nn.py 83.0 KB
Newer Older
1
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Contrib layers just related to the neural network.
"""

import os
19
import warnings
20
import inspect
21 22

import numpy as np
23
import paddle
24
from paddle.fluid.layer_helper import LayerHelper
25
from paddle.fluid.layers import utils
Z
zhoushiyu 已提交
26
from ... import unique_name
C
Chengmo 已提交
27
from paddle.fluid.initializer import Normal, Constant, NumpyArrayInitializer
28 29 30 31 32 33
from paddle.fluid.data_feeder import (
    check_variable_and_dtype,
    check_type,
    check_dtype,
    convert_dtype,
)
34 35

from paddle.fluid import core
Z
Zhang Ting 已提交
36
from paddle.fluid.param_attr import ParamAttr
37

C
Chengmo 已提交
38
from paddle.fluid.framework import Variable, convert_np_dtype_to_dtype_
39 40
from paddle.fluid.layers import slice
import paddle
41
import warnings
42
from paddle import _C_ops, _legacy_C_ops
43

44
__all__ = [
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
    'fused_elemwise_activation',
    'sequence_topk_avg_pooling',
    'var_conv_2d',
    'match_matrix_tensor',
    'tree_conv',
    'fused_embedding_seq_pool',
    'multiclass_nms2',
    'search_pyramid_hash',
    'shuffle_batch',
    'partial_concat',
    'sparse_embedding',
    'partial_sum',
    'tdm_child',
    'rank_attention',
    'tdm_sampler',
    'batch_fc',
    '_pull_box_extended_sparse',
    'bilateral_slice',
    'correlation',
    'fused_bn_add_act',
    'fused_seqpool_cvm',
66
]
67 68


69 70 71
def fused_elemwise_activation(
    x, y, functor_list, axis=-1, scale=0.0, save_intermediate_out=True
):
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
    """
    **Fused elementwise_add/mul and activation layers**

    This function computes an elementwise_add/mul cooperated with an activation.

    .. math::

        out = Unary(Binary(x, y))

    or

    .. math::

        out = Binary(x, Unary(y))

    Unary operators can be: `scale`, `relu`, `tanh`. Binary operators can be:
    `elementwise_add`, `elementwise_mul`.

    Args:
        x (Variable): left operation of the binary operator.
        y (Variable): right operator of the binary operator.
        functor_list (list of str): types of operator which will be executed
            by this layer. For example, ['elementwise_add', 'relu']
            (out = elementwise_add(x, relu(y))),
            or ['relu', 'elemmentwise_add'] (out = relu(elementwise_add(x, y))).
        axis (int32, default -1): axis of elementwise op.
        scale (float32, default 0): parameter of scale op.
        save_intermediate_out (bool, default True): whether to save the
            intermediate result, Unary(y) or Binary(x, y).

    Returns:
        Variable: The computation result.
    """
    if isinstance(functor_list, str):
        functor_list = functor_list.split(',')

    if not isinstance(functor_list, list) or len(functor_list) != 2:
        raise ValueError(
110 111
            'functor_list should be a list of str, and the length should be 2.'
        )
112 113 114 115

    helper = LayerHelper('fused_elemwise_activation', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    intermediate_out = helper.create_variable_for_type_inference(dtype=x.dtype)
116 117 118 119 120 121 122 123 124 125 126
    helper.append_op(
        type='fused_elemwise_activation',
        inputs={'X': x, 'Y': y},
        outputs={'Out': out, 'IntermediateOut': intermediate_out},
        attrs={
            'axis': axis,
            'scale': scale,
            'save_intermediate_out': save_intermediate_out,
            'functor_list': functor_list,
        },
    )
127
    return out
128 129


130 131 132 133 134 135 136 137 138 139 140 141 142
def var_conv_2d(
    input,
    row,
    col,
    input_channel,
    output_channel,
    filter_size,
    stride=1,
    param_attr=None,
    act=None,
    dtype='float32',
    name=None,
):
143
    r"""
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
      The var_conv_2d layer calculates the output base on the :attr:`input` with variable length,
      row, col, input channel, filter size and strides. Both :attr:`input`, :attr:`row`,
      and :attr:`col` are 1-level LodTensor. The convolution operation is same as conv2d layer with
      padding. Besides, input.dims[1] should be 1.

      .. code-block:: text

              If input_channel is 2 and given row lodTensor and col lodTensor as follows:
                  row.lod = [[5, 4]]
                  col.lod = [[6, 7]]
              input is a lodTensor:
                  input.lod = [[60, 56]]	# where 60 = input_channel * 5 * 6
                  input.dims = [116, 1]	# where 116 = 60 + 56

              If set output_channel is 3, filter_size is [3, 3], stride is [1, 1]:
                  # where 90 = output_channel * [(5-1)/stride + 1] * [(6-1)/stride + 1]
                  output.lod = [[90, 84]]
                  output.dims = [174, 1]  # where 174 = 90 + 84

      Args:
          input (Variable): The input should be 1-level LodTensor with dims[1] equals 1.
          row (Variable): The row should be 1-level LodTensor to provide height information.
          col (Variable): The col should be 1-level LodTensor to provide width information.
          input_channel (int): The number of input channel.
          output_channel (int): The number of output channel.
          filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
              it must contain two integers, (filter_size_H, filter_size_W).
              Otherwise, the filter will be a square.
          stride (int|tuple): The stride size. If stride is a tuple, it must
              contain two integers, (stride_H, stride_W). Otherwise, the
              stride_H = stride_W = stride. Default: stride = 1.
          param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
              of var_conv2d. If it is set to None or one attribute of ParamAttr, var_conv2d
              will create ParamAttr as param_attr. If the Initializer of the param_attr
              is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
              and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{
    0.5}`. Default: None.
          act (str): Activation type, if it is set to None, activation is not appended.
              Default: None
          dtype ('float32'): The data type of parameter and output.
          name (str|None): A name for this layer(optional). If set None, the layer
              will be named automatically. Default: None

      Returns:
          Variable: Output variable with LoD specified by this layer.

      Examples:
          .. code-block:: python

              import numpy as np
              from paddle.fluid import layers
              from paddle.fluid import contrib

              x_lod_tensor = layers.data(name='x', shape=[1], lod_level=1)
              row_lod_tensor = layers.data(name='row', shape=[6], lod_level=1)
              col_lod_tensor = layers.data(name='col', shape=[6], lod_level=1)
              out = contrib.var_conv_2d(input=x_lod_tensor,
                                       row=row_lod_tensor,
                                       col=col_lod_tensor,
                                       input_channel=3,
                                       output_channel=5,
                                       filter_size=[3, 3],
                                       stride=1)
207 208 209 210 211 212 213 214 215 216
    """
    helper = LayerHelper('var_conv_2d', **locals())
    x_shape = list(input.shape)
    assert len(x_shape) == 2

    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')

    filter_shape = [
        int(output_channel),
217
        int(input_channel) * filter_size[0] * filter_size[1],
218 219 220 221
    ]
    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
222 223
        dtype=dtype,
    )
224 225

    conv_res = helper.create_variable_for_type_inference(dtype)
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
    tmp_res = helper.create_variable_for_type_inference(
        dtype, stop_gradient=True
    )

    helper.append_op(
        type='var_conv_2d',
        inputs={
            'X': input,
            'ROW': row,
            'COLUMN': col,
            'W': filter_param,
        },
        outputs={"Out": conv_res, "Col": tmp_res},
        attrs={
            'InputChannel': input_channel,
            'OutputChannel': output_channel,
            'StrideH': stride[0],
            'StrideW': stride[1],
            'KernelH': filter_size[0],
            'KernelW': filter_size[1],
        },
    )
248 249 250 251

    return helper.append_activation(conv_res)


252 253 254
def match_matrix_tensor(
    x, y, channel_num, act=None, param_attr=None, dtype='float32', name=None
):
255 256 257 258 259
    """
    Calculate the semantic matching matrix of two word sequences with variable length.
    Given a query A of length `n` and a title B of length `m`, the input shape are respectively
    [n, h] and [m, h], which h is hidden_size. If :attr:`channel_num` is set to 3,
    it will generate a learnable parameter matrix W with shape [h, 3, h].
C
Chengmo 已提交
260 261 262
    Then the semantic matching matrix of query A and title B is calculated by
    A * W * B.T = [n, h]*[h, 3, h]*[h, m] = [n, 3, m]. The learnable parameter matrix `W`
    is equivalent to a fully connected layer in the calculation process. If :attr:`act` is provided,
263 264 265 266 267 268
    the corresponding activation function will be applied to output matrix.
    The :attr:`x` and :attr:`y` should be LodTensor and only one level LoD is supported.

    .. code-block:: text

            Given a 1-level LoDTensor x:
C
Chengmo 已提交
269 270 271 272
                x.lod =  [
                    [2,                     3,                               ]]
                x.data = [[0.3, 0.1], [0.2, 0.3], [
                    0.5, 0.6], [0.7, 0.1], [0.3, 0.4]]
273 274 275 276 277 278
                x.dims = [5, 2]
            y is a Tensor:
                y.lod =  [[3,                                 1,       ]]
                y.data = [[0.1, 0.2], [0.3, 0.7], [0.9, 0.2], [0.4, 0.1]]
                y.dims = [4, 2]
            set channel_num 2, then we get a 1-level LoDTensor:
C
Chengmo 已提交
279 280
                # where 12 = channel_num * x.lod[0][0] * y.lod[0][0]
                out.lod =  [[12, 6]]
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
                out.dims = [18, 1]     # where 18 = 12 + 6

    Args:
        x (Variable): Input variable x which should be 1-level LodTensor.
        y (Variable): Input variable y which should be 1-level LodTensor.
        channel_num (int): The channel number of learnable parameter W.
        act (str, default None): Activation to be applied to the output of this layer.
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        dtype ('float32'): The data type of w data.
        name (str|None): A name for this layer(optional). If set None, the layer will be named automatically. Default: None

    Returns:
        Variable: output with LoD specified by this layer.

    Examples:
        .. code-block:: python

            import numpy as np
            from paddle.fluid import layers
            from paddle.fluid import contrib

            x_lod_tensor = layers.data(name='x', shape=[10], lod_level=1)
            y_lod_tensor = layers.data(name='y', shape=[10], lod_level=1)
C
Chengmo 已提交
305 306
            out, out_tmp = contrib.match_matrix_tensor(
                x=x_lod_tensor, y=y_lod_tensor, channel_num=3)
307 308 309 310 311
    """
    helper = LayerHelper('match_matrix_tensor', **locals())

    x_shape = list(x.shape)
    y_shape = list(y.shape)
312 313 314
    assert (
        len(x_shape) == 2 and len(y_shape) == 2 and x_shape[-1] == y_shape[-1]
    )
315 316

    weight_shape = [x_shape[-1], channel_num, y_shape[-1]]
317 318 319
    w = helper.create_parameter(
        attr=helper.param_attr, shape=weight_shape, dtype=dtype, is_bias=False
    )
320
    mm_res = helper.create_variable_for_type_inference(dtype)
321 322 323 324 325 326 327 328 329 330 331 332 333
    tmp_res = helper.create_variable_for_type_inference(
        dtype, stop_gradient=True
    )
    helper.append_op(
        type='match_matrix_tensor',
        inputs={
            'X': x,
            'Y': y,
            'W': w,
        },
        outputs={"Out": mm_res, "Tmp": tmp_res},
        attrs={'dim_t': channel_num},
    )
334 335 336 337 338 339 340

    return helper.append_activation(mm_res), tmp_res


def sequence_topk_avg_pooling(input, row, col, topks, channel_num):
    """
    The :attr:`topks` is a list with incremental values in this function. For each topk,
C
Chengmo 已提交
341 342 343
    it will average the topk features as an output feature for each channel of every
    input sequence. Both :attr:`row` and :attr:`col` are LodTensor, which provide height
    and width information for :attr:`input` tensor. If feature size of input sequence is less
344 345 346 347 348 349 350 351
    than topk, it will padding 0 at the back.

    .. code-block:: text

            If channel_num is 2 and given row LoDTensor and col LoDTensor as follows:
                row.lod = [[5, 4]]
                col.lod = [[6, 7]]

C
Chengmo 已提交
352
            input is a LoDTensor with input.lod[0][i] = channel_num * row.lod[0][i] * col.lod[0][i]
353 354 355 356 357 358 359 360 361
                input.lod = [[60, 56]]  # where 60 = channel_num * 5 * 6
                input.dims = [116, 1]   # where 116 = 60 + 56

            If topks is [1, 3, 5], then we get a 1-level LoDTensor:
                out.lod =  [[5, 4]] 	# share Lod info with row LodTensor
                out.dims = [9, 6]   	# where 6 = len(topks) * channel_num

    Args:
        input (Variable): The input should be 2D LodTensor with dims[1] equals 1.
T
tianshuo78520a 已提交
362
        row (Variable): The row should be 1-level LodTensor to provide the height information
363
                        of the input tensor data.
T
tianshuo78520a 已提交
364
        col (Variable): The col should be 1-level LodTensor to provide the width information
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
                        of the input tensor data.
        topks (list): A list of incremental value to average the topk feature.
        channel_num (int): The number of input channel.

    Returns:
        Variable: output LodTensor specified by this layer.

    Examples:

        .. code-block:: python

            import numpy as np
            from paddle.fluid import layers
            from paddle.fluid import contrib

            x_lod_tensor = layers.data(name='x', shape=[1], lod_level=1)
            row_lod_tensor = layers.data(name='row', shape=[6], lod_level=1)
            col_lod_tensor = layers.data(name='col', shape=[6], lod_level=1)
            out = contrib.sequence_topk_avg_pooling(input=x_lod_tensor,
                                                   row=row_lod_tensor,
                                                   col=col_lod_tensor,
                                                   topks=[1, 3, 5],
                                                   channel_num=5)
    """
    helper = LayerHelper('sequence_topk_avg_pooling', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
391 392 393 394 395 396 397 398 399
    pos = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype(), stop_gradient=True
    )
    helper.append_op(
        type='sequence_topk_avg_pooling',
        inputs={'X': input, 'ROW': row, 'COLUMN': col},
        outputs={'Out': out, 'pos': pos},
        attrs={'topks': topks, 'channel_num': channel_num},
    )
400 401

    return out
402 403


404 405 406 407 408 409 410 411 412 413 414
def tree_conv(
    nodes_vector,
    edge_set,
    output_size,
    num_filters=1,
    max_depth=2,
    act='tanh',
    param_attr=None,
    bias_attr=None,
    name=None,
):
C
Chengmo 已提交
415
    """
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
        ${comment}
    Args : nodes_vector(${nodes_vector_type}) : $ { nodes_vector_comment }
    edge_set(${edge_set_type}) : $ { edge_set_comment }
            output_size(int): output feature width
            num_filters(int): number of filters, Default 1
            max_depth(int): max depth of filters, Default 2
            act(str): activation function, Default tanh
            param_attr(ParamAttr): the parameter attribute for the filters, Default None
            bias_attr(ParamAttr): the parameter attribute for the bias of this layer, Default None
            name(str): a name of this layer(optional). If set None, the layer will be named automatically, Default None

        Returns:
            out(${out_type}): ${
              out_comment
            }

        Examples:
            .. code-block:: python
434

435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
              import paddle.fluid as fluid

              # 10 for max_node_size of dataset, 5 for vector width
              nodes_vector = fluid.layers.data(
                  name='vectors', shape=[10, 5], dtype='float32')
              # 10 for max_node_size of dataset, 2 for every edge has two nodes
              # edges must be directional
              edge_set = fluid.layers.data(name='edge_set', shape=[
                                           10, 2], dtype='float32')
              # the shape of output will be [10, 6, 1],
              # 10 for max_node_size of dataset, 6 for output size, 1 for 1 filter
              out_vector = fluid.layers.tree_conv(nodes_vector, edge_set, 6, 1, 2)
    #After reshape, output tensor could be nodes_vector for next tree convolution
              out_vector = fluid.layers.reshape(out_vector, shape=[-1, 10, 6])
              out_vector_2 = fluid.layers.tree_conv(out_vector, edge_set, 3, 4, 2)
    #also output tensor could be pooling(the pooling in paper called global pooling)
              pooled = fluid.layers.reduce_max(out_vector, dim=2) # global pooling
452
    """
453 454 455
    check_type(nodes_vector, 'nodes_vector', (Variable), 'tree_conv')
    check_type(edge_set, 'edge_set', (Variable), 'tree_conv')

456 457 458 459
    helper = LayerHelper("tree_conv", **locals())
    dtype = helper.input_dtype('nodes_vector')
    feature_size = nodes_vector.shape[2]
    W_shape = [feature_size, 3, output_size, num_filters]
460 461 462
    W = helper.create_parameter(
        attr=param_attr, shape=W_shape, dtype=dtype, is_bias=False
    )
463
    out = helper.create_variable_for_type_inference(dtype=dtype)
464 465 466 467 468 469 470 471
    helper.append_op(
        type='tree_conv',
        inputs={'NodesVector': nodes_vector, 'EdgeSet': edge_set, 'Filter': W},
        outputs={
            'Out': out,
        },
        attrs={'max_depth': max_depth},
    )
472 473 474 475 476
    if helper.bias_attr:
        pre_activation = helper.append_bias_op(out)
    else:
        pre_activation = out
    return helper.append_activation(pre_activation)
477 478


479 480 481 482 483 484 485 486 487
def fused_embedding_seq_pool(
    input,
    size,
    is_sparse=False,
    padding_idx=None,
    combiner='sum',
    param_attr=None,
    dtype='float32',
):
488
    r"""
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
    **Embedding Sequence pool**

    This layer is the fusion of lookup table and sequence_pool.

    Args:
        input (Variable): Input is a Tensor<int64> Variable, which contains the IDs' information.
            The value of the input IDs should satisfy :math:`0<= id < size[0]`.
        size (tuple|list): The shape of the lookup_table parameter. It should
            have two elements which indicate the size of the dictionary of
            embedding and the size of each embedding vector respectively.
        is_sparse (bool): The flag indicating whether to use sparse update.
            Default: False.
        padding_idx (int|long|None): It will output all-zero padding data whenever
            lookup encounters :math:`padding\_idx` in Ids. If set :attr:`None`, it makes
            no effect to output. If :math:`padding\_idx < 0`, the :math:`padding\_idx`
            will automatically be converted to :math:`size[0] + padding\_idx` to use.
            Default: None.
        combiner (str): The pooling type of sequence_pool, and only support `sum`.
            Default: sum.
        param_attr (ParamAttr): Parameters for this layer.
        dtype (np.dtype|core.VarDesc.VarType|str): The dtype refers to the data type of output
            tensor. It can be float32, float_16, int etc.
    Returns:
        The sequence pooling variable which is a Tensor.
    Examples:
        .. code-block:: python
            import numpy as np
            import paddle.fluid as fluid

            dict_size = 20
C
Chengmo 已提交
519 520
            data_t = fluid.layers.data(
                name='word', shape=[1], dtype='int64', lod_level=1)
521 522 523 524 525 526 527 528 529
            padding_idx = np.random.randint(1, 10)
            out = fluid.contrib.fused_embedding_seq_pool(
                input=data_t,
                size=[dict_size, 32],
                param_attr='w',
                padding_idx=padding_idx,
                is_sparse=False)
    """
    helper = LayerHelper('fused_embedding_seq_pool', **locals())
530 531 532
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False
    )
533
    out = helper.create_variable_for_type_inference(dtype)
534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
    padding_idx = (
        -1
        if padding_idx is None
        else padding_idx
        if padding_idx >= 0
        else (size[0] + padding_idx)
    )
    helper.append_op(
        type='fused_embedding_seq_pool',
        inputs={'Ids': input, 'W': w},
        outputs={'Out': out},
        attrs={
            'is_sparse': is_sparse,
            'combiner': combiner,
            'padding_idx': padding_idx,
        },
    )
551
    return out
552 553


554 555 556
def fused_seqpool_cvm(
    input, pool_type, cvm, pad_value=0.0, use_cvm=True, cvm_offset=2
):
D
danleifeng 已提交
557
    """
558
    :api_attr: Static Graph
D
danleifeng 已提交
559

560
    This OP is the fusion of sequence_pool and continuous_value_model op.
D
danleifeng 已提交
561

562
    **Note:** The Op only receives List of LoDTensor as input, only support SUM pooling now.
D
danleifeng 已提交
563 564 565 566 567

    Args:
        input(Variable|list of Variable): Input is List of LoDTensor.
        pool_type(str): pooling type, only support SUM pooling now.
        cvm(Variable): cvm Variable.
568 569 570 571
        pad_value(float, optional): padding value of sequence pool. Default: 0.0.
        use_cvm(bool, optional): use cvm or not. Default: True.
        cvm_offset(int, optional): cvm offset. Default: 2, which means cvm contains show, click.

D
danleifeng 已提交
572 573 574
    Returns:
        Variable|list of Variable: The tensor variable storing sequence pool and cvm
        of input.
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595

    Examples:
        .. code-block:: python

            import paddle
            import paddle.fluid as fluid
            paddle.enable_static()

            data = paddle.static.data(name='x', shape=[-1, 1], dtype='int64', lod_level=1)
            data2 = paddle.static.data(name='y', shape=[-1, 1], dtype='int64', lod_level=1)
            inputs = [data, data2]
            embs = fluid.layers.nn._pull_box_sparse(input=inputs, size=11, is_distributed=True, is_sparse=True)

            label = paddle.static.data(name="label", shape=[-1, 1], dtype="int64", lod_level=1)
            ones = fluid.layers.fill_constant_batch_size_like(input=label, shape=[-1, 1], dtype="int64", value=1)
            show_clk = paddle.cast(paddle.concat([ones, label], axis=1), dtype='float32')
            show_clk.stop_gradient = True

            cvms = fluid.contrib.layers.fused_seqpool_cvm(embs, 'sum', show_clk)


D
danleifeng 已提交
596 597 598 599 600 601
    """
    helper = LayerHelper('fused_seqpool_cvm', **locals())

    if pool_type.upper() != 'SUM':
        raise ValueError(
            "fused_seqpool_cvm only support SUM pooling now, and your type is: "
602 603
            + pool_type
        )
D
danleifeng 已提交
604 605 606 607

    check_type(input, 'input', list, 'fused_seqpool_cvm')
    if isinstance(input, list):
        for _input in input:
608 609 610
            check_variable_and_dtype(
                _input, 'input', ['float32'], 'fused_seqpool_cvm'
            )
D
danleifeng 已提交
611 612 613 614 615 616 617 618

    dtype = helper.input_dtype()
    inputs = helper.multiple_input()
    outs = [
        helper.create_variable_for_type_inference(dtype)
        for i in range(len(inputs))
    ]

619 620 621 622 623 624 625 626 627 628 629
    helper.append_op(
        type="fused_seqpool_cvm",
        inputs={"X": inputs, "CVM": cvm},
        outputs={"Out": outs},
        attrs={
            "pooltype": pool_type.upper(),
            "pad_value": pad_value,
            "use_cvm": use_cvm,
            "cvm_offset": cvm_offset,
        },
    )
D
danleifeng 已提交
630 631 632 633

    return outs


634 635 636 637 638 639 640 641 642 643 644 645 646
def multiclass_nms2(
    bboxes,
    scores,
    score_threshold,
    nms_top_k,
    keep_top_k,
    nms_threshold=0.3,
    normalized=True,
    nms_eta=1.0,
    background_label=0,
    return_index=False,
    name=None,
):
647 648
    """
    **Multiclass NMS2**
C
Chengmo 已提交
649

650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
    This operator is to do multi-class non maximum suppression (NMS) on
    boxes and scores.
    In the NMS step, this operator greedily selects a subset of detection bounding
    boxes that have high scores larger than score_threshold, if providing this
    threshold, then selects the largest nms_top_k confidences scores if nms_top_k
    is larger than -1. Then this operator pruns away boxes that have high IOU
    (intersection over union) overlap with already selected boxes by adaptive
    threshold NMS based on parameters of nms_threshold and nms_eta.
    Aftern NMS step, at most keep_top_k number of total bboxes are to be kept
    per image if keep_top_k is larger than -1.

    Args:
        bboxes (Variable): Two types of bboxes are supported:
                           1. (Tensor) A 3-D Tensor with shape
                           [N, M, 4 or 8 16 24 32] represents the
                           predicted locations of M bounding bboxes,
                           N is the batch size. Each bounding box has four
C
Chengmo 已提交
667
                           coordinate values and the layout is
668 669
                           [xmin, ymin, xmax, ymax], when box size equals to 4.
                           2. (LoDTensor) A 3-D Tensor with shape [M, C, 4]
C
Chengmo 已提交
670 671
                           M is the number of bounding boxes, C is the
                           class number
672 673 674
        scores (Variable): Two types of scores are supported:
                           1. (Tensor) A 3-D Tensor with shape [N, C, M]
                           represents the predicted confidence predictions.
C
Chengmo 已提交
675 676
                           N is the batch size, C is the class number, M is
                           number of bounding boxes. For each category there
677 678 679 680 681 682 683
                           are total M scores which corresponding M bounding
                           boxes. Please note, M is equal to the 2nd dimension
                           of BBoxes.
                           2. (LoDTensor) A 2-D LoDTensor with shape [M, C].
                           M is the number of bbox, C is the class number.
                           In this case, input BBoxes should be the second
                           case with shape [M, C, 4].
C
Chengmo 已提交
684
        background_label (int): The index of background label, the background
685 686 687
                                label will be ignored. If set to -1, then all
                                categories will be considered. Default: 0
        score_threshold (float): Threshold to filter out bounding boxes with
C
Chengmo 已提交
688
                                 low confidence score. If not provided,
689 690
                                 consider all boxes.
        nms_top_k (int): Maximum number of detections to be kept according to
T
tianshuo78520a 已提交
691
                         the confidences after the filtering detections based
692 693 694 695 696 697 698 699 700 701 702
                         on score_threshold.
        nms_threshold (float): The threshold to be used in NMS. Default: 0.3
        nms_eta (float): The threshold to be used in NMS. Default: 1.0
        keep_top_k (int): Number of total bboxes to be kept per image after NMS
                          step. -1 means keeping all bboxes after NMS step.
        normalized (bool): Whether detections are normalized. Default: True
        return_index(bool): Whether return selected index. Default: False
        name(str): Name of the multiclass nms op. Default: None.

    Returns:
        A tuple with two Variables: (Out, Index) if return_index is True,
C
Chengmo 已提交
703 704 705 706 707 708
        otherwise, a tuple with one Variable(Out) is returned.
        Out: A 2-D LoDTensor with shape [No, 6] represents the detections.
        Each row has 6 values: [label, confidence, xmin, ymin, xmax, ymax]
        or A 2-D LoDTensor with shape [No, 10] represents the detections.
        Each row has 10 values: [label, confidence, x1, y1, x2, y2, x3, y3,
        x4, y4]. No is the total number of detections.
709 710
        If all images have not detected results, all elements in LoD will be
        0, and output tensor is empty (None).
C
Chengmo 已提交
711 712 713 714 715
        Index: Only return when return_index is True. A 2-D LoDTensor with
        shape [No, 1] represents the selected index which type is Integer.
        The index is the absolute value cross batches. No is the same number
        as Out. If the index is used to gather other attribute such as age,
        one needs to reshape the input(N, M, 1) to (N * M, 1) as first, where
716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741
        N is the batch size and M is the number of boxes.


    Examples:
        .. code-block:: python


            import paddle.fluid as fluid
            boxes = fluid.layers.data(name='bboxes', shape=[81, 4],
                                      dtype='float32', lod_level=1)
            scores = fluid.layers.data(name='scores', shape=[81],
                                      dtype='float32', lod_level=1)
            out, index = fluid.layers.multiclass_nms2(bboxes=boxes,
                                              scores=scores,
                                              background_label=0,
                                              score_threshold=0.5,
                                              nms_top_k=400,
                                              nms_threshold=0.3,
                                              keep_top_k=200,
                                              normalized=False,
                                              return_index=True)
    """
    helper = LayerHelper('multiclass_nms2', **locals())

    output = helper.create_variable_for_type_inference(dtype=bboxes.dtype)
    index = helper.create_variable_for_type_inference(dtype='int')
742 743 744 745 746 747 748 749 750 751 752 753 754 755
    helper.append_op(
        type="multiclass_nms2",
        inputs={'BBoxes': bboxes, 'Scores': scores},
        attrs={
            'background_label': background_label,
            'score_threshold': score_threshold,
            'nms_top_k': nms_top_k,
            'nms_threshold': nms_threshold,
            'keep_top_k': keep_top_k,
            'nms_eta': nms_eta,
            'normalized': normalized,
        },
        outputs={'Out': output, 'Index': index},
    )
756 757 758 759 760 761
    output.stop_gradient = True
    index.stop_gradient = True

    if return_index:
        return output, index
    return output
A
Aurelius84 已提交
762 763


764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783
def search_pyramid_hash(
    input,
    num_emb,
    space_len,
    pyramid_layer,
    rand_len,
    drop_out_percent,
    is_training,
    use_filter,
    white_list_len,
    black_list_len,
    seed,
    lr,
    param_attr=None,
    param_attr_wl=None,
    param_attr_bl=None,
    name=None,
    distribute_update_vars=None,
    dtype='float32',
):
A
Aurelius84 已提交
784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
    """
    **Pyramid hash embedding**

    Args:
        input (Variable): LoDTensor<int32> Variable contained the IDs' information.
        num_emb (int): The embedding size of output.
        space_len (int): The length of pyramid hash embedding space.
        pyramid_layer (int): The number of pyramid layers. It should be greater than 2.
        rand_len (int): The minimum length of pyramid hash cell.
        drop_out_percent (float): The probability of dropping out the input token randomly.
            It should satisfy: [0., 1.]
        is_training (bool): Whether in training or testing phrase.
        use_filter(bool): If set True, the white filter and black filter should be given by
            :attr:`param_attr_wl` and :attr:`param_attr_bl` .
        white_list_len(int): If set :math:`white_list_len>0` , white filter with shape [white_list_len, 1]
            should be provided by param_attr_wl.
        black_list_len(int): If set :math:`black_list_len>0` , black filter with shape [black_list_len, 1]
            should be provided by param_attr_bl.
        seed(int): The number of random seed.
        lr(float): The learning rate of weight created by :attr:`param_attr` with shape [space_len+rand_len, 1]
            in this layer.
        param_attr(ParamAttr): To specify the weight parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` .
        param_attr_wl(ParamAttr): Specified parameters of white filter.
        param_attr_bl(ParamAttr): Specified parameters of black filter.
C
Chengmo 已提交
809
        distribute_update_vars(list[ParamAttr.name]): Decided which params should be updated in distribute training.
C
Chengmo 已提交
810
            Used in Distribute Transpiler to create a trainer/server program.
A
Aurelius84 已提交
811 812 813 814 815 816 817 818 819
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
        dtype(str): The data type of output variable, float32.
    Returns:
        Variable: LoDTensor of pyramid hash embedding.
    """
    helper = LayerHelper('search_pyramid_hash', **locals())

    w_shape = [space_len + rand_len, 1]
820 821 822
    w = helper.create_parameter(
        attr=param_attr, shape=w_shape, dtype=dtype, is_bias=False
    )
A
Aurelius84 已提交
823 824 825 826 827
    w.stop_gradient = True

    input_vars = {'X': input, 'W': w}
    if white_list_len > 0:
        wl_shape = [white_list_len, 1]
828 829 830
        white_list = helper.create_parameter(
            attr=param_attr_wl, shape=wl_shape, dtype=dtype, is_bias=False
        )
A
Aurelius84 已提交
831 832 833 834 835
        white_list.stop_gradient = True
        input_vars['WhiteList'] = white_list

    if black_list_len >= 0:
        bl_shape = [black_list_len, 1]
836 837 838
        black_list = helper.create_parameter(
            attr=param_attr_bl, shape=bl_shape, dtype=dtype, is_bias=False
        )
A
Aurelius84 已提交
839 840 841
        black_list.stop_gradient = True
        input_vars['BlackList'] = black_list

C
Chengmo 已提交
842 843 844 845 846 847 848 849 850 851 852 853 854
    distribute_update_vars_str = ""
    if distribute_update_vars:
        assert isinstance(distribute_update_vars, list)
        special_name_list = []
        if param_attr:
            special_name_list.append(param_attr.name)
        if param_attr_wl:
            special_name_list.append(param_attr_wl.name)
        if param_attr_bl:
            special_name_list.append(param_attr_bl.name)
        for param in distribute_update_vars:
            if param not in special_name_list:
                raise ValueError(
855 856
                    "Pyramid Hash layer didn't have parameter {}".format(param)
                )
C
Chengmo 已提交
857 858
        distribute_update_vars_str = ",".join(distribute_update_vars)

A
Aurelius84 已提交
859 860 861
    res = helper.create_variable_for_type_inference(dtype)
    drop_pos = helper.create_variable_for_type_inference(dtype)
    x_temp_out = helper.create_variable_for_type_inference(dtype)
862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880
    helper.append_op(
        type='pyramid_hash',
        inputs=input_vars,
        outputs={"Out": res, "X_Temp_Out": x_temp_out, 'DropPos': drop_pos},
        attrs={
            'num_emb': num_emb,
            'space_len': space_len,
            'pyramid_layer': pyramid_layer,
            'rand_len': rand_len,
            'drop_out_percent': drop_out_percent,
            'is_training': is_training,
            'use_filter': use_filter,
            'white_list_len': white_list_len,
            'black_list_len': black_list_len,
            'seed': seed,
            'lr': lr,
            'distribute_update_vars': distribute_update_vars_str,
        },
    )
A
Aurelius84 已提交
881 882

    return res
Z
zhoushiyu 已提交
883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936


def shuffle_batch(x, seed=None):
    """
    This layer shuffle input tensor :attr:`x` . Normally, :attr:`x` is 2-D LoDTensor.

    :attr:`x` is a LoDTensor to be shuffled with shape :math:`[N_1, N_2, ..., N_k, D]` . Note that the last dim of input will not be shuffled.
    :math:`N_1 * N_2 * ... * N_k` numbers of elements with length :math:`D` will be shuffled randomly.

    For Example:

    .. code-block:: text

      Input:
        x.data = [[1, 2], [3, 4], [5, 6], [7, 8]]
        x.dims = [4, 2]

      Attrs:
        seed = 2019

      Output:
        Out.data =[[7, 8], [1, 2], [3, 4], [5, 6]]
        Out.dims = [4, 2]

    Args:
        x (Variable): The input variable. The input variable is a N-D LoDTensor with type int, float32 or float64.
        seed (None|int|Variable): The start up seed. If set, seed will be set as the start up seed of shuffle engine.
                If not set(Default), start up seed of shuffle engine will be generated randomly.

    Returns:
        Variables: The shuffled LoDTensor with the same shape and lod as input.

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name="x", shape=[-1, 4])
            out = fluid.contrib.layers.shuffle_batch(x)
    """
    helper = LayerHelper('shuffle_batch', **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    shuffle_idx = helper.create_variable_for_type_inference(dtype=np.int64)
    if seed is None and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed
    if seed is None:
        seed = np.random.randint(-65536, 65535)
    op_attrs = {}
    if isinstance(seed, int):
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("shuffle_batch_seed"),
            dtype="int64",
937 938 939 940 941 942 943 944
            persistable=False,
        )
    helper.append_op(
        type='shuffle_batch',
        inputs={'X': x, 'Seed': seed},
        outputs={'Out': out, 'ShuffleIdx': shuffle_idx, 'SeedOut': seed},
        attrs=op_attrs,
    )
Z
zhoushiyu 已提交
945
    return out
946 947 948 949 950 951 952


def partial_concat(input, start_index=0, length=-1):
    """
    **Partial Concat**
    This OP concatenates the inputs according to the start index and length. This
    OP exists in contrib, which means that it is not shown to the public.
C
Chengmo 已提交
953
    Only 2-D Tensor or LodTensor input is supported. Slice and concat can only be
954 955 956
    performed along the second dimension.

    .. code-block:: text
C
Chengmo 已提交
957

958 959 960 961 962 963 964 965
        Given:
            x = [[0, 1, 2],
                 [3, 4, 5]]
            y = [[6, 7 ,8],
                 [9, 10, 11]]
            output = partial_concat([x, y], start_index=0, length=2)

          we get:
C
Chengmo 已提交
966

967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983
            output = [[0, 1, 6, 7],
                      [3, 4, 9, 10]]

    Args:
        input(list): List of input Tensors with data type float32, float64, int32,
            int64.
        start_index(int32): The start index of each instance for partial concatenation.
            Default is 0.
        length(int32): The length of each instance for partial concatenation. Default is -1.
            Negative values for all elements after start_index.
    Returns:
        Variable: A Tensor with the same data type as input's.
    Examples:
        .. code-block:: python
            import paddle.fluid as fluid
            x = fluid.data(name="x", shape=[None,3], dtype="float32")
            y = fluid.data(name="y", shape=[None,3], dtype="float32")
C
Chengmo 已提交
984 985
            concat = fluid.contrib.layers.partial_concat(
                [x, y], start_index=0, length=2)
986 987 988 989
    """
    if not isinstance(input, list):
        warnings.warn(
            "The type of input in partial_concat should be list, but received %s."
990 991
            % (type(input))
        )
992 993 994
        input = [input]
    for id, x in enumerate(input):
        check_variable_and_dtype(
995 996
            x,
            'input[' + str(id) + ']',
997
            ['float16', 'float32', 'float64', 'int32', 'int64'],
998 999
            'partial_concat',
        )
1000 1001 1002 1003 1004 1005
    check_type(start_index, 'start_index', (int), 'partial_concat')
    check_type(length, 'length', (int), 'partial_concat')
    inputs = {'X': input}
    attrs = {'start_index': start_index, 'length': length}
    helper = LayerHelper('partial_concat', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
1006 1007 1008 1009 1010 1011
    helper.append_op(
        type='partial_concat',
        inputs=inputs,
        outputs={'Out': [out]},
        attrs=attrs,
    )
1012
    return out
1013 1014 1015 1016 1017


def partial_sum(input, start_index=0, length=-1):
    """
    **PartialSum**
C
Chengmo 已提交
1018
    This Op can sum the vars by specifying the initial position(start_index) and length(length).
1019
    This Op exists in contrib, which means that it is not shown to the public.
C
Chengmo 已提交
1020
    Only 2-D Tensor or LodTensor input is supported. Slice and concat can only be
1021 1022
    performed along the second dimension.
    .. code-block:: text
C
Chengmo 已提交
1023

1024 1025 1026 1027 1028 1029 1030
        Given:
            x = [[0, 1, 2],
                 [3, 4, 5]]
            y = [[6, 7 ,8],
                 [9, 10, 11]]
            output = partial_sum([x, y], start_index=0, length=2)
          we get:
C
Chengmo 已提交
1031

1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
            output = [[6, 8],
                      [12, 14]]
    Args:
        input(list): List of input Tensors with data type float32, float64, int32,
            int64.
    Returns:
        Variable: A Tensor with the same data type as input's.
    Examples:
        .. code-block:: python
        import paddle.fluid.layers as layers
        import paddle.fluid as fluid
        import numpy as np
        x = fluid.data(name="x", shape=[None, 3], dtype="float32")
        y = fluid.data(name="y", shape=[None, 3], dtype="float32")
        sum = layers.partial_sum([x,y], start_index=0, length=2)
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        xx = np.array([1,2,3,4,5,6]).reshape((2,3)).astype("float32")
        yy = np.array([6,5,4,4,5,6]).reshape((2,3)).astype("float32")
        out = exe.run(feed={"x":xx, "y":yy}, fetch_list=[sum])
    """
    for id, x in enumerate(input):
1054 1055 1056 1057 1058 1059
        check_variable_and_dtype(
            x,
            'input[' + str(id) + ']',
            ['float32', 'float64', 'int32', 'int64'],
            'partial_sum',
        )
1060 1061 1062 1063 1064 1065 1066

    inputs = {'X': input}
    attrs = {}
    attrs['start_index'] = start_index
    attrs['length'] = length
    helper = LayerHelper('partial_sum', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
1067 1068 1069
    helper.append_op(
        type='partial_sum', inputs=inputs, outputs={'Out': [out]}, attrs=attrs
    )
1070
    return out
C
Chengmo 已提交
1071 1072


1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
def sparse_embedding(
    input,
    size,
    padding_idx=None,
    is_test=False,
    entry=None,
    table_class="MemorySparseTable",
    param_attr=None,
    dtype='float32',
    slot=None,
):
Y
Yanxing Shi 已提交
1084 1085 1086
    r"""
    :api_attr: Static Graph

1087
    The OP is used as the operator of the Embedding Lookup layer in the large-scale
Y
Yanxing Shi 已提交
1088 1089
    sparse training of the parameter server mode, instead of using the paddle.nn.functional.embedding.

1090 1091
    The operator is used to lookup embeddings vector of ids provided by :attr:`input` .
    It automatically constructs a 2D embedding matrix based on the input :attr:`size`
Y
Yanxing Shi 已提交
1092 1093 1094 1095 1096
    (vocab_size, emb_size) and :attr:`dtype` .

    The shape of output Tensor is generated by appending an emb_size dimension to the
    last dimension of the input Tensor shape.

1097
    **Note:** The id in :attr:`input` must satisfy :math:`0 =< id < size[0]` , otherwise
Y
Yanxing Shi 已提交
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
    the program will throw an exception and exit.

    .. code-block:: text

        Case 1:

        input is a Tensor. padding_idx = -1
            input.data = [[1, 3], [2, 4], [4, 127]]
            input.shape = [3, 2]
        Given size = [128, 16]
        output is a Tensor:
            out.shape = [3, 2, 16]
            out.data = [[[0.129435295, 0.244512452, ..., 0.436322452],
                        [0.345421456, 0.524563927, ..., 0.144534654]],

                        [[0.345249859, 0.124939536, ..., 0.194353745],
                        [0.945345345, 0.435394634, ..., 0.435345365]],
1115

Y
Yanxing Shi 已提交
1116 1117 1118 1119
                        [[0.945345345, 0.435394634, ..., 0.435345365],
                        [0.0,         0.0,         ..., 0.0        ]]]  # padding data
        The input padding_idx is less than 0, it is automatically converted to padding_idx = -1 + 128 = 127
        It will pad all-zero data when ids is 127.
1120

Y
Yanxing Shi 已提交
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
        Case 2:

        input is a LoDTensor with 1-level LoD. padding_idx = 0
            input.lod = [[2, 3]]
            input.data = [[1], [3], [2], [4], [0]]
            input.shape = [5, 1]
        Given size = [128, 16]
        output is a LoDTensor:
            out.lod = [[2, 3]]
            out.shape = [5, 1, 16]
            out.data = [[[0.129435295, 0.244512452, ..., 0.436322452]],
                        [[0.345421456, 0.524563927, ..., 0.144534654]],
                        [[0.345249859, 0.124939536, ..., 0.194353745]],
                        [[0.945345345, 0.435394634, ..., 0.435345365]],
                        [[0.0,         0.0,         ..., 0.0        ]]]  # padding data
        It will pad all-zero data when ids is 0.

    Args:
1139
        input(Variable): A Tensor or LoDTensor with type int64, which contains the id
Y
Yanxing Shi 已提交
1140
            information. The value of the input id should satisfy :math:`0<= id < size[0]` .
1141 1142 1143 1144
        size(tuple|list): The shape of lookup table parameter (vocab_size, emb_size). It
            should have two elements which indicates the size of the dictionary of embeddings
            and the size of each embedding vector respectively. The initial parameter size
            is 0 in the large-scale sparse scenario, which will gradually expand with the
Y
Yanxing Shi 已提交
1145 1146
            training. So if vocab_size is temporarily useless, its value can be any integer.
            The emb_size is the dimensional configuration of the word embedding weight parameter.
1147
        padding_idx(int|long|None, optional): padding_idx needs to be in the interval [-vocab_size, vocab_size).
Y
Yanxing Shi 已提交
1148
            If :math:`padding\_idx < 0`, the :math:`padding\_idx` will automatically be converted
1149 1150
            to :math:`vocab\_size + padding\_idx` . It will output all-zero padding data whenever
            lookup encounters :math:`padding\_idx` in id. And the padding data will not be updated
Y
Yanxing Shi 已提交
1151
            while training. If set None, it makes no efe mfect to output. Default: None.
1152
        is_test(bool, optional): Training or prediction mode. In prediction mode (is_test=False),
Y
Yanxing Shi 已提交
1153
            the output is not initialized and created, and it is filled with 0 and returned. Default: False.
1154
        entry(str, optional): Entry config with parameter server whose value is ProbabilityEntry,
Y
Yanxing Shi 已提交
1155
            CountFilterEntry or None. Default: None.
1156
        table_class(str, optional): The type of the sparse table. The value can be CommonSparseTable
Y
Yanxing Shi 已提交
1157 1158
            or SSDSparseTable. The default is CommonSparseTable.
        param_attr(ParamAttr, optional): To specify the weight parameter property. Default: None, which means the
1159 1160 1161
            default weight parameter property is used. In addition, user-defined or pre-trained word
            vectors can be loaded with the :attr:`param_attr` parameter. The local word vector needs
            to be transformed into numpy format, and the shape of local word vector should be consistent
Y
Yanxing Shi 已提交
1162
            with :attr:`size` .
1163
        dtype(str): It refers to the data type of output Tensor. It must be float32 or
Y
Yanxing Shi 已提交
1164
            float64. Default: float32.
1165

Y
Yanxing Shi 已提交
1166 1167
    Returns:
        Variable: Embedding Tensor or LoDTensor mapped by input. The data type is the same as :attr:`dtype` .
1168

Y
Yanxing Shi 已提交
1169 1170 1171 1172
    Examples:
        .. code-block:: python

            import paddle
1173

Y
Yanxing Shi 已提交
1174 1175 1176 1177 1178 1179 1180 1181
            paddle.enable_static()
            sparse_feature_dim = 1024
            embedding_size = 64

            # Only when the feature appear more than 10 times or more will be participated in the training.
            entry = paddle.distributed.CountFilterEntry(10)

            input = paddle.static.data(name='ins', shape=[1], dtype='int64')
1182

Y
Yanxing Shi 已提交
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
            emb = paddle.static.nn.sparse_embedding(
                input=input,
                size=[sparse_feature_dim, embedding_size],
                is_test=False,
                entry=entry,
                param_attr=paddle.ParamAttr(name="SparseFeatFactors",
                initializer=paddle.nn.initializer.Uniform()))

    """

1193 1194
    helper = LayerHelper('sparse_embedding', **locals())

1195 1196 1197
    check_variable_and_dtype(
        input, 'input', ['int64'], 'fluid.contrib.layers.sparse_embedding'
    )
1198

1199 1200 1201 1202 1203 1204
    check_dtype(
        dtype,
        'dtype',
        ['float32', 'float64'],
        'paddle.static.nn.sparse_embedding',
    )
1205

1206 1207 1208 1209 1210 1211 1212
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=size,
        type=core.VarDesc.VarType.SELECTED_ROWS,
        dtype=dtype,
        is_bias=False,
    )
1213 1214 1215

    tmp = helper.create_variable_for_type_inference(dtype)

1216 1217 1218 1219 1220 1221 1222
    padding_idx = (
        -1
        if padding_idx is None
        else padding_idx
        if padding_idx >= 0
        else (size[0] + padding_idx)
    )
1223

1224
    if table_class not in [
1225 1226 1227
        "CommonSparseTable",
        "SSDSparseTable",
        "MemorySparseTable",
1228
    ]:
T
Thunderbrook 已提交
1229
        raise ValueError(
1230 1231
            "table_class must be in [CommonSparseTable, SSDSparseTable, MemorySparseTable]"
        )
T
Thunderbrook 已提交
1232

1233 1234 1235
    entry_str = "none"

    if entry is not None:
T
tangwei12 已提交
1236
        if entry.__class__.__name__ not in [
1237 1238 1239
            "ProbabilityEntry",
            "CountFilterEntry",
            "ShowClickEntry",
T
tangwei12 已提交
1240
        ]:
1241
            raise ValueError(
1242
                "entry must be instance in [paddle.distributed.ProbabilityEntry, paddle.distributed.CountFilterEntry, paddle.distributed.ShowClickEntry]"
T
tangwei12 已提交
1243 1244
            )
        entry_str = entry._to_attr()
1245

1246
    if slot is None:
1247 1248
        slot = 0

1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input, 'W': w},
        outputs={'Out': tmp},
        attrs={
            'padding_idx': padding_idx,
            'is_sparse': True,
            'is_distributed': True,
            'remote_prefetch': True,
            'is_test': is_test,
            'entry': entry_str,
            'table_class': table_class,
            'slot': slot,
        },
    )
1264 1265 1266
    return tmp


C
Chengmo 已提交
1267 1268 1269
def tdm_child(x, node_nums, child_nums, param_attr=None, dtype='int32'):
    """
    **Tdm Child**
1270
     According to the input node_id on the given tree, return the corresponding child node_id and
C
Chengmo 已提交
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
      whether child is a leaf node by leaf_mask value.
    .. code-block:: text

        Given:
            tree[[0], [1, 2], [3, 4], [5, 6]] # A binary tree with seven nodes
            x = [[2], [3]]
            node_nums = 7
            child_nums = 2

          we get:
            child = [[5, 6],
                     [0, 0]]
            leaf_mask = [[1, 1],
                         [0, 0]]
    Args:
        x(Variable): Variable contained the node_id information, dtype support int32/int64.
        node_nums(int): Number of total nodes.
        child_nums(int): Maximum number of child nodes per node.
        param_attr(ParamAttr): To specify the tdm-tree-info parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in: ref: `api_fluid_ParamAttr`, should
1291 1292
            has shape(node_nums, 3 + child_nums), dtype support int32/int64.
            The dimension[1] of tdm-tree-info contains the following:
C
Chengmo 已提交
1293 1294 1295
            1. Item_id(int, shape(1)), if node is a leaf node, give its item_id corresponding to node_id, else give 0.
            2. Layer_id(int, shape(1)), indicates which layer the node is on.
            3. Parent_id(int, shape(1)), node's parent node.
1296
            4. Child_id(int, shape(child_nums)), all child node's node_id of this node should be given.
C
Chengmo 已提交
1297 1298 1299 1300
            If the number of child nodes is insufficient, padding 0 until child nums equal to child_nums
        dtype(str): The data type of output child and leaf_mask, support int32/int64.

    Returns:
1301
        tuple: A tuple including input node's child(Variable) and leaf_mask(Variable).
C
Chengmo 已提交
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
            If child is a leaf node, leaf_mask equal ot 1, otherwise equal to 0.

    Examples:
        .. code-block:: python
        import paddle.fluid as fluid
        import numpy as np
        x = fluid.data(name="x", shape=[None, 1], dtype="int32", lod_level=1)
        tree_info = [[0,0,0,1,2],
                     [0,1,0,3,4],[0,1,0,5,6],
                     [0,2,1,0,0],[1,2,1,0,0],[2,2,2,0,0],[3,2,2,0,0]]
        tree_info_np = np.array(tree_info)
        tree_info_np = np.reshape(tree_info_np, (7,5))
        node_nums = 7
        child_nums = 2
        child, leaf_mask  = fluid.contrib.layers.tdm_child(x, node_nums, child_nums,
                                param_attr=fluid.ParamAttr(
                                    initializer=fluid.initializer.NumpyArrayInitializer(
                                                                            tree_info_np)))
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        xx = np.array([[2],[3]]).reshape((2,1)).astype("int32")
        child_res, leaf_mask_res = exe.run(feed={"x":xx}, fetch_list=[child, leaf_mask])
1325
    """
C
Chengmo 已提交
1326
    helper = LayerHelper("tdm_child", **locals())
1327 1328 1329
    check_dtype(
        dtype, 'dtype', ['int32', 'int64'], 'fluid.contrib.layers.tdm_child'
    )
C
Chengmo 已提交
1330
    c_dtype = convert_np_dtype_to_dtype_(dtype)
1331 1332 1333 1334 1335 1336
    tree_info = helper.create_parameter(
        attr=helper.param_attr,
        shape=[node_nums, 3 + child_nums],
        dtype=dtype,
        default_initializer=Constant(0),
    )
C
Chengmo 已提交
1337 1338 1339 1340 1341
    tree_info.stop_gradient = True

    child = helper.create_variable_for_type_inference(dtype=dtype)
    leaf_mask = helper.create_variable_for_type_inference(dtype=dtype)

1342 1343 1344 1345 1346 1347 1348
    helper.append_op(
        type='tdm_child',
        inputs={'X': x, 'TreeInfo': tree_info},
        outputs={'Child': child, 'LeafMask': leaf_mask},
        attrs={'child_nums': child_nums, 'dtype': c_dtype},
        stop_gradient=True,
    )
C
Chengmo 已提交
1349
    return (child, leaf_mask)
S
ShenLiang 已提交
1350 1351


1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
def tdm_sampler(
    x,
    neg_samples_num_list,
    layer_node_num_list,
    leaf_node_num,
    tree_travel_attr=None,
    tree_layer_attr=None,
    output_positive=True,
    output_list=True,
    seed=0,
    tree_dtype='int32',
    dtype='int32',
):
C
Chengmo 已提交
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
    """
    **Tdm Sampler**
    According to the input positive samples at leaf node(x), do negative sampling layer by layer on the given tree.
    .. code-block:: text

        Given:
            tree[[0], [1, 2], [3, 4], [5, 6]] # A binary tree with seven nodes
            travel_list = [[1, 3], [1, 4], [2, 5], [2, 6]] # leaf node's travel path (exclude root node)
            layer_list = [[1, 2], [3, 4, 5, 6]] # two layer (exclude root node)

            x = [[0], [1], [2], [3]] # Corresponding to leaf node [[3], [4], [5], [6]]
            neg_samples_num_list = [0, 0] # negative sample nums = 0
            layer_node_num_list = [2, 4]
            leaf_node_num = 4
            output_list = False

          we get:
            out = [[1, 3], [1, 4], [2, 5], [2, 6]]
            labels = [[1, 1], [1, 1], [1, 1], [1, 1]]
            mask = [[1, 1], [1, 1], [1, 1], [1, 1]]

    Args:
        x (Variable): Variable contained the item_id(corresponding to leaf node) information, dtype support int32/int64.
        neg_samples_num_list (list(int)): Number of negative samples per layer.
        layer_node_num_list (list(int)): Number of nodes per layer, must has same shape with neg_samples_num_list.
        leaf_node_num (int): Number of leaf nodes.
        tree_travel_attr (ParamAttr): To specify the tdm-travel parameter property. Default: None, which means the
1392
            default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr`, should
C
Chengmo 已提交
1393 1394
            has shape (leaf_node_num, len(layer_node_num_list)), dtype support int32/int64.
        tree_layer_attr (ParamAttr): To specify the tdm-layer parameter property. Default: None, which means the
1395
            default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr`, should
C
Chengmo 已提交
1396 1397 1398 1399 1400
            has shape (node_num, 1), dtype support int32/int64.
        output_positive (bool): Whether to output positive samples (includ label and mask )at the same time.
        output_list (bool): Whether to divide the output into layers and organize it into list format.
        seed (int): The number of random seed.
        tree_dtype(np.dtype|core.VarDesc.VarType|str): The dtype of tdm-travel and tdm-layer, support int32/int64
1401
        dtype(np.dtype|core.VarDesc.VarType|str): The dtype of output(sampling results, labels and masks)
C
Chengmo 已提交
1402 1403 1404

    Returns:
        tuple: A tuple including sampling results, corresponding labels and masks. if output_positive = True, sampling
1405 1406 1407
            result  will include both positive and negative samples. If sampling reseult is a positive sample, the label is 1,
            and if it is a negative sample, it is 0. If the tree is unbalanced, in order to ensure the consistency of the
            sampling result shape, the padding sample's mask = 0, the real sample's mask value = 1.
C
Chengmo 已提交
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
            If output_list = True, the result will organize into list format specified by layer information.
            Output variable have same type with tdm-travel and tdm-layer parameter(tree_dtype).

    Examples:
        .. code-block:: python
        import paddle.fluid as fluid
        import numpy as np
        x = fluid.data(name="x", shape=[None, 1], dtype="int32", lod_level=1)
        travel_list = [[1, 3], [1, 4], [2, 5], [2, 6]] # leaf node's travel path, shape(leaf_node_num, layer_num)
        layer_list_flat = [[1], [2], [3], [4], [5], [6]] # shape(node_nums, 1)

        neg_samples_num_list = [0, 0] # negative sample nums = 0
        layer_node_num_list = [2, 4] #two layer (exclude root node)
        leaf_node_num = 4

        travel_array = np.array(travel_list)
        layer_array = np.array(layer_list_flat)

        sample, label, mask = fluid.contrib.layers.tdm_sampler(
            x,
            neg_samples_num_list,
            layer_node_num_list,
            leaf_node_num,
            tree_travel_attr=fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    travel_array)),
            tree_layer_attr=fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    layer_array)),
            output_positive=True,
            output_list=True,
            seed=0,
            tree_dtype='int32')

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        xx = np.array([[0],[1]]).reshape((2,1)).astype("int32")

        exe.run(feed={"x":xx})

    """
    helper = LayerHelper("tdm_sampler", **locals())
1451 1452 1453 1454 1455 1456 1457 1458 1459
    check_dtype(
        tree_dtype,
        'tree_dtype',
        ['int32', 'int64'],
        'fluid.contrib.layers.tdm_sampler',
    )
    check_dtype(
        dtype, 'dtype', ['int32', 'int64'], 'fluid.contrib.layers.tdm_sampler'
    )
C
Chengmo 已提交
1460 1461 1462 1463 1464 1465
    c_dtype = convert_np_dtype_to_dtype_(dtype)

    if len(neg_samples_num_list) != len(layer_node_num_list):
        raise ValueError(
            "The shape of negative samples list must match the shape of layers. "
            "But received len of neg_samples_num_list: {},"
1466 1467 1468 1469
            "and len of layer_node_num_list: {}, please check your input.".format(
                len(neg_samples_num_list), len(layer_node_num_list)
            )
        )
C
Chengmo 已提交
1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
    assert leaf_node_num is not None, "leaf_node_num should not be None here."

    layer_nums = 0
    node_nums = 0
    tree_layer_offset_lod = [0]
    for layer_idx, layer_node_num in enumerate(layer_node_num_list):
        layer_nums += 1
        node_nums += layer_node_num
        tree_layer_offset_lod.append(node_nums)
        if neg_samples_num_list[layer_idx] >= layer_node_num_list[layer_idx]:
            raise ValueError(
                "The number of negative samples must be less than the number of nodes "
                "in the layer {}, But received negative nums {}, and num of node at layer {} "
                "is {}, please check your input.".format(
1484 1485 1486 1487 1488 1489 1490 1491 1492
                    layer_idx,
                    neg_samples_num_list[layer_idx],
                    layer_idx,
                    layer_node_num_list[layer_idx],
                )
            )
    assert (
        leaf_node_num < node_nums
    ), "leaf_node_num must be less than total node nums."
C
Chengmo 已提交
1493 1494

    travel_shape = [leaf_node_num, layer_nums]
1495 1496 1497 1498 1499 1500
    travel = helper.create_parameter(
        attr=tree_travel_attr,
        shape=travel_shape,
        dtype=tree_dtype,
        default_initializer=Constant(0),
    )
C
Chengmo 已提交
1501 1502

    layer_shape = [node_nums, 1]
1503 1504 1505 1506 1507 1508
    layer = helper.create_parameter(
        attr=tree_layer_attr,
        shape=layer_shape,
        dtype=tree_dtype,
        default_initializer=Constant(0),
    )
C
Chengmo 已提交
1509 1510 1511 1512 1513 1514 1515 1516 1517 1518

    out = helper.create_variable_for_type_inference(dtype=dtype)
    out.stop_gradient = True

    labels = helper.create_variable_for_type_inference(dtype=dtype)
    labels.stop_gradient = True

    mask = helper.create_variable_for_type_inference(dtype=dtype)
    mask.stop_gradient = True

1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
    helper.append_op(
        type='tdm_sampler',
        inputs={"X": x, "Travel": travel, "Layer": layer},
        outputs={'Out': out, 'Labels': labels, 'Mask': mask},
        attrs={
            'neg_samples_num_list': neg_samples_num_list,
            'output_positive': output_positive,
            'layer_offset_lod': tree_layer_offset_lod,
            'seed': seed,
            'dtype': c_dtype,
        },
    )
C
Chengmo 已提交
1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541

    if output_list:
        output_list = []
        labels_list = []
        mask_list = []
        start_offset = 0
        positive_flag = 1
        if not output_positive:
            positive_flag = 0

        for layer_sample_num in neg_samples_num_list:
1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552
            end_offset = start_offset + layer_sample_num + positive_flag
            layer_samples = slice(
                out, axes=[1], starts=[start_offset], ends=[end_offset]
            )
            layer_labels = slice(
                labels, axes=[1], starts=[start_offset], ends=[end_offset]
            )
            layer_mask = slice(
                mask, axes=[1], starts=[start_offset], ends=[end_offset]
            )

1553
            layer_samples = paddle.reshape(
1554 1555
                layer_samples, [-1, layer_sample_num + positive_flag, 1]
            )
C
Chengmo 已提交
1556 1557
            layer_samples.stop_gradient = True

1558
            layer_labels = paddle.reshape(
1559 1560
                layer_labels, [-1, layer_sample_num + positive_flag, 1]
            )
C
Chengmo 已提交
1561 1562
            layer_labels.stop_gradient = True

1563
            layer_mask = paddle.reshape(
1564 1565
                layer_mask, [-1, layer_sample_num + positive_flag, 1]
            )
C
Chengmo 已提交
1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579
            layer_mask.stop_gradient = True

            output_list.append(layer_samples)
            labels_list.append(layer_labels)
            mask_list.append(layer_mask)
            start_offset = end_offset

        out = output_list
        labels = labels_list
        mask = mask_list

    return (out, labels, mask)


1580 1581 1582 1583 1584 1585 1586 1587
def rank_attention(
    input,
    rank_offset,
    rank_param_shape,
    rank_param_attr,
    max_rank=3,
    max_size=0,
):
S
ShenLiang 已提交
1588 1589
    """
    **Rank Attention layer**
1590
    This Op can calculate rank attention between input and rank_param, and
S
ShenLiang 已提交
1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605
    rank_param gives the organization of data. Notice: It currently supports
    GPU device.
    This Op exists in contrib, which means that it is not shown to the public.
    Args:
        input: Tensor with data type float32, float64.
        rank_offset: Tensor with data type int32.
        rank_para_shape: The shape of rank_param.
        rank_param_attr: Attribute initializer of rank_param.
        max_rank: The max rank of input's ranks.
    Returns:
        Variable: A Tensor with the same data type as input's.
    Examples:
        .. code-block:: python
           import paddle.fluid as fluid
           import numpy as np
C
Chengmo 已提交
1606

S
ShenLiang 已提交
1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
           input = fluid.data(name="input", shape=[None, 2], dtype="float32")
           rank_offset = fluid.data(name="rank_offset", shape=[None, 7], dtype="int32")
           out = fluid.contrib.layers.rank_attention(input=input,
                                                     rank_offset=rank_offset,
                                                     rank_param_shape=[18,3],
                                                     rank_param_attr=
                                                       fluid.ParamAttr(learning_rate=1.0,
                                                                     name="ubm_rank_param.w_0",
                                                                     initializer=
                                                                     fluid.initializer.Xavier(uniform=False)),
1617 1618
                                                      max_rank=3,
                                                      max_size=0)
S
ShenLiang 已提交
1619 1620 1621 1622 1623 1624
    """
    helper = LayerHelper('rank_attention', **locals())
    dtype = helper.input_dtype(input_param_name='input')
    input_shape = input.shape
    assert input_shape[1] * max_rank * max_rank == rank_param_shape[0]

1625 1626 1627
    rank_param = helper.create_parameter(
        attr=rank_param_attr, shape=rank_param_shape, dtype=dtype
    )
S
ShenLiang 已提交
1628 1629 1630
    rank_param.stop_gradient = False

    output = helper.create_variable_for_type_inference(dtype)
1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643
    input_help = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True
    )
    ins_rank = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True
    )

    helper.append_op(
        type="rank_attention",
        inputs={"X": input, "RankOffset": rank_offset, "RankParam": rank_param},
        outputs={"Out": output, "InputHelp": input_help, "InsRank": ins_rank},
        attrs={"MaxRank": max_rank, "MaxSize": max_size},
    )
S
ShenLiang 已提交
1644
    return output
S
ShenLiang 已提交
1645 1646 1647 1648 1649


def batch_fc(input, param_size, param_attr, bias_size, bias_attr, act=None):
    """
    **Batch FC layer**
1650 1651
    This Op can calculate BatchFC. This is similar to matmul op,
    except that the bias and relu activation layers are added.
S
ShenLiang 已提交
1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666
    Notice: It currently supports GPU device.
    This Op exists in contrib, which means that it is not shown to the public.
    Args:
        input: Tensor with data type float32, float64.
        param_size: The size of w.
        param_attr: Attribute initializer of w.
        bias_size: The size of bias.
        bias_attr: Attribute initializer of bias.
        act: Activation to be applied to the output of this layer.

    Returns:
        Variable: A Tensor with the same data type as input's.
    Examples:
        .. code-block:: python
           import paddle.fluid as fluid
1667

S
ShenLiang 已提交
1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
           input = fluid.data(name="input", shape=[16, 2, 3], dtype="float32")
           out = fluid.contrib.layers.batch_fc(input=input,
                                               param_size=[16, 3, 10],
                                               param_attr=
                                                 fluid.ParamAttr(learning_rate=1.0,
                                                               name="w_0",
                                                               initializer=
                                                               fluid.initializer.Xavier(uniform=False)),
                                               bias_size=[16, 10],
                                               bias_attr=
                                                 fluid.ParamAttr(learning_rate=1.0,
                                                               name="b_0",
                                                               initializer=
                                                               fluid.initializer.Xavier(uniform=False)),
                                                   act="relu")
    """

    helper = LayerHelper("batch_fc", **locals())
    check_type(input, 'input', (Variable), 'batch_fc')
    input_shape = input.shape
    assert input_shape[0] == param_size[0]
    assert input_shape[2] == param_size[1]
    assert param_size[2] == bias_size[1]
    assert input_shape[0] == bias_size[0]

    dtype = helper.input_dtype()
    check_dtype(dtype, 'input', ['float32', 'float64'], 'batch_fc')

1696 1697 1698 1699 1700 1701
    w = helper.create_parameter(
        attr=param_attr, shape=param_size, dtype=dtype, is_bias=False
    )
    b = helper.create_parameter(
        attr=bias_attr, shape=bias_size, dtype=dtype, is_bias=False
    )
S
ShenLiang 已提交
1702
    pre_act = helper.create_variable_for_type_inference(dtype)
1703 1704 1705 1706 1707
    helper.append_op(
        type="batch_fc",
        inputs={"Input": input, "W": w, "Bias": b},
        outputs={"Out": pre_act},
    )
S
ShenLiang 已提交
1708
    return helper.append_activation(pre_act)
S
ShenLiang 已提交
1709 1710 1711


def _pull_box_extended_sparse(input, size, extend_size=64, dtype='float32'):
1712
    r"""
S
ShenLiang 已提交
1713 1714 1715 1716 1717 1718 1719 1720 1721
    **Pull Box Extended Sparse Layer**
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
    BoxPS lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
    Args:
        input(Variable|list of Variable): Input is a Tensor<int64> Variable, which
            contains the IDs information.
        size(int): The embedding size parameter, which indicates the size of
            each embedding vector respectively.
1722
        extend_size(int): The embedding size parameter in extended dim,
S
ShenLiang 已提交
1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745
            which indicates the size of each embedding vector respectively.
        dtype(str): The dtype refers to the data type of output tensor. Only supports
      float32 now.
    Returns:
        Variable|list of Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
    Examples:
        .. code-block:: python
          import paddle.fluid as fluid
          data = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          emb, emb_ex = fluid.contrib.layers._pull_box_extended_sparse(input=data, size=8, extend_size=128)
    """
    helper = LayerHelper('pull_box_extended_sparse', **locals())
    helper.input_dtype()
    inputs = helper.multiple_input()
    outs = [
        helper.create_variable_for_type_inference(dtype)
        for i in range(len(inputs))
    ]
    outs_extend = [
        helper.create_variable_for_type_inference(dtype)
        for i in range(len(inputs))
    ]
1746 1747 1748 1749 1750 1751
    helper.append_op(
        type='pull_box_extended_sparse',
        inputs={'Ids': inputs},
        outputs={'Out': outs, 'OutExtend': outs_extend},
        attrs={'emb_size': size, 'emb_extended_size': extend_size},
    )
S
ShenLiang 已提交
1752 1753 1754
    if len(outs) == 1:
        return outs[0], outs_extend[0]
    return outs, outs_extend
L
LielinJiang 已提交
1755 1756 1757 1758 1759


def bilateral_slice(x, guide, grid, has_offset, name=None):
    """
    :alias_main: paddle.nn.functional.bilateral_slice
1760 1761
        :alias: paddle.nn.functional.bilateral_slice,paddle.nn.functional.vision.bilateral_slice
        :old_api: paddle.fluid.layers.bilateral_slice
L
LielinJiang 已提交
1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793

    This operation implements bilateral slicing on the input according to the guide map.
    For more information of bilateral slicing, please refer to Deep Bilateral Learning for Real-Time Image Enhancement <https://groups.csail.mit.edu/graphics/hdrnet/data/hdrnet.pdf>_

    Args:
        x(Variable): The input tensor, which is a 4-D tensor with shape
                     [N, C, H, W], N is the batch size, C is the channel
                     number, H and W is the feature height and width.
                     The data type is float32 and float64.
        guide(Variable): Input grid tensor of shape [N, H, W]. The
                        data type is float32 and float64.
        grid(Variable): Input grid tensor of shape [N, C, D, H, W]. The
                        data type is float32 and float64.
        has_offset(bool): Whether to slice with affine offset.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.

    Returns:
        Variable: Output of shape [N, C, H, W]. The data type is same as input tensor.

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid

            x = fluid.data(name='x', shape=[None, 3, 101, 60], dtype='float32')
            guide = fluid.data(name='guide', shape=[None, 101, 60], dtype='float32')
            grid = fluid.data(name='grid', shape=[None, 12, 8, 10, 6], dtype='float32')

            # without offset
1794
            output = fluid.contrib.bilateral_slice(x, guide, grid, has_offset=False)
1795

L
LielinJiang 已提交
1796
            # has offset
1797
            output = fluid.contrib.bilateral_slice(x, guide, grid, has_offset=True)
L
LielinJiang 已提交
1798 1799

    """
J
Jiabin Yang 已提交
1800
    if paddle.fluid._non_static_mode():
1801
        attrs = ('has_offset', has_offset)
1802
        return getattr(_legacy_C_ops, "bilateral_slice")(x, grid, guide, *attrs)
L
LielinJiang 已提交
1803 1804

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'bilateral_slice')
1805 1806 1807 1808 1809 1810
    check_variable_and_dtype(
        guide, 'guide', ['float32', 'float64'], 'bilateral_slice'
    )
    check_variable_and_dtype(
        grid, 'grid', ['float32', 'float64'], 'bilateral_slice'
    )
1811
    helper = LayerHelper("bilateral_slice", **locals())
L
LielinJiang 已提交
1812 1813
    out = helper.create_variable_for_type_inference(x.dtype)
    inputs = {'X': x, 'Guide': guide, 'Grid': grid}
1814 1815 1816 1817 1818 1819
    helper.append_op(
        type='bilateral_slice',
        inputs=inputs,
        attrs={'has_offset': has_offset},
        outputs={'Out': out},
    )
L
LielinJiang 已提交
1820
    return out
1821 1822


1823 1824 1825 1826 1827 1828 1829 1830 1831 1832
def correlation(
    x,
    y,
    pad_size,
    kernel_size,
    max_displacement,
    stride1,
    stride2,
    corr_type_multiply=1,
):
1833 1834 1835
    """

    This operation compute correlation of two tensor.
1836 1837
    For more information of correlation, please refer to PWC-Net:
    CNNs for Optical Flow Using Pyramid, Warping, and Cost Volume
1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878
    <https://arxiv.org/pdf/1709.02371.pdf>_

    Args:
        x(Tensor): The input x is 4-D Tensor with shape [N, C, H, W]. The data type is float32 and float64.
        y(Tensor): The input y is 4-D Tensor with shape [N, C, H, W]. The data type is float32 and float64.
        pad_size(int): Pad size. The data type is int.
        max_displacement(int): Max displacement. The data type is int.
        stride1(int): stride size of x. The data type is int.
        stride2(int): stride size of y. The data type is int.
        corr_type_multiply(int, optional): The type of multiply. The data type is int. Default: 1.

    Returns:
        Tensor: The data type is same as input tensor.

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid

            x1 = fluid.layers.data(name='x1',
                               shape=x_shape,
                               dtype=x_type,
                               append_batch_size=False)
            x2 = fluid.layers.data(name='x2',
                                shape=x_shape,
                                dtype=x_type,
                                append_batch_size=False)


            out = fluid.contrib.correlation(
                            x1,
                            x2,
                            pad_size=4,
                            kernel_size=1,
                            max_displacement=4,
                            stride1=1,
                            stride2=1)

    """

J
Jiabin Yang 已提交
1879
    if paddle.fluid._non_static_mode():
1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893
        attrs = (
            "pad_size",
            pad_size,
            "kernel_size",
            kernel_size,
            "max_displacement",
            max_displacement,
            "stride1",
            stride1,
            "stride2",
            stride2,
            "corr_type_multiply",
            corr_type_multiply,
        )
1894
        output = getattr(_legacy_C_ops, "correlation")(x, y, *attrs)
1895
    else:
1896 1897
        helper = LayerHelper("correlation", **locals())
        output = helper.create_variable_for_type_inference(dtype=x.dtype)
1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
        helper.append_op(
            type="correlation",
            inputs={"Input1": x, "Input2": y},
            attrs={
                "pad_size": pad_size,
                "kernel_size": kernel_size,
                "max_displacement": max_displacement,
                "stride1": stride1,
                "stride2": stride2,
                "corr_type_multiply": corr_type_multiply,
            },
            outputs={"Output": output},
        )
1911
    return output
Z
Zhang Ting 已提交
1912 1913


1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925
def fused_bn_add_act(
    x,
    y,
    momentum=0.9,
    epsilon=1e-05,
    param_attr=None,
    bias_attr=None,
    moving_mean_name=None,
    moving_variance_name=None,
    act=None,
    name=None,
):
1926
    r"""
Z
Zhang Ting 已提交
1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
    This Op performs batch norm on input x, and adds the result to input y. Then
    it performs activation on the sum. The data format of inputs must be NHWC
    `[batch, in_height, in_width, in_channels]`.

    Args:
        x(Tensor): The rank of input tensor can be 2, 3, 4, 5. The data type
            is float16.
        y(Tensor): The rank of input tensor can be 2, 3, 4, 5. The data type
            is float16.
        momentum(float|Tensor, optional): The value used for the moving_mean and
            moving_var computation. This should be a float number or a tensor with
            shape [1] and data type as float32. The updated formula is:
            :math:`moving\_mean = moving\_mean * momentum + new\_mean * (1. - momentum)`
            :math:`moving\_var = moving\_var * momentum + new\_var * (1. - momentum)`
            Default is 0.9.
        epsilon(float, optional): A value added to the denominator for
            numerical stability. Default is 1e-5.
        param_attr(ParamAttr, optional): The parameter attribute for Parameter `scale`
            of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
1946 1947 1948
                will create ParamAttr as param_attr, the name of scale can be set in ParamAttr.
                If the Initializer of the param_attr is not set, the parameter is initialized
                with Xavier. Default: None.
Z
Zhang Ting 已提交
1949 1950
        bias_attr(ParamAttr, optional): The parameter attribute for the bias of batch_norm.
            If it is set to None or one attribute of ParamAttr, batch_norm
1951 1952 1953
                will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr.
                If the Initializer of the bias_attr is not set, the bias is initialized zero.
                Default: None.
Z
Zhang Ting 已提交
1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
        moving_mean_name(str, optional): The name of moving_mean which store the global Mean. If it
            is set to None, batch_norm will save global mean with a random name, otherwise, batch_norm
            will save global mean with the string.
        moving_variance_name(str, optional): The name of the moving_variance which store the global Variance.
            If it is set to None, batch_norm will save global variance with a random name, otherwise, batch_norm
            will save global variance with the string.
        act(string, optional): Activation type, linear|relu|prelu|...
        name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`.
            Usually name is no need to set and None by default.

    Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            def build_program(main_program, startup_program):
                with fluid.program_guard(main_program, startup_program):
                    x = fluid.layers.data(name='x', shape=[1, 28, 28], dtype='float32')
                    y = fluid.layers.data(name="y", shape=[1], dtype='int64')
                    conv1_1 = fluid.layers.conv2d(
                        input=x,
                        filter_size=3,
                        num_filters=32,
                        stride=1,
                        padding=1,
                        act=None,
                        bias_attr=False,
                        data_format='NHWC')
                    conv1_2 = fluid.layers.conv2d(
                        input=x,
                        filter_size=3,
                        num_filters=32,
                        stride=1,
                        padding=1,
                        act=None,
                        bias_attr=False,
                        data_format='NHWC')
                    bn = fluid.layers.batch_norm(
                        input=conv1_1,
                        act=None,
                        data_layout='NHWC')
                    fused_bn_add_act = fluid.contrib.layers.fused_bn_add_act(conv1_2, bn)
                    prediction = fluid.layers.fc(input=fused_bn_add_act, size=10, act='softmax')
                    loss = fluid.layers.cross_entropy(input=prediction, label=y)
                    loss = fluid.layers.mean(loss)
                    sgd = fluid.optimizer.SGD(learning_rate=0.001)
                    sgd = fluid.contrib.mixed_precision.decorate(
                        sgd, use_dynamic_loss_scaling=True, init_loss_scaling=128.0)
                    sgd.minimize(loss)

                return x, y, loss

            iters = 5
            batch_size = 16
            support_gpu = fluid.is_compiled_with_cuda()
            if support_gpu:
                main_program = fluid.Program()
                startup_program = fluid.Program()
                place = fluid.CUDAPlace(0)
                x, y, loss = build_program(main_program, startup_program)
2014

Z
Zhang Ting 已提交
2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027
                feeder = fluid.DataFeeder(feed_list=[x, y], place=place)
                train_reader = paddle.batch(
                    paddle.dataset.mnist.train(), batch_size=batch_size)
                exe = fluid.Executor(place)
                scope = fluid.Scope()
                with fluid.scope_guard(scope):
                    exe.run(startup_program)
                    for _ in range(iters):
                        data = next(train_reader())
                        loss_v = exe.run(main_program, feed=feeder.feed(data), fetch_list=[loss])
    """
    helper = LayerHelper('fused_bn_add_act', **locals())

2028 2029 2030 2031 2032 2033
    check_variable_and_dtype(
        x, 'input', ['float16', 'float32', 'float64'], 'fused_bn_add_act'
    )
    check_variable_and_dtype(
        y, 'input', ['float16', 'float32', 'float64'], 'fused_bn_add_act'
    )
Z
Zhang Ting 已提交
2034 2035 2036 2037 2038 2039 2040
    bn_param_dtype = core.VarDesc.VarType.FP32

    x_shape = x.shape
    channel_num = x_shape[-1]
    param_shape = [channel_num]

    # create parameter
2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=bn_param_dtype,
        default_initializer=Constant(1.0),
    )
    bias = helper.create_parameter(
        attr=helper.bias_attr,
        shape=param_shape,
        dtype=bn_param_dtype,
        is_bias=True,
    )
    mean = helper.create_parameter(
        attr=ParamAttr(
            name=moving_mean_name, initializer=Constant(0.0), trainable=False
        ),
        shape=param_shape,
        dtype=bn_param_dtype,
    )
Z
Zhang Ting 已提交
2060
    mean.stop_gradient = True
2061 2062 2063 2064 2065 2066 2067 2068 2069
    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
            trainable=False,
        ),
        shape=param_shape,
        dtype=bn_param_dtype,
    )
Z
Zhang Ting 已提交
2070 2071 2072 2073 2074 2075 2076
    variance.stop_gradient = True

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
2077 2078 2079
    saved_mean = helper.create_variable_for_type_inference(
        dtype=bn_param_dtype, stop_gradient=True
    )
Z
Zhang Ting 已提交
2080
    saved_variance = helper.create_variable_for_type_inference(
2081 2082
        dtype=bn_param_dtype, stop_gradient=True
    )
Z
Zhang Ting 已提交
2083
    reserve_space = helper.create_variable_for_type_inference(
2084 2085
        dtype=core.VarDesc.VarType.FP16, stop_gradient=True
    )
Z
Zhang Ting 已提交
2086
    batch_norm_out = helper.create_variable_for_type_inference(
2087 2088
        core.VarDesc.VarType.FP16
    )
Z
Zhang Ting 已提交
2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103

    inputs = {
        "X": x,
        "Z": y,
        "Scale": scale,
        "Bias": bias,
    }
    attrs = {"epsilon": epsilon, 'momentum': momentum}

    outputs = {
        "Y": batch_norm_out,
        "MeanOut": mean_out,
        "VarianceOut": variance_out,
        "SavedMean": saved_mean,
        "SavedVariance": saved_variance,
2104
        "ReserveSpace": reserve_space,
Z
Zhang Ting 已提交
2105 2106
    }

2107 2108 2109 2110 2111 2112
    helper.append_op(
        type="fused_bn_add_activation",
        inputs=inputs,
        outputs=outputs,
        attrs=attrs,
    )
Z
Zhang Ting 已提交
2113 2114

    return batch_norm_out
2115 2116


2117 2118 2119
def pow2_decay_with_linear_warmup(
    warmup_steps, total_steps, base_lr, end_lr, dtype='float32', name=None
):
J
Jiabin Yang 已提交
2120
    if paddle.fluid._non_static_mode():
2121
        raise NotImplementedError(
2122 2123
            "pow2_decay_with_linear_warmup does not support dygraph mode yet."
        )
2124 2125 2126

    helper = LayerHelper("pow2_decay_with_linear_warmup", **locals())
    lr = helper.create_global_variable(persistable=True, dtype=dtype, shape=[1])
Z
Zeng Jinle 已提交
2127
    helper.set_variable_initializer(
2128 2129
        lr, Constant(value=float(base_lr) / warmup_steps)
    )
2130

2131 2132 2133
    step = helper.create_global_variable(
        persistable=True, dtype='int64', shape=[1]
    )
2134
    helper.set_variable_initializer(step, Constant(value=0))
2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149
    assert (
        warmup_steps <= total_steps
    ), "warmup_steps cannot be larger than total_steps"

    helper.append_op(
        type="pow2_decay_with_linear_warmup",
        inputs={"LearningRate": lr, "Step": step},
        outputs={"LearningRateOut": lr, "StepOut": step},
        attrs={
            "warmup_steps": warmup_steps,
            "total_steps": total_steps,
            "base_lr": base_lr,
            "end_lr": end_lr,
        },
    )
2150
    return lr