparse::EmptyLike
  DenseTensor x_grad_indices =
      phi::EmptyLike<IntT>(dev_ctx, x.non_zero_indices());
  DenseTensor x_grad_values = phi::EmptyLike<T>(dev_ctx, x.non_zero_elements());
  x_grad->SetMember(x_grad_indices, x_grad_values, x.dims(), true);
  T* x_grad_ptr = x_grad_values.data<T>();
  phi::funcs::SetConstant<GPUContext, T> set_zero;
  set_zero(dev_ctx, &x_grad_values, static_cast<T>(0.0f));
  phi::Copy<GPUContext>(dev_ctx,
                        x.non_zero_indices(),
                        dev_ctx.GetPlace(),
                        false,
                        &x_grad_indices);
Z
zhangkaihuo 已提交
100 101 102 103 104 105 106 107

  for (int i = 0; i < kernel_size; i++) {
    if (counter[i] <= 0) {
      continue;
    }

    auto config = phi::backends::gpu::GetGpuLaunchConfig1D(
        dev_ctx, counter[i] * in_channels, 1);
108 109 110 111 112 113 114 115 116 117 118 119
    MaxPoolGradCudaKernel<T, IntT>
        <<<config.block_per_grid.x,
           config.thread_per_block.x,
           0,
           dev_ctx.stream()>>>(in_features_ptr,
                               out_features_ptr,
                               out_grad_ptr,
                               rulebook_ptr + offsets[i] + rulebook_len,
                               counter[i],
                               rulebook_len,
                               in_channels,
                               x_grad_ptr);
Z
zhangkaihuo 已提交
120 121 122
  }
}

123
template <typename T, typename Context>
124 125 126 127 128 129 130
void MaxPoolCooGradKernel(const Context& dev_ctx,
                          const SparseCooTensor& x,
                          const DenseTensor& rulebook,
                          const SparseCooTensor& out,
                          const SparseCooTensor& out_grad,
                          const std::vector<int>& kernel_sizes,
                          SparseCooTensor* x_grad) {
131
  PD_VISIT_INTEGRAL_TYPES(
132 133
      x.non_zero_indices().dtype(), "MaxPoolCooGradGPUKernel", ([&] {
        MaxPoolCooGradGPUKernel<T, data_t>(
134 135 136 137
            dev_ctx, x, rulebook, out, out_grad, kernel_sizes, x_grad);
      }));
}

Z
zhangkaihuo 已提交
138 139 140
}  // namespace sparse
}  // namespace phi

141
PD_REGISTER_KERNEL(maxpool_coo_grad,
Z
zhangkaihuo 已提交
142 143
                   GPU,
                   ALL_LAYOUT,
144
                   phi::sparse::MaxPoolCooGradKernel,
Z
zhangkaihuo 已提交
145 146 147 148
                   float,
                   double) {
  kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_COO);
}