ut_helper.h 6.2 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

/*
 * This file implements a UT framework to make the validation of transforming
 * Fluid Op to TRT Layer.
 */

#pragma once

22 23 24
#include <string>
#include <vector>

Y
Yan Chunwei 已提交
25 26 27 28 29
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/inference/analysis/helper.h"
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
#include "paddle/fluid/inference/tensorrt/engine.h"
30
#include "paddle/fluid/inference/utils/singleton.h"
Y
Yan Chunwei 已提交
31 32 33 34 35 36 37 38 39 40 41

namespace paddle {
namespace inference {
namespace tensorrt {

/*
 * Get a random float value between [low, high]
 */
float random(float low, float high) {
  static std::random_device rd;
  static std::mt19937 mt(rd());
42
  std::uniform_real_distribution<double> dist(low, high);
Y
Yan Chunwei 已提交
43 44 45 46 47 48 49 50 51
  return dist(mt);
}

void RandomizeTensor(framework::LoDTensor* tensor, const platform::Place& place,
                     const platform::DeviceContext& ctx) {
  auto dims = tensor->dims();
  size_t num_elements = analysis::AccuDims(dims, dims.size());
  PADDLE_ENFORCE_GT(num_elements, 0);
  auto* data = tensor->mutable_data<float>(place);
52

Y
Yan Chunwei 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65
  for (size_t i = 0; i < num_elements; i++) {
    *(data + i) = random(0., 1.);
  }
}

/*
 * Help to validate the correctness between Fluid Op and the corresponding TRT
 * layer.
 */
class TRTConvertValidation {
 public:
  TRTConvertValidation() = delete;

66
  TRTConvertValidation(int max_batch_size,
67
                       const std::unordered_set<std::string>& parameters,
G
gongweibao 已提交
68
                       framework::Scope& scope,  // NOLINT
69 70 71 72
                       int workspace_size = 1 << 10, int runtime_batch_size = 1)
      : parameters_(parameters),
        scope_(scope),
        runtime_batch_size_(runtime_batch_size) {
Y
Yan Chunwei 已提交
73
    // create engine.
74
    engine_.reset(new TensorRTEngine(max_batch_size, workspace_size, &stream_));
Y
Yan Chunwei 已提交
75 76 77 78 79 80 81 82 83 84 85 86
    engine_->InitNetwork();

    PADDLE_ENFORCE_EQ(cudaStreamCreate(&stream_), 0);
  }

  // Declare a Variable as input with random initialization.
  void DeclInputVar(const std::string& name, const nvinfer1::Dims& dims) {
    DeclVar(name, dims);
    // Declare TRT inputs.
    engine_->DeclareInput(name, nvinfer1::DataType::kFLOAT, dims);
  }

87 88
  // Declare a parameter varaible in the scope.
  void DeclParamVar(const std::string& name, const nvinfer1::Dims& dims) {
89
    DeclVar(name, dims, true);
90 91
  }

Y
Yan Chunwei 已提交
92 93 94 95
  void DeclOutputVar(const std::string& name, const nvinfer1::Dims& dims) {
    DeclVar(name, dims);
  }

96
  // Declare a variable in a fluid Scope.
97 98
  void DeclVar(const std::string& name, const nvinfer1::Dims& dims,
               bool is_param = false) {
Y
Yan Chunwei 已提交
99 100 101 102
    platform::CPUPlace place;
    platform::CPUDeviceContext ctx(place);

    // Init Fluid tensor.
103
    std::vector<int> dim_vec(dims.d, dims.d + dims.nbDims);
104 105 106 107 108 109 110
    // There is no batchsize in ITensor's shape, but We should add it to
    // tensor's
    // shape of fluid. If the variable is not parameter and the batch size
    // greater than 0,
    // add the batchsize to dim_vec.
    if (is_param != true && runtime_batch_size_ > 0)
      dim_vec.insert(dim_vec.begin(), runtime_batch_size_);
Y
Yan Chunwei 已提交
111 112 113 114 115 116 117 118 119
    auto* x = scope_.Var(name);
    auto* x_tensor = x->GetMutable<framework::LoDTensor>();
    x_tensor->Resize(framework::make_ddim(dim_vec));
    RandomizeTensor(x_tensor, place, ctx);
  }

  void SetOp(const framework::proto::OpDesc& desc) {
    op_ = framework::OpRegistry::CreateOp(desc);

120 121
    Singleton<OpConverter>::Global().ConvertOp(
        desc, parameters_, scope_, engine_.get(), true /*test_mode*/);
Y
Yan Chunwei 已提交
122 123 124 125

    engine_->FreezeNetwork();

    // Declare outputs.
F
fengjiayi 已提交
126
    op_desc_.reset(new framework::OpDesc(desc, nullptr));
Y
Yan Chunwei 已提交
127 128 129

    // Set Inputs.
    for (const auto& input : op_desc_->InputArgumentNames()) {
130
      if (parameters_.count(input)) continue;
Y
Yan Chunwei 已提交
131 132 133
      auto* var = scope_.FindVar(input);
      PADDLE_ENFORCE(var);
      auto tensor = var->GetMutable<framework::LoDTensor>();
134

Y
Yan Chunwei 已提交
135
      engine_->SetInputFromCPU(
136
          input, static_cast<void*>(tensor->data<void>()),
Y
Yan Chunwei 已提交
137 138 139 140 141 142 143 144 145 146
          sizeof(float) *
              analysis::AccuDims(tensor->dims(), tensor->dims().size()));
    }
  }

  void Execute(int batch_size) {
    // Execute Fluid Op
    platform::CPUPlace place;
    platform::CPUDeviceContext ctx(place);
    op_->Run(scope_, place);
147 148 149
    // Execute TRT.
    engine_->Execute(batch_size);
    cudaStreamSynchronize(*engine_->stream());
Y
Yan Chunwei 已提交
150 151

    ASSERT_FALSE(op_desc_->OutputArgumentNames().empty());
N
nhzlx 已提交
152
    const size_t output_space_size = 2000;
Y
Yan Chunwei 已提交
153 154
    for (const auto& output : op_desc_->OutputArgumentNames()) {
      std::vector<float> fluid_out;
155
      std::vector<float> trt_out(output_space_size);
N
nhzlx 已提交
156
      engine_->GetOutputInCPU(output, &trt_out[0], output_space_size);
157
      cudaStreamSynchronize(*engine_->stream());
Y
Yan Chunwei 已提交
158 159 160 161 162 163 164

      auto* var = scope_.FindVar(output);
      auto tensor = var->GetMutable<framework::LoDTensor>();
      framework::TensorToVector(*tensor, ctx, &fluid_out);
      // Compare two output
      ASSERT_FALSE(fluid_out.empty());
      for (size_t i = 0; i < fluid_out.size(); i++) {
165 166
        // Loose the threshold for CI in different machine model.
        EXPECT_LT(std::abs(fluid_out[i] - trt_out[i]), 2e-5);
Y
Yan Chunwei 已提交
167 168 169 170 171 172 173 174 175 176 177
      }
    }
  }

  framework::Scope& scope() { return scope_; }

 private:
  std::unique_ptr<TensorRTEngine> engine_;
  cudaStream_t stream_;
  std::unique_ptr<framework::OperatorBase> op_;
  std::unique_ptr<framework::OpDesc> op_desc_;
178 179
  const std::unordered_set<std::string>& parameters_;
  framework::Scope& scope_;
180 181 182 183
  //  It represents the runtime batchsize when we test.
  //  If the value greater than 0, we add this to
  //  the first dimension of tensor's shape of fluid.
  int runtime_batch_size_;
Y
Yan Chunwei 已提交
184 185 186 187 188
};

}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle