ut_helper.h 8.2 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
    http://www.apache.org/licenses/LICENSE-2.0
Y
Yan Chunwei 已提交
8 9 10 11 12 13 14 15 16 17 18 19 20 21

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

/*
 * This file implements a UT framework to make the validation of transforming
 * Fluid Op to TRT Layer.
 */

#pragma once

N
nhzlx 已提交
22
#include <memory>
23
#include <string>
N
nhzlx 已提交
24
#include <unordered_set>
25 26
#include <vector>

Y
Yan Chunwei 已提交
27 28
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
N
nhzlx 已提交
29
#include "paddle/fluid/framework/tensor_util.h"
Y
Yan Chunwei 已提交
30 31 32
#include "paddle/fluid/inference/analysis/helper.h"
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
#include "paddle/fluid/inference/tensorrt/engine.h"
33
#include "paddle/fluid/inference/utils/singleton.h"
Y
Yan Chunwei 已提交
34 35 36 37 38 39 40 41 42 43 44

namespace paddle {
namespace inference {
namespace tensorrt {

/*
 * Get a random float value between [low, high]
 */
float random(float low, float high) {
  static std::random_device rd;
  static std::mt19937 mt(rd());
45
  std::uniform_real_distribution<double> dist(low, high);
Y
Yan Chunwei 已提交
46 47 48 49 50 51 52 53
  return dist(mt);
}

void RandomizeTensor(framework::LoDTensor* tensor, const platform::Place& place,
                     const platform::DeviceContext& ctx) {
  auto dims = tensor->dims();
  size_t num_elements = analysis::AccuDims(dims, dims.size());
  PADDLE_ENFORCE_GT(num_elements, 0);
N
nhzlx 已提交
54 55 56 57 58

  platform::CPUPlace cpu_place;
  framework::LoDTensor temp_tensor;
  temp_tensor.Resize(dims);
  auto* temp_data = temp_tensor.mutable_data<float>(cpu_place);
59

Y
Yan Chunwei 已提交
60
  for (size_t i = 0; i < num_elements; i++) {
N
nhzlx 已提交
61
    *(temp_data + i) = random(0., 1.);
Y
Yan Chunwei 已提交
62
  }
N
nhzlx 已提交
63 64

  TensorCopySync(temp_tensor, place, tensor);
Y
Yan Chunwei 已提交
65 66 67 68 69 70 71 72 73 74
}

/*
 * Help to validate the correctness between Fluid Op and the corresponding TRT
 * layer.
 */
class TRTConvertValidation {
 public:
  TRTConvertValidation() = delete;

75
  TRTConvertValidation(int max_batch_size,
76
                       const std::unordered_set<std::string>& parameters,
G
gongweibao 已提交
77
                       framework::Scope& scope,  // NOLINT
N
nhzlx 已提交
78
                       int workspace_size = 1 << 10, bool if_add_batch = true)
79 80
      : parameters_(parameters),
        scope_(scope),
N
nhzlx 已提交
81 82
        if_add_batch_(if_add_batch),
        max_batch_size_(max_batch_size) {
Y
Yan Chunwei 已提交
83
    PADDLE_ENFORCE_EQ(cudaStreamCreate(&stream_), 0);
N
nhzlx 已提交
84 85
    engine_.reset(
        new TensorRTEngine(max_batch_size, workspace_size, false, nullptr, 0));
N
nhzlx 已提交
86
    engine_->InitNetwork();
Y
Yan Chunwei 已提交
87 88 89
  }

  // Declare a Variable as input with random initialization.
N
nhzlx 已提交
90 91 92 93 94 95
  void DeclInputVar(const std::string& name, const std::vector<int> tensor_dims,
                    const nvinfer1::Dims& trt_dims) {
    DeclVar(name, tensor_dims);
    engine_->DeclareInput(name, nvinfer1::DataType::kFLOAT, trt_dims);
  }

Y
Yan Chunwei 已提交
96 97 98 99 100 101
  void DeclInputVar(const std::string& name, const nvinfer1::Dims& dims) {
    DeclVar(name, dims);
    // Declare TRT inputs.
    engine_->DeclareInput(name, nvinfer1::DataType::kFLOAT, dims);
  }

N
nhzlx 已提交
102 103 104 105
  void DeclParamVar(const std::string& name, const std::vector<int> dim_vec) {
    DeclVar(name, dim_vec);
  }

106 107
  // Declare a parameter varaible in the scope.
  void DeclParamVar(const std::string& name, const nvinfer1::Dims& dims) {
108
    DeclVar(name, dims, true);
109 110
  }

N
nhzlx 已提交
111 112 113 114
  void DeclOutputVar(const std::string& name, const std::vector<int> dim_vec) {
    DeclVar(name, dim_vec);
  }

Y
Yan Chunwei 已提交
115 116 117 118
  void DeclOutputVar(const std::string& name, const nvinfer1::Dims& dims) {
    DeclVar(name, dims);
  }

N
nhzlx 已提交
119
  void DeclVar(const std::string& name, const std::vector<int> dim_vec) {
N
nhzlx 已提交
120
    platform::CUDADeviceContext ctx(place_);
Y
Yan Chunwei 已提交
121

N
nhzlx 已提交
122 123 124
    auto* x = scope_.Var(name);
    auto* x_tensor = x->GetMutable<framework::LoDTensor>();
    x_tensor->Resize(framework::make_ddim(dim_vec));
N
nhzlx 已提交
125
    RandomizeTensor(x_tensor, place_, ctx);
N
nhzlx 已提交
126 127 128 129
  }
  // Declare a variable in a fluid Scope.
  void DeclVar(const std::string& name, const nvinfer1::Dims& dims,
               bool is_param = false) {
Y
Yan Chunwei 已提交
130
    // Init Fluid tensor.
131
    std::vector<int> dim_vec(dims.d, dims.d + dims.nbDims);
132
    // There is no batchsize in ITensor's shape, but We should add it to
N
nhzlx 已提交
133 134 135 136
    // tensor's shape of fluid. If the variable is not parameter and the
    // if_add_batch_ flag is true, add the max batchsize to dim_vec.
    if (is_param != true && if_add_batch_ == true)
      dim_vec.insert(dim_vec.begin(), max_batch_size_);
N
nhzlx 已提交
137 138

    DeclVar(name, dim_vec);
Y
Yan Chunwei 已提交
139 140 141 142 143
  }

  void SetOp(const framework::proto::OpDesc& desc) {
    op_ = framework::OpRegistry::CreateOp(desc);

144 145
    Singleton<OpConverter>::Global().ConvertOp(
        desc, parameters_, scope_, engine_.get(), true /*test_mode*/);
Y
Yan Chunwei 已提交
146 147 148 149

    engine_->FreezeNetwork();

    // Declare outputs.
F
fengjiayi 已提交
150
    op_desc_.reset(new framework::OpDesc(desc, nullptr));
Y
Yan Chunwei 已提交
151 152
  }

N
nhzlx 已提交
153 154 155
  // We use the set 'neglected_output' here, because some Ops like batch norm,
  // the outputs specified in the op des are only used during training,
  // so we should neglect those output during inference.
N
nhzlx 已提交
156 157
  void Execute(int batch_size,
               std::unordered_set<std::string> neglected_output = {}) {
Y
Yan Chunwei 已提交
158
    // Execute Fluid Op
N
nhzlx 已提交
159
    PADDLE_ENFORCE_LE(batch_size, max_batch_size_);
N
nhzlx 已提交
160 161
    platform::CUDADeviceContext ctx(place_);
    op_->Run(scope_, place_);
162
    cudaStreamSynchronize(stream_);
N
nhzlx 已提交
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
    std::vector<std::string> input_output_names;

    // Note: we need filter the parameter
    for (const auto& input : op_desc_->InputArgumentNames()) {
      if (parameters_.count(input)) continue;
      input_output_names.push_back(input);
    }

    // Collect the fluid outputs.
    std::vector<std::vector<float>> fluid_outs;
    for (const auto& output : op_desc_->OutputArgumentNames()) {
      if (neglected_output.count(output)) continue;
      input_output_names.push_back(output);
      std::vector<float> fluid_out;
      auto* var = scope_.FindVar(output);
      auto* tensor = var->GetMutable<framework::LoDTensor>();
      framework::TensorToVector(*tensor, ctx, &fluid_out);
      fluid_outs.push_back(fluid_out);
    }

    // Bind input and output for TRT.
    const int num_bindings = input_output_names.size();
    std::vector<void*> buffers(num_bindings);

    for (const std::string& name : input_output_names) {
      auto* var = scope_.FindVar(name);
      auto* tensor = var->GetMutable<framework::LoDTensor>();
      const int bind_index = engine_->engine()->getBindingIndex(name.c_str());
      buffers[bind_index] =
N
nhzlx 已提交
192
          static_cast<void*>(tensor->mutable_data<float>(place_));
N
nhzlx 已提交
193 194
    }

195
    // Execute TRT.
196
    engine_->Execute(batch_size, &buffers, stream_);
197
    cudaStreamSynchronize(stream_);
Y
Yan Chunwei 已提交
198 199

    ASSERT_FALSE(op_desc_->OutputArgumentNames().empty());
N
nhzlx 已提交
200
    int index = 0;
Y
Yan Chunwei 已提交
201
    for (const auto& output : op_desc_->OutputArgumentNames()) {
N
nhzlx 已提交
202
      if (neglected_output.count(output)) continue;
N
nhzlx 已提交
203
      std::vector<float> trt_out;
Y
Yan Chunwei 已提交
204
      auto* var = scope_.FindVar(output);
N
nhzlx 已提交
205 206
      auto* tensor = var->GetMutable<framework::LoDTensor>();
      framework::TensorToVector(*tensor, ctx, &trt_out);
N
nhzlx 已提交
207

N
nhzlx 已提交
208
      size_t fluid_out_size = fluid_outs[index].size();
N
nhzlx 已提交
209
      if (if_add_batch_ == true) {
N
nhzlx 已提交
210 211
        fluid_out_size =
            batch_size * (framework::product(tensor->dims()) / max_batch_size_);
N
nhzlx 已提交
212
      }
N
nhzlx 已提交
213

N
nhzlx 已提交
214
      for (size_t i = 0; i < fluid_out_size; i++) {
215
        // Loose the threshold for CI in different machine model.
N
nhzlx 已提交
216
        EXPECT_LT(std::abs(fluid_outs[index][i] - trt_out[i]), 2e-5);
Y
Yan Chunwei 已提交
217
      }
N
nhzlx 已提交
218
      index += 1;
Y
Yan Chunwei 已提交
219 220 221 222 223 224
    }
  }

  framework::Scope& scope() { return scope_; }

 private:
N
nhzlx 已提交
225
  platform::CUDAPlace place_;
Y
Yan Chunwei 已提交
226 227 228 229
  std::unique_ptr<TensorRTEngine> engine_;
  cudaStream_t stream_;
  std::unique_ptr<framework::OperatorBase> op_;
  std::unique_ptr<framework::OpDesc> op_desc_;
230 231
  const std::unordered_set<std::string>& parameters_;
  framework::Scope& scope_;
N
nhzlx 已提交
232 233 234 235 236 237
  // The ITensor of trt does not cotain the batch size,
  // bug, in most cases, we need to set batch size for
  // fluid's tensor shape. This variable indicates
  // whether to add batch size to tensor shape of fluid.
  bool if_add_batch_;
  int max_batch_size_;
Y
Yan Chunwei 已提交
238 239 240 241 242
};

}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle