nn.py 67.1 KB
Newer Older
1
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Contrib layers just related to the neural network.
"""

import os
19
import warnings
20
import inspect
21 22

import numpy as np
23
import paddle
24
from paddle.fluid.layer_helper import LayerHelper
25
from paddle.fluid.layers import utils
Z
zhoushiyu 已提交
26
from ... import unique_name
C
Chengmo 已提交
27
from paddle.fluid.initializer import Normal, Constant, NumpyArrayInitializer
28 29 30 31 32 33
from paddle.fluid.data_feeder import (
    check_variable_and_dtype,
    check_type,
    check_dtype,
    convert_dtype,
)
34 35

from paddle.fluid import core
Z
Zhang Ting 已提交
36
from paddle.fluid.param_attr import ParamAttr
37

C
Chengmo 已提交
38
from paddle.fluid.framework import Variable, convert_np_dtype_to_dtype_
39
import paddle
40
import warnings
41
from paddle import _C_ops, _legacy_C_ops
42

43
__all__ = [
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
    'fused_embedding_seq_pool',
    'multiclass_nms2',
    'search_pyramid_hash',
    'shuffle_batch',
    'partial_concat',
    'sparse_embedding',
    'partial_sum',
    'tdm_child',
    'rank_attention',
    'tdm_sampler',
    'batch_fc',
    '_pull_box_extended_sparse',
    'bilateral_slice',
    'correlation',
    'fused_bn_add_act',
    'fused_seqpool_cvm',
60
]
61 62


63 64 65 66 67 68 69 70 71
def fused_embedding_seq_pool(
    input,
    size,
    is_sparse=False,
    padding_idx=None,
    combiner='sum',
    param_attr=None,
    dtype='float32',
):
72
    r"""
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
    **Embedding Sequence pool**

    This layer is the fusion of lookup table and sequence_pool.

    Args:
        input (Variable): Input is a Tensor<int64> Variable, which contains the IDs' information.
            The value of the input IDs should satisfy :math:`0<= id < size[0]`.
        size (tuple|list): The shape of the lookup_table parameter. It should
            have two elements which indicate the size of the dictionary of
            embedding and the size of each embedding vector respectively.
        is_sparse (bool): The flag indicating whether to use sparse update.
            Default: False.
        padding_idx (int|long|None): It will output all-zero padding data whenever
            lookup encounters :math:`padding\_idx` in Ids. If set :attr:`None`, it makes
            no effect to output. If :math:`padding\_idx < 0`, the :math:`padding\_idx`
            will automatically be converted to :math:`size[0] + padding\_idx` to use.
            Default: None.
        combiner (str): The pooling type of sequence_pool, and only support `sum`.
            Default: sum.
        param_attr (ParamAttr): Parameters for this layer.
        dtype (np.dtype|core.VarDesc.VarType|str): The dtype refers to the data type of output
            tensor. It can be float32, float_16, int etc.
    Returns:
        The sequence pooling variable which is a Tensor.
    Examples:
        .. code-block:: python
            import numpy as np
            import paddle.fluid as fluid
G
GGBond8488 已提交
101 102
            import paddle
            paddle.enable_static()
103 104

            dict_size = 20
G
GGBond8488 已提交
105 106
            data_t = paddle.static.data(
                name='word', shape=[-1, 1], dtype='int64', lod_level=1)
107 108 109 110 111 112 113 114 115
            padding_idx = np.random.randint(1, 10)
            out = fluid.contrib.fused_embedding_seq_pool(
                input=data_t,
                size=[dict_size, 32],
                param_attr='w',
                padding_idx=padding_idx,
                is_sparse=False)
    """
    helper = LayerHelper('fused_embedding_seq_pool', **locals())
116 117 118
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False
    )
119
    out = helper.create_variable_for_type_inference(dtype)
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
    padding_idx = (
        -1
        if padding_idx is None
        else padding_idx
        if padding_idx >= 0
        else (size[0] + padding_idx)
    )
    helper.append_op(
        type='fused_embedding_seq_pool',
        inputs={'Ids': input, 'W': w},
        outputs={'Out': out},
        attrs={
            'is_sparse': is_sparse,
            'combiner': combiner,
            'padding_idx': padding_idx,
        },
    )
137
    return out
138 139


140 141 142
def fused_seqpool_cvm(
    input, pool_type, cvm, pad_value=0.0, use_cvm=True, cvm_offset=2
):
D
danleifeng 已提交
143
    """
144
    :api_attr: Static Graph
D
danleifeng 已提交
145

146
    This OP is the fusion of sequence_pool and continuous_value_model op.
D
danleifeng 已提交
147

148
    **Note:** The Op only receives List of LoDTensor as input, only support SUM pooling now.
D
danleifeng 已提交
149 150 151 152 153

    Args:
        input(Variable|list of Variable): Input is List of LoDTensor.
        pool_type(str): pooling type, only support SUM pooling now.
        cvm(Variable): cvm Variable.
154 155 156 157
        pad_value(float, optional): padding value of sequence pool. Default: 0.0.
        use_cvm(bool, optional): use cvm or not. Default: True.
        cvm_offset(int, optional): cvm offset. Default: 2, which means cvm contains show, click.

D
danleifeng 已提交
158 159 160
    Returns:
        Variable|list of Variable: The tensor variable storing sequence pool and cvm
        of input.
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181

    Examples:
        .. code-block:: python

            import paddle
            import paddle.fluid as fluid
            paddle.enable_static()

            data = paddle.static.data(name='x', shape=[-1, 1], dtype='int64', lod_level=1)
            data2 = paddle.static.data(name='y', shape=[-1, 1], dtype='int64', lod_level=1)
            inputs = [data, data2]
            embs = fluid.layers.nn._pull_box_sparse(input=inputs, size=11, is_distributed=True, is_sparse=True)

            label = paddle.static.data(name="label", shape=[-1, 1], dtype="int64", lod_level=1)
            ones = fluid.layers.fill_constant_batch_size_like(input=label, shape=[-1, 1], dtype="int64", value=1)
            show_clk = paddle.cast(paddle.concat([ones, label], axis=1), dtype='float32')
            show_clk.stop_gradient = True

            cvms = fluid.contrib.layers.fused_seqpool_cvm(embs, 'sum', show_clk)


D
danleifeng 已提交
182 183 184 185 186 187
    """
    helper = LayerHelper('fused_seqpool_cvm', **locals())

    if pool_type.upper() != 'SUM':
        raise ValueError(
            "fused_seqpool_cvm only support SUM pooling now, and your type is: "
188 189
            + pool_type
        )
D
danleifeng 已提交
190 191 192 193

    check_type(input, 'input', list, 'fused_seqpool_cvm')
    if isinstance(input, list):
        for _input in input:
194 195 196
            check_variable_and_dtype(
                _input, 'input', ['float32'], 'fused_seqpool_cvm'
            )
D
danleifeng 已提交
197 198 199 200 201 202 203 204

    dtype = helper.input_dtype()
    inputs = helper.multiple_input()
    outs = [
        helper.create_variable_for_type_inference(dtype)
        for i in range(len(inputs))
    ]

205 206 207 208 209 210 211 212 213 214 215
    helper.append_op(
        type="fused_seqpool_cvm",
        inputs={"X": inputs, "CVM": cvm},
        outputs={"Out": outs},
        attrs={
            "pooltype": pool_type.upper(),
            "pad_value": pad_value,
            "use_cvm": use_cvm,
            "cvm_offset": cvm_offset,
        },
    )
D
danleifeng 已提交
216 217 218 219

    return outs


220 221 222 223 224 225 226 227 228 229 230 231 232
def multiclass_nms2(
    bboxes,
    scores,
    score_threshold,
    nms_top_k,
    keep_top_k,
    nms_threshold=0.3,
    normalized=True,
    nms_eta=1.0,
    background_label=0,
    return_index=False,
    name=None,
):
233 234
    """
    **Multiclass NMS2**
C
Chengmo 已提交
235

236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
    This operator is to do multi-class non maximum suppression (NMS) on
    boxes and scores.
    In the NMS step, this operator greedily selects a subset of detection bounding
    boxes that have high scores larger than score_threshold, if providing this
    threshold, then selects the largest nms_top_k confidences scores if nms_top_k
    is larger than -1. Then this operator pruns away boxes that have high IOU
    (intersection over union) overlap with already selected boxes by adaptive
    threshold NMS based on parameters of nms_threshold and nms_eta.
    Aftern NMS step, at most keep_top_k number of total bboxes are to be kept
    per image if keep_top_k is larger than -1.

    Args:
        bboxes (Variable): Two types of bboxes are supported:
                           1. (Tensor) A 3-D Tensor with shape
                           [N, M, 4 or 8 16 24 32] represents the
                           predicted locations of M bounding bboxes,
                           N is the batch size. Each bounding box has four
C
Chengmo 已提交
253
                           coordinate values and the layout is
254 255
                           [xmin, ymin, xmax, ymax], when box size equals to 4.
                           2. (LoDTensor) A 3-D Tensor with shape [M, C, 4]
C
Chengmo 已提交
256 257
                           M is the number of bounding boxes, C is the
                           class number
258 259 260
        scores (Variable): Two types of scores are supported:
                           1. (Tensor) A 3-D Tensor with shape [N, C, M]
                           represents the predicted confidence predictions.
C
Chengmo 已提交
261 262
                           N is the batch size, C is the class number, M is
                           number of bounding boxes. For each category there
263 264 265 266 267 268 269
                           are total M scores which corresponding M bounding
                           boxes. Please note, M is equal to the 2nd dimension
                           of BBoxes.
                           2. (LoDTensor) A 2-D LoDTensor with shape [M, C].
                           M is the number of bbox, C is the class number.
                           In this case, input BBoxes should be the second
                           case with shape [M, C, 4].
C
Chengmo 已提交
270
        background_label (int): The index of background label, the background
271 272 273
                                label will be ignored. If set to -1, then all
                                categories will be considered. Default: 0
        score_threshold (float): Threshold to filter out bounding boxes with
C
Chengmo 已提交
274
                                 low confidence score. If not provided,
275 276
                                 consider all boxes.
        nms_top_k (int): Maximum number of detections to be kept according to
T
tianshuo78520a 已提交
277
                         the confidences after the filtering detections based
278 279 280 281 282 283 284 285 286 287 288
                         on score_threshold.
        nms_threshold (float): The threshold to be used in NMS. Default: 0.3
        nms_eta (float): The threshold to be used in NMS. Default: 1.0
        keep_top_k (int): Number of total bboxes to be kept per image after NMS
                          step. -1 means keeping all bboxes after NMS step.
        normalized (bool): Whether detections are normalized. Default: True
        return_index(bool): Whether return selected index. Default: False
        name(str): Name of the multiclass nms op. Default: None.

    Returns:
        A tuple with two Variables: (Out, Index) if return_index is True,
C
Chengmo 已提交
289 290 291 292 293 294
        otherwise, a tuple with one Variable(Out) is returned.
        Out: A 2-D LoDTensor with shape [No, 6] represents the detections.
        Each row has 6 values: [label, confidence, xmin, ymin, xmax, ymax]
        or A 2-D LoDTensor with shape [No, 10] represents the detections.
        Each row has 10 values: [label, confidence, x1, y1, x2, y2, x3, y3,
        x4, y4]. No is the total number of detections.
295 296
        If all images have not detected results, all elements in LoD will be
        0, and output tensor is empty (None).
C
Chengmo 已提交
297 298 299 300 301
        Index: Only return when return_index is True. A 2-D LoDTensor with
        shape [No, 1] represents the selected index which type is Integer.
        The index is the absolute value cross batches. No is the same number
        as Out. If the index is used to gather other attribute such as age,
        one needs to reshape the input(N, M, 1) to (N * M, 1) as first, where
302 303 304 305 306 307 308 309
        N is the batch size and M is the number of boxes.


    Examples:
        .. code-block:: python


            import paddle.fluid as fluid
G
GGBond8488 已提交
310 311 312
            import paddle
            paddle.enable_static()
            boxes = paddle.static.data(name='bboxes', shape=[-1, 81, 4],
313
                                      dtype='float32', lod_level=1)
G
GGBond8488 已提交
314
            scores = paddle.static.data(name='scores', shape=[-1, 81],
315
                                      dtype='float32', lod_level=1)
G
GGBond8488 已提交
316
            out, index = fluid.contrib.layers.multiclass_nms2(bboxes=boxes,
317 318 319 320 321 322 323 324 325 326 327 328 329
                                              scores=scores,
                                              background_label=0,
                                              score_threshold=0.5,
                                              nms_top_k=400,
                                              nms_threshold=0.3,
                                              keep_top_k=200,
                                              normalized=False,
                                              return_index=True)
    """
    helper = LayerHelper('multiclass_nms2', **locals())

    output = helper.create_variable_for_type_inference(dtype=bboxes.dtype)
    index = helper.create_variable_for_type_inference(dtype='int')
330 331 332 333 334 335 336 337 338 339 340 341 342 343
    helper.append_op(
        type="multiclass_nms2",
        inputs={'BBoxes': bboxes, 'Scores': scores},
        attrs={
            'background_label': background_label,
            'score_threshold': score_threshold,
            'nms_top_k': nms_top_k,
            'nms_threshold': nms_threshold,
            'keep_top_k': keep_top_k,
            'nms_eta': nms_eta,
            'normalized': normalized,
        },
        outputs={'Out': output, 'Index': index},
    )
344 345 346 347 348 349
    output.stop_gradient = True
    index.stop_gradient = True

    if return_index:
        return output, index
    return output
A
Aurelius84 已提交
350 351


352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
def search_pyramid_hash(
    input,
    num_emb,
    space_len,
    pyramid_layer,
    rand_len,
    drop_out_percent,
    is_training,
    use_filter,
    white_list_len,
    black_list_len,
    seed,
    lr,
    param_attr=None,
    param_attr_wl=None,
    param_attr_bl=None,
    name=None,
    distribute_update_vars=None,
    dtype='float32',
):
A
Aurelius84 已提交
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
    """
    **Pyramid hash embedding**

    Args:
        input (Variable): LoDTensor<int32> Variable contained the IDs' information.
        num_emb (int): The embedding size of output.
        space_len (int): The length of pyramid hash embedding space.
        pyramid_layer (int): The number of pyramid layers. It should be greater than 2.
        rand_len (int): The minimum length of pyramid hash cell.
        drop_out_percent (float): The probability of dropping out the input token randomly.
            It should satisfy: [0., 1.]
        is_training (bool): Whether in training or testing phrase.
        use_filter(bool): If set True, the white filter and black filter should be given by
            :attr:`param_attr_wl` and :attr:`param_attr_bl` .
        white_list_len(int): If set :math:`white_list_len>0` , white filter with shape [white_list_len, 1]
            should be provided by param_attr_wl.
        black_list_len(int): If set :math:`black_list_len>0` , black filter with shape [black_list_len, 1]
            should be provided by param_attr_bl.
        seed(int): The number of random seed.
        lr(float): The learning rate of weight created by :attr:`param_attr` with shape [space_len+rand_len, 1]
            in this layer.
        param_attr(ParamAttr): To specify the weight parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` .
        param_attr_wl(ParamAttr): Specified parameters of white filter.
        param_attr_bl(ParamAttr): Specified parameters of black filter.
C
Chengmo 已提交
397
        distribute_update_vars(list[ParamAttr.name]): Decided which params should be updated in distribute training.
C
Chengmo 已提交
398
            Used in Distribute Transpiler to create a trainer/server program.
A
Aurelius84 已提交
399 400 401 402 403 404 405 406 407
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
        dtype(str): The data type of output variable, float32.
    Returns:
        Variable: LoDTensor of pyramid hash embedding.
    """
    helper = LayerHelper('search_pyramid_hash', **locals())

    w_shape = [space_len + rand_len, 1]
408 409 410
    w = helper.create_parameter(
        attr=param_attr, shape=w_shape, dtype=dtype, is_bias=False
    )
A
Aurelius84 已提交
411 412 413 414 415
    w.stop_gradient = True

    input_vars = {'X': input, 'W': w}
    if white_list_len > 0:
        wl_shape = [white_list_len, 1]
416 417 418
        white_list = helper.create_parameter(
            attr=param_attr_wl, shape=wl_shape, dtype=dtype, is_bias=False
        )
A
Aurelius84 已提交
419 420 421 422 423
        white_list.stop_gradient = True
        input_vars['WhiteList'] = white_list

    if black_list_len >= 0:
        bl_shape = [black_list_len, 1]
424 425 426
        black_list = helper.create_parameter(
            attr=param_attr_bl, shape=bl_shape, dtype=dtype, is_bias=False
        )
A
Aurelius84 已提交
427 428 429
        black_list.stop_gradient = True
        input_vars['BlackList'] = black_list

C
Chengmo 已提交
430 431 432 433 434 435 436 437 438 439 440 441 442
    distribute_update_vars_str = ""
    if distribute_update_vars:
        assert isinstance(distribute_update_vars, list)
        special_name_list = []
        if param_attr:
            special_name_list.append(param_attr.name)
        if param_attr_wl:
            special_name_list.append(param_attr_wl.name)
        if param_attr_bl:
            special_name_list.append(param_attr_bl.name)
        for param in distribute_update_vars:
            if param not in special_name_list:
                raise ValueError(
443 444
                    "Pyramid Hash layer didn't have parameter {}".format(param)
                )
C
Chengmo 已提交
445 446
        distribute_update_vars_str = ",".join(distribute_update_vars)

A
Aurelius84 已提交
447 448 449
    res = helper.create_variable_for_type_inference(dtype)
    drop_pos = helper.create_variable_for_type_inference(dtype)
    x_temp_out = helper.create_variable_for_type_inference(dtype)
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
    helper.append_op(
        type='pyramid_hash',
        inputs=input_vars,
        outputs={"Out": res, "X_Temp_Out": x_temp_out, 'DropPos': drop_pos},
        attrs={
            'num_emb': num_emb,
            'space_len': space_len,
            'pyramid_layer': pyramid_layer,
            'rand_len': rand_len,
            'drop_out_percent': drop_out_percent,
            'is_training': is_training,
            'use_filter': use_filter,
            'white_list_len': white_list_len,
            'black_list_len': black_list_len,
            'seed': seed,
            'lr': lr,
            'distribute_update_vars': distribute_update_vars_str,
        },
    )
A
Aurelius84 已提交
469 470

    return res
Z
zhoushiyu 已提交
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507


def shuffle_batch(x, seed=None):
    """
    This layer shuffle input tensor :attr:`x` . Normally, :attr:`x` is 2-D LoDTensor.

    :attr:`x` is a LoDTensor to be shuffled with shape :math:`[N_1, N_2, ..., N_k, D]` . Note that the last dim of input will not be shuffled.
    :math:`N_1 * N_2 * ... * N_k` numbers of elements with length :math:`D` will be shuffled randomly.

    For Example:

    .. code-block:: text

      Input:
        x.data = [[1, 2], [3, 4], [5, 6], [7, 8]]
        x.dims = [4, 2]

      Attrs:
        seed = 2019

      Output:
        Out.data =[[7, 8], [1, 2], [3, 4], [5, 6]]
        Out.dims = [4, 2]

    Args:
        x (Variable): The input variable. The input variable is a N-D LoDTensor with type int, float32 or float64.
        seed (None|int|Variable): The start up seed. If set, seed will be set as the start up seed of shuffle engine.
                If not set(Default), start up seed of shuffle engine will be generated randomly.

    Returns:
        Variables: The shuffled LoDTensor with the same shape and lod as input.

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid
G
GGBond8488 已提交
508 509 510
            import paddle
            paddle.enable_static()
            x = paddle.static.data(name="x", shape=[-1, 4])
Z
zhoushiyu 已提交
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
            out = fluid.contrib.layers.shuffle_batch(x)
    """
    helper = LayerHelper('shuffle_batch', **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    shuffle_idx = helper.create_variable_for_type_inference(dtype=np.int64)
    if seed is None and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed
    if seed is None:
        seed = np.random.randint(-65536, 65535)
    op_attrs = {}
    if isinstance(seed, int):
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("shuffle_batch_seed"),
            dtype="int64",
527 528 529 530 531 532 533 534
            persistable=False,
        )
    helper.append_op(
        type='shuffle_batch',
        inputs={'X': x, 'Seed': seed},
        outputs={'Out': out, 'ShuffleIdx': shuffle_idx, 'SeedOut': seed},
        attrs=op_attrs,
    )
Z
zhoushiyu 已提交
535
    return out
536 537 538 539 540 541 542


def partial_concat(input, start_index=0, length=-1):
    """
    **Partial Concat**
    This OP concatenates the inputs according to the start index and length. This
    OP exists in contrib, which means that it is not shown to the public.
C
Chengmo 已提交
543
    Only 2-D Tensor or LodTensor input is supported. Slice and concat can only be
544 545 546
    performed along the second dimension.

    .. code-block:: text
C
Chengmo 已提交
547

548 549 550 551 552 553 554 555
        Given:
            x = [[0, 1, 2],
                 [3, 4, 5]]
            y = [[6, 7 ,8],
                 [9, 10, 11]]
            output = partial_concat([x, y], start_index=0, length=2)

          we get:
C
Chengmo 已提交
556

557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
            output = [[0, 1, 6, 7],
                      [3, 4, 9, 10]]

    Args:
        input(list): List of input Tensors with data type float32, float64, int32,
            int64.
        start_index(int32): The start index of each instance for partial concatenation.
            Default is 0.
        length(int32): The length of each instance for partial concatenation. Default is -1.
            Negative values for all elements after start_index.
    Returns:
        Variable: A Tensor with the same data type as input's.
    Examples:
        .. code-block:: python
            import paddle.fluid as fluid
            x = fluid.data(name="x", shape=[None,3], dtype="float32")
            y = fluid.data(name="y", shape=[None,3], dtype="float32")
C
Chengmo 已提交
574 575
            concat = fluid.contrib.layers.partial_concat(
                [x, y], start_index=0, length=2)
576 577 578 579
    """
    if not isinstance(input, list):
        warnings.warn(
            "The type of input in partial_concat should be list, but received %s."
580 581
            % (type(input))
        )
582 583 584
        input = [input]
    for id, x in enumerate(input):
        check_variable_and_dtype(
585 586
            x,
            'input[' + str(id) + ']',
587
            ['float16', 'float32', 'float64', 'int32', 'int64'],
588 589
            'partial_concat',
        )
590 591 592 593 594 595
    check_type(start_index, 'start_index', (int), 'partial_concat')
    check_type(length, 'length', (int), 'partial_concat')
    inputs = {'X': input}
    attrs = {'start_index': start_index, 'length': length}
    helper = LayerHelper('partial_concat', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
596 597 598 599 600 601
    helper.append_op(
        type='partial_concat',
        inputs=inputs,
        outputs={'Out': [out]},
        attrs=attrs,
    )
602
    return out
603 604 605 606 607


def partial_sum(input, start_index=0, length=-1):
    """
    **PartialSum**
C
Chengmo 已提交
608
    This Op can sum the vars by specifying the initial position(start_index) and length(length).
609
    This Op exists in contrib, which means that it is not shown to the public.
C
Chengmo 已提交
610
    Only 2-D Tensor or LodTensor input is supported. Slice and concat can only be
611 612
    performed along the second dimension.
    .. code-block:: text
C
Chengmo 已提交
613

614 615 616 617 618 619 620
        Given:
            x = [[0, 1, 2],
                 [3, 4, 5]]
            y = [[6, 7 ,8],
                 [9, 10, 11]]
            output = partial_sum([x, y], start_index=0, length=2)
          we get:
C
Chengmo 已提交
621

622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
            output = [[6, 8],
                      [12, 14]]
    Args:
        input(list): List of input Tensors with data type float32, float64, int32,
            int64.
    Returns:
        Variable: A Tensor with the same data type as input's.
    Examples:
        .. code-block:: python
        import paddle.fluid.layers as layers
        import paddle.fluid as fluid
        import numpy as np
        x = fluid.data(name="x", shape=[None, 3], dtype="float32")
        y = fluid.data(name="y", shape=[None, 3], dtype="float32")
        sum = layers.partial_sum([x,y], start_index=0, length=2)
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        xx = np.array([1,2,3,4,5,6]).reshape((2,3)).astype("float32")
        yy = np.array([6,5,4,4,5,6]).reshape((2,3)).astype("float32")
        out = exe.run(feed={"x":xx, "y":yy}, fetch_list=[sum])
    """
    for id, x in enumerate(input):
644 645 646 647 648 649
        check_variable_and_dtype(
            x,
            'input[' + str(id) + ']',
            ['float32', 'float64', 'int32', 'int64'],
            'partial_sum',
        )
650 651 652 653 654 655 656

    inputs = {'X': input}
    attrs = {}
    attrs['start_index'] = start_index
    attrs['length'] = length
    helper = LayerHelper('partial_sum', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
657 658 659
    helper.append_op(
        type='partial_sum', inputs=inputs, outputs={'Out': [out]}, attrs=attrs
    )
660
    return out
C
Chengmo 已提交
661 662


663 664 665 666 667 668 669 670 671 672 673
def sparse_embedding(
    input,
    size,
    padding_idx=None,
    is_test=False,
    entry=None,
    table_class="MemorySparseTable",
    param_attr=None,
    dtype='float32',
    slot=None,
):
Y
Yanxing Shi 已提交
674 675 676
    r"""
    :api_attr: Static Graph

677
    The OP is used as the operator of the Embedding Lookup layer in the large-scale
Y
Yanxing Shi 已提交
678 679
    sparse training of the parameter server mode, instead of using the paddle.nn.functional.embedding.

680 681
    The operator is used to lookup embeddings vector of ids provided by :attr:`input` .
    It automatically constructs a 2D embedding matrix based on the input :attr:`size`
Y
Yanxing Shi 已提交
682 683 684 685 686
    (vocab_size, emb_size) and :attr:`dtype` .

    The shape of output Tensor is generated by appending an emb_size dimension to the
    last dimension of the input Tensor shape.

687
    **Note:** The id in :attr:`input` must satisfy :math:`0 =< id < size[0]` , otherwise
Y
Yanxing Shi 已提交
688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
    the program will throw an exception and exit.

    .. code-block:: text

        Case 1:

        input is a Tensor. padding_idx = -1
            input.data = [[1, 3], [2, 4], [4, 127]]
            input.shape = [3, 2]
        Given size = [128, 16]
        output is a Tensor:
            out.shape = [3, 2, 16]
            out.data = [[[0.129435295, 0.244512452, ..., 0.436322452],
                        [0.345421456, 0.524563927, ..., 0.144534654]],

                        [[0.345249859, 0.124939536, ..., 0.194353745],
                        [0.945345345, 0.435394634, ..., 0.435345365]],
705

Y
Yanxing Shi 已提交
706 707 708 709
                        [[0.945345345, 0.435394634, ..., 0.435345365],
                        [0.0,         0.0,         ..., 0.0        ]]]  # padding data
        The input padding_idx is less than 0, it is automatically converted to padding_idx = -1 + 128 = 127
        It will pad all-zero data when ids is 127.
710

Y
Yanxing Shi 已提交
711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
        Case 2:

        input is a LoDTensor with 1-level LoD. padding_idx = 0
            input.lod = [[2, 3]]
            input.data = [[1], [3], [2], [4], [0]]
            input.shape = [5, 1]
        Given size = [128, 16]
        output is a LoDTensor:
            out.lod = [[2, 3]]
            out.shape = [5, 1, 16]
            out.data = [[[0.129435295, 0.244512452, ..., 0.436322452]],
                        [[0.345421456, 0.524563927, ..., 0.144534654]],
                        [[0.345249859, 0.124939536, ..., 0.194353745]],
                        [[0.945345345, 0.435394634, ..., 0.435345365]],
                        [[0.0,         0.0,         ..., 0.0        ]]]  # padding data
        It will pad all-zero data when ids is 0.

    Args:
729
        input(Variable): A Tensor or LoDTensor with type int64, which contains the id
Y
Yanxing Shi 已提交
730
            information. The value of the input id should satisfy :math:`0<= id < size[0]` .
731 732 733 734
        size(tuple|list): The shape of lookup table parameter (vocab_size, emb_size). It
            should have two elements which indicates the size of the dictionary of embeddings
            and the size of each embedding vector respectively. The initial parameter size
            is 0 in the large-scale sparse scenario, which will gradually expand with the
Y
Yanxing Shi 已提交
735 736
            training. So if vocab_size is temporarily useless, its value can be any integer.
            The emb_size is the dimensional configuration of the word embedding weight parameter.
737
        padding_idx(int|long|None, optional): padding_idx needs to be in the interval [-vocab_size, vocab_size).
Y
Yanxing Shi 已提交
738
            If :math:`padding\_idx < 0`, the :math:`padding\_idx` will automatically be converted
739 740
            to :math:`vocab\_size + padding\_idx` . It will output all-zero padding data whenever
            lookup encounters :math:`padding\_idx` in id. And the padding data will not be updated
Y
Yanxing Shi 已提交
741
            while training. If set None, it makes no efe mfect to output. Default: None.
742
        is_test(bool, optional): Training or prediction mode. In prediction mode (is_test=False),
Y
Yanxing Shi 已提交
743
            the output is not initialized and created, and it is filled with 0 and returned. Default: False.
744
        entry(str, optional): Entry config with parameter server whose value is ProbabilityEntry,
Y
Yanxing Shi 已提交
745
            CountFilterEntry or None. Default: None.
746
        table_class(str, optional): The type of the sparse table. The value can be CommonSparseTable
Y
Yanxing Shi 已提交
747 748
            or SSDSparseTable. The default is CommonSparseTable.
        param_attr(ParamAttr, optional): To specify the weight parameter property. Default: None, which means the
749 750 751
            default weight parameter property is used. In addition, user-defined or pre-trained word
            vectors can be loaded with the :attr:`param_attr` parameter. The local word vector needs
            to be transformed into numpy format, and the shape of local word vector should be consistent
Y
Yanxing Shi 已提交
752
            with :attr:`size` .
753
        dtype(str): It refers to the data type of output Tensor. It must be float32 or
Y
Yanxing Shi 已提交
754
            float64. Default: float32.
755

Y
Yanxing Shi 已提交
756 757
    Returns:
        Variable: Embedding Tensor or LoDTensor mapped by input. The data type is the same as :attr:`dtype` .
758

Y
Yanxing Shi 已提交
759 760 761 762
    Examples:
        .. code-block:: python

            import paddle
763

Y
Yanxing Shi 已提交
764 765 766 767 768 769 770 771
            paddle.enable_static()
            sparse_feature_dim = 1024
            embedding_size = 64

            # Only when the feature appear more than 10 times or more will be participated in the training.
            entry = paddle.distributed.CountFilterEntry(10)

            input = paddle.static.data(name='ins', shape=[1], dtype='int64')
772

Y
Yanxing Shi 已提交
773 774 775 776 777 778 779 780 781 782
            emb = paddle.static.nn.sparse_embedding(
                input=input,
                size=[sparse_feature_dim, embedding_size],
                is_test=False,
                entry=entry,
                param_attr=paddle.ParamAttr(name="SparseFeatFactors",
                initializer=paddle.nn.initializer.Uniform()))

    """

783 784
    helper = LayerHelper('sparse_embedding', **locals())

785 786 787
    check_variable_and_dtype(
        input, 'input', ['int64'], 'fluid.contrib.layers.sparse_embedding'
    )
788

789 790 791 792 793 794
    check_dtype(
        dtype,
        'dtype',
        ['float32', 'float64'],
        'paddle.static.nn.sparse_embedding',
    )
795

796 797 798
    if input.size == 0:
        raise ValueError("input size should not be 0")

799 800 801 802 803 804 805
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=size,
        type=core.VarDesc.VarType.SELECTED_ROWS,
        dtype=dtype,
        is_bias=False,
    )
806 807 808

    tmp = helper.create_variable_for_type_inference(dtype)

809 810 811 812 813 814 815
    padding_idx = (
        -1
        if padding_idx is None
        else padding_idx
        if padding_idx >= 0
        else (size[0] + padding_idx)
    )
816

817
    if table_class not in [
818 819 820
        "CommonSparseTable",
        "SSDSparseTable",
        "MemorySparseTable",
821
    ]:
T
Thunderbrook 已提交
822
        raise ValueError(
823 824
            "table_class must be in [CommonSparseTable, SSDSparseTable, MemorySparseTable]"
        )
T
Thunderbrook 已提交
825

826 827 828
    entry_str = "none"

    if entry is not None:
T
tangwei12 已提交
829
        if entry.__class__.__name__ not in [
830 831 832
            "ProbabilityEntry",
            "CountFilterEntry",
            "ShowClickEntry",
T
tangwei12 已提交
833
        ]:
834
            raise ValueError(
835
                "entry must be instance in [paddle.distributed.ProbabilityEntry, paddle.distributed.CountFilterEntry, paddle.distributed.ShowClickEntry]"
T
tangwei12 已提交
836 837
            )
        entry_str = entry._to_attr()
838

839
    if slot is None:
840 841
        slot = 0

842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input, 'W': w},
        outputs={'Out': tmp},
        attrs={
            'padding_idx': padding_idx,
            'is_sparse': True,
            'is_distributed': True,
            'remote_prefetch': True,
            'is_test': is_test,
            'entry': entry_str,
            'table_class': table_class,
            'slot': slot,
        },
    )
857 858 859
    return tmp


C
Chengmo 已提交
860 861 862
def tdm_child(x, node_nums, child_nums, param_attr=None, dtype='int32'):
    """
    **Tdm Child**
863
     According to the input node_id on the given tree, return the corresponding child node_id and
C
Chengmo 已提交
864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
      whether child is a leaf node by leaf_mask value.
    .. code-block:: text

        Given:
            tree[[0], [1, 2], [3, 4], [5, 6]] # A binary tree with seven nodes
            x = [[2], [3]]
            node_nums = 7
            child_nums = 2

          we get:
            child = [[5, 6],
                     [0, 0]]
            leaf_mask = [[1, 1],
                         [0, 0]]
    Args:
        x(Variable): Variable contained the node_id information, dtype support int32/int64.
        node_nums(int): Number of total nodes.
        child_nums(int): Maximum number of child nodes per node.
        param_attr(ParamAttr): To specify the tdm-tree-info parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in: ref: `api_fluid_ParamAttr`, should
884 885
            has shape(node_nums, 3 + child_nums), dtype support int32/int64.
            The dimension[1] of tdm-tree-info contains the following:
C
Chengmo 已提交
886 887 888
            1. Item_id(int, shape(1)), if node is a leaf node, give its item_id corresponding to node_id, else give 0.
            2. Layer_id(int, shape(1)), indicates which layer the node is on.
            3. Parent_id(int, shape(1)), node's parent node.
889
            4. Child_id(int, shape(child_nums)), all child node's node_id of this node should be given.
C
Chengmo 已提交
890 891 892 893
            If the number of child nodes is insufficient, padding 0 until child nums equal to child_nums
        dtype(str): The data type of output child and leaf_mask, support int32/int64.

    Returns:
894
        tuple: A tuple including input node's child(Variable) and leaf_mask(Variable).
C
Chengmo 已提交
895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917
            If child is a leaf node, leaf_mask equal ot 1, otherwise equal to 0.

    Examples:
        .. code-block:: python
        import paddle.fluid as fluid
        import numpy as np
        x = fluid.data(name="x", shape=[None, 1], dtype="int32", lod_level=1)
        tree_info = [[0,0,0,1,2],
                     [0,1,0,3,4],[0,1,0,5,6],
                     [0,2,1,0,0],[1,2,1,0,0],[2,2,2,0,0],[3,2,2,0,0]]
        tree_info_np = np.array(tree_info)
        tree_info_np = np.reshape(tree_info_np, (7,5))
        node_nums = 7
        child_nums = 2
        child, leaf_mask  = fluid.contrib.layers.tdm_child(x, node_nums, child_nums,
                                param_attr=fluid.ParamAttr(
                                    initializer=fluid.initializer.NumpyArrayInitializer(
                                                                            tree_info_np)))
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        xx = np.array([[2],[3]]).reshape((2,1)).astype("int32")
        child_res, leaf_mask_res = exe.run(feed={"x":xx}, fetch_list=[child, leaf_mask])
918
    """
C
Chengmo 已提交
919
    helper = LayerHelper("tdm_child", **locals())
920 921 922
    check_dtype(
        dtype, 'dtype', ['int32', 'int64'], 'fluid.contrib.layers.tdm_child'
    )
C
Chengmo 已提交
923
    c_dtype = convert_np_dtype_to_dtype_(dtype)
924 925 926 927 928 929
    tree_info = helper.create_parameter(
        attr=helper.param_attr,
        shape=[node_nums, 3 + child_nums],
        dtype=dtype,
        default_initializer=Constant(0),
    )
C
Chengmo 已提交
930 931 932 933 934
    tree_info.stop_gradient = True

    child = helper.create_variable_for_type_inference(dtype=dtype)
    leaf_mask = helper.create_variable_for_type_inference(dtype=dtype)

935 936 937 938 939 940 941
    helper.append_op(
        type='tdm_child',
        inputs={'X': x, 'TreeInfo': tree_info},
        outputs={'Child': child, 'LeafMask': leaf_mask},
        attrs={'child_nums': child_nums, 'dtype': c_dtype},
        stop_gradient=True,
    )
C
Chengmo 已提交
942
    return (child, leaf_mask)
S
ShenLiang 已提交
943 944


945 946 947 948 949 950 951 952 953 954 955 956 957
def tdm_sampler(
    x,
    neg_samples_num_list,
    layer_node_num_list,
    leaf_node_num,
    tree_travel_attr=None,
    tree_layer_attr=None,
    output_positive=True,
    output_list=True,
    seed=0,
    tree_dtype='int32',
    dtype='int32',
):
C
Chengmo 已提交
958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984
    """
    **Tdm Sampler**
    According to the input positive samples at leaf node(x), do negative sampling layer by layer on the given tree.
    .. code-block:: text

        Given:
            tree[[0], [1, 2], [3, 4], [5, 6]] # A binary tree with seven nodes
            travel_list = [[1, 3], [1, 4], [2, 5], [2, 6]] # leaf node's travel path (exclude root node)
            layer_list = [[1, 2], [3, 4, 5, 6]] # two layer (exclude root node)

            x = [[0], [1], [2], [3]] # Corresponding to leaf node [[3], [4], [5], [6]]
            neg_samples_num_list = [0, 0] # negative sample nums = 0
            layer_node_num_list = [2, 4]
            leaf_node_num = 4
            output_list = False

          we get:
            out = [[1, 3], [1, 4], [2, 5], [2, 6]]
            labels = [[1, 1], [1, 1], [1, 1], [1, 1]]
            mask = [[1, 1], [1, 1], [1, 1], [1, 1]]

    Args:
        x (Variable): Variable contained the item_id(corresponding to leaf node) information, dtype support int32/int64.
        neg_samples_num_list (list(int)): Number of negative samples per layer.
        layer_node_num_list (list(int)): Number of nodes per layer, must has same shape with neg_samples_num_list.
        leaf_node_num (int): Number of leaf nodes.
        tree_travel_attr (ParamAttr): To specify the tdm-travel parameter property. Default: None, which means the
985
            default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr`, should
C
Chengmo 已提交
986 987
            has shape (leaf_node_num, len(layer_node_num_list)), dtype support int32/int64.
        tree_layer_attr (ParamAttr): To specify the tdm-layer parameter property. Default: None, which means the
988
            default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr`, should
C
Chengmo 已提交
989 990 991 992 993
            has shape (node_num, 1), dtype support int32/int64.
        output_positive (bool): Whether to output positive samples (includ label and mask )at the same time.
        output_list (bool): Whether to divide the output into layers and organize it into list format.
        seed (int): The number of random seed.
        tree_dtype(np.dtype|core.VarDesc.VarType|str): The dtype of tdm-travel and tdm-layer, support int32/int64
994
        dtype(np.dtype|core.VarDesc.VarType|str): The dtype of output(sampling results, labels and masks)
C
Chengmo 已提交
995 996 997

    Returns:
        tuple: A tuple including sampling results, corresponding labels and masks. if output_positive = True, sampling
998 999 1000
            result  will include both positive and negative samples. If sampling reseult is a positive sample, the label is 1,
            and if it is a negative sample, it is 0. If the tree is unbalanced, in order to ensure the consistency of the
            sampling result shape, the padding sample's mask = 0, the real sample's mask value = 1.
C
Chengmo 已提交
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
            If output_list = True, the result will organize into list format specified by layer information.
            Output variable have same type with tdm-travel and tdm-layer parameter(tree_dtype).

    Examples:
        .. code-block:: python
        import paddle.fluid as fluid
        import numpy as np
        x = fluid.data(name="x", shape=[None, 1], dtype="int32", lod_level=1)
        travel_list = [[1, 3], [1, 4], [2, 5], [2, 6]] # leaf node's travel path, shape(leaf_node_num, layer_num)
        layer_list_flat = [[1], [2], [3], [4], [5], [6]] # shape(node_nums, 1)

        neg_samples_num_list = [0, 0] # negative sample nums = 0
        layer_node_num_list = [2, 4] #two layer (exclude root node)
        leaf_node_num = 4

        travel_array = np.array(travel_list)
        layer_array = np.array(layer_list_flat)

        sample, label, mask = fluid.contrib.layers.tdm_sampler(
            x,
            neg_samples_num_list,
            layer_node_num_list,
            leaf_node_num,
            tree_travel_attr=fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    travel_array)),
            tree_layer_attr=fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    layer_array)),
            output_positive=True,
            output_list=True,
            seed=0,
            tree_dtype='int32')

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        xx = np.array([[0],[1]]).reshape((2,1)).astype("int32")

        exe.run(feed={"x":xx})

    """
    helper = LayerHelper("tdm_sampler", **locals())
1044 1045 1046 1047 1048 1049 1050 1051 1052
    check_dtype(
        tree_dtype,
        'tree_dtype',
        ['int32', 'int64'],
        'fluid.contrib.layers.tdm_sampler',
    )
    check_dtype(
        dtype, 'dtype', ['int32', 'int64'], 'fluid.contrib.layers.tdm_sampler'
    )
C
Chengmo 已提交
1053 1054 1055 1056 1057 1058
    c_dtype = convert_np_dtype_to_dtype_(dtype)

    if len(neg_samples_num_list) != len(layer_node_num_list):
        raise ValueError(
            "The shape of negative samples list must match the shape of layers. "
            "But received len of neg_samples_num_list: {},"
1059 1060 1061 1062
            "and len of layer_node_num_list: {}, please check your input.".format(
                len(neg_samples_num_list), len(layer_node_num_list)
            )
        )
C
Chengmo 已提交
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
    assert leaf_node_num is not None, "leaf_node_num should not be None here."

    layer_nums = 0
    node_nums = 0
    tree_layer_offset_lod = [0]
    for layer_idx, layer_node_num in enumerate(layer_node_num_list):
        layer_nums += 1
        node_nums += layer_node_num
        tree_layer_offset_lod.append(node_nums)
        if neg_samples_num_list[layer_idx] >= layer_node_num_list[layer_idx]:
            raise ValueError(
                "The number of negative samples must be less than the number of nodes "
                "in the layer {}, But received negative nums {}, and num of node at layer {} "
                "is {}, please check your input.".format(
1077 1078 1079 1080 1081 1082 1083 1084 1085
                    layer_idx,
                    neg_samples_num_list[layer_idx],
                    layer_idx,
                    layer_node_num_list[layer_idx],
                )
            )
    assert (
        leaf_node_num < node_nums
    ), "leaf_node_num must be less than total node nums."
C
Chengmo 已提交
1086 1087

    travel_shape = [leaf_node_num, layer_nums]
1088 1089 1090 1091 1092 1093
    travel = helper.create_parameter(
        attr=tree_travel_attr,
        shape=travel_shape,
        dtype=tree_dtype,
        default_initializer=Constant(0),
    )
C
Chengmo 已提交
1094 1095

    layer_shape = [node_nums, 1]
1096 1097 1098 1099 1100 1101
    layer = helper.create_parameter(
        attr=tree_layer_attr,
        shape=layer_shape,
        dtype=tree_dtype,
        default_initializer=Constant(0),
    )
C
Chengmo 已提交
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111

    out = helper.create_variable_for_type_inference(dtype=dtype)
    out.stop_gradient = True

    labels = helper.create_variable_for_type_inference(dtype=dtype)
    labels.stop_gradient = True

    mask = helper.create_variable_for_type_inference(dtype=dtype)
    mask.stop_gradient = True

1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
    helper.append_op(
        type='tdm_sampler',
        inputs={"X": x, "Travel": travel, "Layer": layer},
        outputs={'Out': out, 'Labels': labels, 'Mask': mask},
        attrs={
            'neg_samples_num_list': neg_samples_num_list,
            'output_positive': output_positive,
            'layer_offset_lod': tree_layer_offset_lod,
            'seed': seed,
            'dtype': c_dtype,
        },
    )
C
Chengmo 已提交
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134

    if output_list:
        output_list = []
        labels_list = []
        mask_list = []
        start_offset = 0
        positive_flag = 1
        if not output_positive:
            positive_flag = 0

        for layer_sample_num in neg_samples_num_list:
1135
            end_offset = start_offset + layer_sample_num + positive_flag
2
201716010711 已提交
1136
            layer_samples = paddle.slice(
1137 1138
                out, axes=[1], starts=[start_offset], ends=[end_offset]
            )
2
201716010711 已提交
1139
            layer_labels = paddle.slice(
1140 1141
                labels, axes=[1], starts=[start_offset], ends=[end_offset]
            )
2
201716010711 已提交
1142
            layer_mask = paddle.slice(
1143 1144 1145
                mask, axes=[1], starts=[start_offset], ends=[end_offset]
            )

1146
            layer_samples = paddle.reshape(
1147 1148
                layer_samples, [-1, layer_sample_num + positive_flag, 1]
            )
C
Chengmo 已提交
1149 1150
            layer_samples.stop_gradient = True

1151
            layer_labels = paddle.reshape(
1152 1153
                layer_labels, [-1, layer_sample_num + positive_flag, 1]
            )
C
Chengmo 已提交
1154 1155
            layer_labels.stop_gradient = True

1156
            layer_mask = paddle.reshape(
1157 1158
                layer_mask, [-1, layer_sample_num + positive_flag, 1]
            )
C
Chengmo 已提交
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
            layer_mask.stop_gradient = True

            output_list.append(layer_samples)
            labels_list.append(layer_labels)
            mask_list.append(layer_mask)
            start_offset = end_offset

        out = output_list
        labels = labels_list
        mask = mask_list

    return (out, labels, mask)


1173 1174 1175 1176 1177 1178 1179 1180
def rank_attention(
    input,
    rank_offset,
    rank_param_shape,
    rank_param_attr,
    max_rank=3,
    max_size=0,
):
S
ShenLiang 已提交
1181 1182
    """
    **Rank Attention layer**
1183
    This Op can calculate rank attention between input and rank_param, and
S
ShenLiang 已提交
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
    rank_param gives the organization of data. Notice: It currently supports
    GPU device.
    This Op exists in contrib, which means that it is not shown to the public.
    Args:
        input: Tensor with data type float32, float64.
        rank_offset: Tensor with data type int32.
        rank_para_shape: The shape of rank_param.
        rank_param_attr: Attribute initializer of rank_param.
        max_rank: The max rank of input's ranks.
    Returns:
        Variable: A Tensor with the same data type as input's.
    Examples:
        .. code-block:: python
           import paddle.fluid as fluid
           import numpy as np
C
Chengmo 已提交
1199

S
ShenLiang 已提交
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
           input = fluid.data(name="input", shape=[None, 2], dtype="float32")
           rank_offset = fluid.data(name="rank_offset", shape=[None, 7], dtype="int32")
           out = fluid.contrib.layers.rank_attention(input=input,
                                                     rank_offset=rank_offset,
                                                     rank_param_shape=[18,3],
                                                     rank_param_attr=
                                                       fluid.ParamAttr(learning_rate=1.0,
                                                                     name="ubm_rank_param.w_0",
                                                                     initializer=
                                                                     fluid.initializer.Xavier(uniform=False)),
1210 1211
                                                      max_rank=3,
                                                      max_size=0)
S
ShenLiang 已提交
1212 1213 1214 1215 1216 1217
    """
    helper = LayerHelper('rank_attention', **locals())
    dtype = helper.input_dtype(input_param_name='input')
    input_shape = input.shape
    assert input_shape[1] * max_rank * max_rank == rank_param_shape[0]

1218 1219 1220
    rank_param = helper.create_parameter(
        attr=rank_param_attr, shape=rank_param_shape, dtype=dtype
    )
S
ShenLiang 已提交
1221 1222 1223
    rank_param.stop_gradient = False

    output = helper.create_variable_for_type_inference(dtype)
1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
    input_help = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True
    )
    ins_rank = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True
    )

    helper.append_op(
        type="rank_attention",
        inputs={"X": input, "RankOffset": rank_offset, "RankParam": rank_param},
        outputs={"Out": output, "InputHelp": input_help, "InsRank": ins_rank},
        attrs={"MaxRank": max_rank, "MaxSize": max_size},
    )
S
ShenLiang 已提交
1237
    return output
S
ShenLiang 已提交
1238 1239 1240 1241 1242


def batch_fc(input, param_size, param_attr, bias_size, bias_attr, act=None):
    """
    **Batch FC layer**
1243 1244
    This Op can calculate BatchFC. This is similar to matmul op,
    except that the bias and relu activation layers are added.
S
ShenLiang 已提交
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
    Notice: It currently supports GPU device.
    This Op exists in contrib, which means that it is not shown to the public.
    Args:
        input: Tensor with data type float32, float64.
        param_size: The size of w.
        param_attr: Attribute initializer of w.
        bias_size: The size of bias.
        bias_attr: Attribute initializer of bias.
        act: Activation to be applied to the output of this layer.

    Returns:
        Variable: A Tensor with the same data type as input's.
    Examples:
        .. code-block:: python
           import paddle.fluid as fluid
1260

S
ShenLiang 已提交
1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
           input = fluid.data(name="input", shape=[16, 2, 3], dtype="float32")
           out = fluid.contrib.layers.batch_fc(input=input,
                                               param_size=[16, 3, 10],
                                               param_attr=
                                                 fluid.ParamAttr(learning_rate=1.0,
                                                               name="w_0",
                                                               initializer=
                                                               fluid.initializer.Xavier(uniform=False)),
                                               bias_size=[16, 10],
                                               bias_attr=
                                                 fluid.ParamAttr(learning_rate=1.0,
                                                               name="b_0",
                                                               initializer=
                                                               fluid.initializer.Xavier(uniform=False)),
                                                   act="relu")
    """

    helper = LayerHelper("batch_fc", **locals())
    check_type(input, 'input', (Variable), 'batch_fc')
    input_shape = input.shape
    assert input_shape[0] == param_size[0]
    assert input_shape[2] == param_size[1]
    assert param_size[2] == bias_size[1]
    assert input_shape[0] == bias_size[0]

    dtype = helper.input_dtype()
    check_dtype(dtype, 'input', ['float32', 'float64'], 'batch_fc')

1289 1290 1291 1292 1293 1294
    w = helper.create_parameter(
        attr=param_attr, shape=param_size, dtype=dtype, is_bias=False
    )
    b = helper.create_parameter(
        attr=bias_attr, shape=bias_size, dtype=dtype, is_bias=False
    )
S
ShenLiang 已提交
1295
    pre_act = helper.create_variable_for_type_inference(dtype)
1296 1297 1298 1299 1300
    helper.append_op(
        type="batch_fc",
        inputs={"Input": input, "W": w, "Bias": b},
        outputs={"Out": pre_act},
    )
S
ShenLiang 已提交
1301
    return helper.append_activation(pre_act)
S
ShenLiang 已提交
1302 1303 1304


def _pull_box_extended_sparse(input, size, extend_size=64, dtype='float32'):
1305
    r"""
S
ShenLiang 已提交
1306 1307 1308 1309 1310 1311 1312 1313 1314
    **Pull Box Extended Sparse Layer**
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
    BoxPS lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
    Args:
        input(Variable|list of Variable): Input is a Tensor<int64> Variable, which
            contains the IDs information.
        size(int): The embedding size parameter, which indicates the size of
            each embedding vector respectively.
1315
        extend_size(int): The embedding size parameter in extended dim,
S
ShenLiang 已提交
1316 1317 1318 1319 1320 1321 1322 1323 1324
            which indicates the size of each embedding vector respectively.
        dtype(str): The dtype refers to the data type of output tensor. Only supports
      float32 now.
    Returns:
        Variable|list of Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
    Examples:
        .. code-block:: python
          import paddle.fluid as fluid
G
GGBond8488 已提交
1325
          data = paddle.static.data(name='sequence', shape=[-1, 1], dtype='int64', lod_level=1)
S
ShenLiang 已提交
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
          emb, emb_ex = fluid.contrib.layers._pull_box_extended_sparse(input=data, size=8, extend_size=128)
    """
    helper = LayerHelper('pull_box_extended_sparse', **locals())
    helper.input_dtype()
    inputs = helper.multiple_input()
    outs = [
        helper.create_variable_for_type_inference(dtype)
        for i in range(len(inputs))
    ]
    outs_extend = [
        helper.create_variable_for_type_inference(dtype)
        for i in range(len(inputs))
    ]
1339 1340 1341 1342 1343 1344
    helper.append_op(
        type='pull_box_extended_sparse',
        inputs={'Ids': inputs},
        outputs={'Out': outs, 'OutExtend': outs_extend},
        attrs={'emb_size': size, 'emb_extended_size': extend_size},
    )
S
ShenLiang 已提交
1345 1346 1347
    if len(outs) == 1:
        return outs[0], outs_extend[0]
    return outs, outs_extend
L
LielinJiang 已提交
1348 1349 1350 1351 1352


def bilateral_slice(x, guide, grid, has_offset, name=None):
    """
    :alias_main: paddle.nn.functional.bilateral_slice
1353 1354
        :alias: paddle.nn.functional.bilateral_slice,paddle.nn.functional.vision.bilateral_slice
        :old_api: paddle.fluid.layers.bilateral_slice
L
LielinJiang 已提交
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386

    This operation implements bilateral slicing on the input according to the guide map.
    For more information of bilateral slicing, please refer to Deep Bilateral Learning for Real-Time Image Enhancement <https://groups.csail.mit.edu/graphics/hdrnet/data/hdrnet.pdf>_

    Args:
        x(Variable): The input tensor, which is a 4-D tensor with shape
                     [N, C, H, W], N is the batch size, C is the channel
                     number, H and W is the feature height and width.
                     The data type is float32 and float64.
        guide(Variable): Input grid tensor of shape [N, H, W]. The
                        data type is float32 and float64.
        grid(Variable): Input grid tensor of shape [N, C, D, H, W]. The
                        data type is float32 and float64.
        has_offset(bool): Whether to slice with affine offset.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.

    Returns:
        Variable: Output of shape [N, C, H, W]. The data type is same as input tensor.

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid

            x = fluid.data(name='x', shape=[None, 3, 101, 60], dtype='float32')
            guide = fluid.data(name='guide', shape=[None, 101, 60], dtype='float32')
            grid = fluid.data(name='grid', shape=[None, 12, 8, 10, 6], dtype='float32')

            # without offset
1387
            output = fluid.contrib.bilateral_slice(x, guide, grid, has_offset=False)
1388

L
LielinJiang 已提交
1389
            # has offset
1390
            output = fluid.contrib.bilateral_slice(x, guide, grid, has_offset=True)
L
LielinJiang 已提交
1391 1392

    """
J
Jiabin Yang 已提交
1393
    if paddle.fluid._non_static_mode():
1394
        attrs = ('has_offset', has_offset)
1395
        return getattr(_legacy_C_ops, "bilateral_slice")(x, grid, guide, *attrs)
L
LielinJiang 已提交
1396 1397

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'bilateral_slice')
1398 1399 1400 1401 1402 1403
    check_variable_and_dtype(
        guide, 'guide', ['float32', 'float64'], 'bilateral_slice'
    )
    check_variable_and_dtype(
        grid, 'grid', ['float32', 'float64'], 'bilateral_slice'
    )
1404
    helper = LayerHelper("bilateral_slice", **locals())
L
LielinJiang 已提交
1405 1406
    out = helper.create_variable_for_type_inference(x.dtype)
    inputs = {'X': x, 'Guide': guide, 'Grid': grid}
1407 1408 1409 1410 1411 1412
    helper.append_op(
        type='bilateral_slice',
        inputs=inputs,
        attrs={'has_offset': has_offset},
        outputs={'Out': out},
    )
L
LielinJiang 已提交
1413
    return out
1414 1415


1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
def correlation(
    x,
    y,
    pad_size,
    kernel_size,
    max_displacement,
    stride1,
    stride2,
    corr_type_multiply=1,
):
1426 1427 1428
    """

    This operation compute correlation of two tensor.
1429 1430
    For more information of correlation, please refer to PWC-Net:
    CNNs for Optical Flow Using Pyramid, Warping, and Cost Volume
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
    <https://arxiv.org/pdf/1709.02371.pdf>_

    Args:
        x(Tensor): The input x is 4-D Tensor with shape [N, C, H, W]. The data type is float32 and float64.
        y(Tensor): The input y is 4-D Tensor with shape [N, C, H, W]. The data type is float32 and float64.
        pad_size(int): Pad size. The data type is int.
        max_displacement(int): Max displacement. The data type is int.
        stride1(int): stride size of x. The data type is int.
        stride2(int): stride size of y. The data type is int.
        corr_type_multiply(int, optional): The type of multiply. The data type is int. Default: 1.

    Returns:
        Tensor: The data type is same as input tensor.

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid
G
GGBond8488 已提交
1450 1451 1452 1453 1454 1455 1456 1457
            import paddle
            paddle.enable_static()
            x1 = paddle.static.data(name='x1',
                               shape=[2,3,4,5],
                               dtype="float32")
            x2 = paddle.static.data(name='x2',
                                shape=[2,3,4,5],
                                dtype="float32")
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470


            out = fluid.contrib.correlation(
                            x1,
                            x2,
                            pad_size=4,
                            kernel_size=1,
                            max_displacement=4,
                            stride1=1,
                            stride2=1)

    """

J
Jiabin Yang 已提交
1471
    if paddle.fluid._non_static_mode():
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
        attrs = (
            "pad_size",
            pad_size,
            "kernel_size",
            kernel_size,
            "max_displacement",
            max_displacement,
            "stride1",
            stride1,
            "stride2",
            stride2,
            "corr_type_multiply",
            corr_type_multiply,
        )
1486
        output = getattr(_legacy_C_ops, "correlation")(x, y, *attrs)
1487
    else:
1488 1489
        helper = LayerHelper("correlation", **locals())
        output = helper.create_variable_for_type_inference(dtype=x.dtype)
1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
        helper.append_op(
            type="correlation",
            inputs={"Input1": x, "Input2": y},
            attrs={
                "pad_size": pad_size,
                "kernel_size": kernel_size,
                "max_displacement": max_displacement,
                "stride1": stride1,
                "stride2": stride2,
                "corr_type_multiply": corr_type_multiply,
            },
            outputs={"Output": output},
        )
1503
    return output
Z
Zhang Ting 已提交
1504 1505


1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
def fused_bn_add_act(
    x,
    y,
    momentum=0.9,
    epsilon=1e-05,
    param_attr=None,
    bias_attr=None,
    moving_mean_name=None,
    moving_variance_name=None,
    act=None,
    name=None,
):
1518
    r"""
Z
Zhang Ting 已提交
1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
    This Op performs batch norm on input x, and adds the result to input y. Then
    it performs activation on the sum. The data format of inputs must be NHWC
    `[batch, in_height, in_width, in_channels]`.

    Args:
        x(Tensor): The rank of input tensor can be 2, 3, 4, 5. The data type
            is float16.
        y(Tensor): The rank of input tensor can be 2, 3, 4, 5. The data type
            is float16.
        momentum(float|Tensor, optional): The value used for the moving_mean and
            moving_var computation. This should be a float number or a tensor with
            shape [1] and data type as float32. The updated formula is:
            :math:`moving\_mean = moving\_mean * momentum + new\_mean * (1. - momentum)`
            :math:`moving\_var = moving\_var * momentum + new\_var * (1. - momentum)`
            Default is 0.9.
        epsilon(float, optional): A value added to the denominator for
            numerical stability. Default is 1e-5.
        param_attr(ParamAttr, optional): The parameter attribute for Parameter `scale`
            of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
1538 1539 1540
                will create ParamAttr as param_attr, the name of scale can be set in ParamAttr.
                If the Initializer of the param_attr is not set, the parameter is initialized
                with Xavier. Default: None.
Z
Zhang Ting 已提交
1541 1542
        bias_attr(ParamAttr, optional): The parameter attribute for the bias of batch_norm.
            If it is set to None or one attribute of ParamAttr, batch_norm
1543 1544 1545
                will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr.
                If the Initializer of the bias_attr is not set, the bias is initialized zero.
                Default: None.
Z
Zhang Ting 已提交
1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
        moving_mean_name(str, optional): The name of moving_mean which store the global Mean. If it
            is set to None, batch_norm will save global mean with a random name, otherwise, batch_norm
            will save global mean with the string.
        moving_variance_name(str, optional): The name of the moving_variance which store the global Variance.
            If it is set to None, batch_norm will save global variance with a random name, otherwise, batch_norm
            will save global variance with the string.
        act(string, optional): Activation type, linear|relu|prelu|...
        name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`.
            Usually name is no need to set and None by default.

    Examples:
            .. code-block:: python

1559
            import paddle
Z
Zhang Ting 已提交
1560 1561
            import paddle.fluid as fluid

1562 1563
            paddle.enable_static()
            # required: gpu
Z
Zhang Ting 已提交
1564 1565
            def build_program(main_program, startup_program):
                with fluid.program_guard(main_program, startup_program):
G
GGBond8488 已提交
1566 1567
                    x = paddle.static.data(name='x', shape=[-1, 1, 28, 28], dtype='float32')
                    y = paddle.static.data(name="y", shape=[-1, 1], dtype='int64')
1568
                    conv1_1 = paddle.static.nn.conv2d(
Z
Zhang Ting 已提交
1569 1570 1571 1572 1573 1574 1575 1576
                        input=x,
                        filter_size=3,
                        num_filters=32,
                        stride=1,
                        padding=1,
                        act=None,
                        bias_attr=False,
                        data_format='NHWC')
1577
                    conv1_2 = paddle.static.nn.conv2d(
Z
Zhang Ting 已提交
1578 1579 1580 1581 1582 1583 1584 1585
                        input=x,
                        filter_size=3,
                        num_filters=32,
                        stride=1,
                        padding=1,
                        act=None,
                        bias_attr=False,
                        data_format='NHWC')
1586
                    bn = paddle.static.nn.batch_norm(
Z
Zhang Ting 已提交
1587 1588 1589 1590
                        input=conv1_1,
                        act=None,
                        data_layout='NHWC')
                    fused_bn_add_act = fluid.contrib.layers.fused_bn_add_act(conv1_2, bn)
C
Charles-hit 已提交
1591
                    prediction = paddle.static.nn.fc(x=fused_bn_add_act, size=10, activation='softmax')
1592 1593 1594 1595
                    loss = paddle.nn.functional.cross_entropy(
                        input=prediction, label=y,
                        reduction='none', use_softmax=False
                    )
2
201716010711 已提交
1596
                    loss = paddle.mean(loss)
Z
Zhang Ting 已提交
1597
                    sgd = fluid.optimizer.SGD(learning_rate=0.001)
1598
                    sgd = paddle.static.amp.decorate(
Z
Zhang Ting 已提交
1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
                        sgd, use_dynamic_loss_scaling=True, init_loss_scaling=128.0)
                    sgd.minimize(loss)

                return x, y, loss

            iters = 5
            batch_size = 16
            support_gpu = fluid.is_compiled_with_cuda()
            if support_gpu:
                main_program = fluid.Program()
                startup_program = fluid.Program()
                place = fluid.CUDAPlace(0)
                x, y, loss = build_program(main_program, startup_program)
1612

Z
Zhang Ting 已提交
1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625
                feeder = fluid.DataFeeder(feed_list=[x, y], place=place)
                train_reader = paddle.batch(
                    paddle.dataset.mnist.train(), batch_size=batch_size)
                exe = fluid.Executor(place)
                scope = fluid.Scope()
                with fluid.scope_guard(scope):
                    exe.run(startup_program)
                    for _ in range(iters):
                        data = next(train_reader())
                        loss_v = exe.run(main_program, feed=feeder.feed(data), fetch_list=[loss])
    """
    helper = LayerHelper('fused_bn_add_act', **locals())

1626 1627 1628 1629 1630 1631
    check_variable_and_dtype(
        x, 'input', ['float16', 'float32', 'float64'], 'fused_bn_add_act'
    )
    check_variable_and_dtype(
        y, 'input', ['float16', 'float32', 'float64'], 'fused_bn_add_act'
    )
Z
Zhang Ting 已提交
1632 1633 1634 1635 1636 1637 1638
    bn_param_dtype = core.VarDesc.VarType.FP32

    x_shape = x.shape
    channel_num = x_shape[-1]
    param_shape = [channel_num]

    # create parameter
1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=bn_param_dtype,
        default_initializer=Constant(1.0),
    )
    bias = helper.create_parameter(
        attr=helper.bias_attr,
        shape=param_shape,
        dtype=bn_param_dtype,
        is_bias=True,
    )
    mean = helper.create_parameter(
        attr=ParamAttr(
            name=moving_mean_name, initializer=Constant(0.0), trainable=False
        ),
        shape=param_shape,
        dtype=bn_param_dtype,
    )
Z
Zhang Ting 已提交
1658
    mean.stop_gradient = True
1659 1660 1661 1662 1663 1664 1665 1666 1667
    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
            trainable=False,
        ),
        shape=param_shape,
        dtype=bn_param_dtype,
    )
Z
Zhang Ting 已提交
1668 1669 1670 1671 1672 1673 1674
    variance.stop_gradient = True

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
1675 1676 1677
    saved_mean = helper.create_variable_for_type_inference(
        dtype=bn_param_dtype, stop_gradient=True
    )
Z
Zhang Ting 已提交
1678
    saved_variance = helper.create_variable_for_type_inference(
1679 1680
        dtype=bn_param_dtype, stop_gradient=True
    )
Z
Zhang Ting 已提交
1681
    reserve_space = helper.create_variable_for_type_inference(
1682 1683
        dtype=core.VarDesc.VarType.FP16, stop_gradient=True
    )
Z
Zhang Ting 已提交
1684
    batch_norm_out = helper.create_variable_for_type_inference(
1685 1686
        core.VarDesc.VarType.FP16
    )
Z
Zhang Ting 已提交
1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701

    inputs = {
        "X": x,
        "Z": y,
        "Scale": scale,
        "Bias": bias,
    }
    attrs = {"epsilon": epsilon, 'momentum': momentum}

    outputs = {
        "Y": batch_norm_out,
        "MeanOut": mean_out,
        "VarianceOut": variance_out,
        "SavedMean": saved_mean,
        "SavedVariance": saved_variance,
1702
        "ReserveSpace": reserve_space,
Z
Zhang Ting 已提交
1703 1704
    }

1705 1706 1707 1708 1709 1710
    helper.append_op(
        type="fused_bn_add_activation",
        inputs=inputs,
        outputs=outputs,
        attrs=attrs,
    )
Z
Zhang Ting 已提交
1711 1712

    return batch_norm_out
1713 1714


1715 1716 1717
def pow2_decay_with_linear_warmup(
    warmup_steps, total_steps, base_lr, end_lr, dtype='float32', name=None
):
J
Jiabin Yang 已提交
1718
    if paddle.fluid._non_static_mode():
1719
        raise NotImplementedError(
1720 1721
            "pow2_decay_with_linear_warmup does not support dygraph mode yet."
        )
1722 1723 1724

    helper = LayerHelper("pow2_decay_with_linear_warmup", **locals())
    lr = helper.create_global_variable(persistable=True, dtype=dtype, shape=[1])
Z
Zeng Jinle 已提交
1725
    helper.set_variable_initializer(
1726 1727
        lr, Constant(value=float(base_lr) / warmup_steps)
    )
1728

1729 1730 1731
    step = helper.create_global_variable(
        persistable=True, dtype='int64', shape=[1]
    )
1732
    helper.set_variable_initializer(step, Constant(value=0))
1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747
    assert (
        warmup_steps <= total_steps
    ), "warmup_steps cannot be larger than total_steps"

    helper.append_op(
        type="pow2_decay_with_linear_warmup",
        inputs={"LearningRate": lr, "Step": step},
        outputs={"LearningRateOut": lr, "StepOut": step},
        attrs={
            "warmup_steps": warmup_steps,
            "total_steps": total_steps,
            "base_lr": base_lr,
            "end_lr": end_lr,
        },
    )
1748
    return lr