initializer.py 30.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
from . import framework
18 19
from . import core
from .framework import in_dygraph_mode
20
import numpy as np
21
from .core import VarDesc
W
Wu Yi 已提交
22
from . import unique_name
23
from .data_feeder import check_variable_and_dtype, check_type, check_dtype
24

25
__all__ = [
26
    'Constant', 'Uniform', 'Normal', 'TruncatedNormal', 'Xavier', 'Bilinear',
27 28 29
    'MSRA', 'ConstantInitializer', 'UniformInitializer', 'NormalInitializer',
    'TruncatedNormalInitializer', 'XavierInitializer', 'BilinearInitializer',
    'MSRAInitializer', 'NumpyArrayInitializer'
30
]
31 32 33 34 35 36 37 38 39 40 41


class Initializer(object):
    """Base class for variable initializers

    Defines the common interface of variable initializers.
    They add operations to the init program that are used
    to initialize variables. Users should not use this class
    directly, but need to use one of its implementations.
    """

W
whs 已提交
42
    def __init__(self):
43 44 45 46 47 48 49
        pass

    def __call__(self, param, block):
        """Add corresponding initialization operations to the network
        """
        raise NotImplementedError()

50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
    def _compute_fans(self, var):
        """Compute the fan_in and the fan_out for layers

        This method computes the fan_in and the fan_out
        for neural network layers, if not specified. It is
        not possible to perfectly estimate fan_in and fan_out.
        This method will estimate it correctly for matrix multiply and
        convolutions.

        Args:
            var: variable for which fan_in and fan_out have to be computed

        Returns:
            tuple of two integers (fan_in, fan_out)
        """
        shape = var.shape
        if not shape or len(shape) == 0:
            fan_in = fan_out = 1
        elif len(shape) == 1:
            fan_in = fan_out = shape[0]
        elif len(shape) == 2:
            # This is the case for simple matrix multiply
            fan_in = shape[0]
            fan_out = shape[1]
        else:
            # Assume this to be a convolutional kernel
            # In PaddlePaddle, the shape of the kernel is like:
            # [num_filters, num_filter_channels, ...] where the remaining
            # dimensions are the filter_size
            receptive_field_size = np.prod(shape[2:])
            fan_in = shape[1] * receptive_field_size
            fan_out = shape[0] * receptive_field_size

        return (fan_in, fan_out)

85 86 87

class ConstantInitializer(Initializer):
    """Implements the constant initializer
88 89

    Args:
D
Double_V 已提交
90
        value (float32): constant value to initialize the variable 
91 92 93 94

    Examples:
        .. code-block:: python

95
    	    import paddle.fluid as fluid
D
Double_V 已提交
96
            x = fluid.data(name="data", shape=[8, 32, 32], dtype="float32")
97 98 99
	    fc = fluid.layers.fc(input=x, size=10,
    		param_attr=fluid.initializer.Constant(value=2.0))

100 101
    """

102
    def __init__(self, value=0.0, force_cpu=False):
103 104 105
        assert value is not None
        super(ConstantInitializer, self).__init__()
        self._value = value
106
        self._force_cpu = force_cpu
107 108 109 110 111 112 113 114 115 116 117 118 119 120

    def __call__(self, var, block):
        """Add constant initialization ops for a variable

        Args:
            var: Variable that needs to be initialized
            block: The block in which initialization ops
                   should be added

        Returns:
            the initialization op
        """
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135

        # to be compatible of fp16 initializers
        if var.dtype == VarDesc.VarType.FP16:
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
                name=unique_name.generate(".".join(
                    ['constant_init', var.name, 'tmp'])),
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

136
        # Initialization Ops should be prepended and not appended
W
Wu Yi 已提交
137
        op = block._prepend_op(
138
            type="fill_constant",
139
            outputs={"Out": out_var},
140 141
            attrs={
                "shape": var.shape,
142
                "dtype": int(out_dtype),
143
                "value": float(self._value),
144
                'force_cpu': self._force_cpu
M
minqiyang 已提交
145 146
            },
            stop_gradient=True)
147 148 149 150 151 152 153 154 155

        if var.dtype == VarDesc.VarType.FP16:
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})

L
lujun 已提交
156
        if not framework.in_dygraph_mode():
157
            var.op = op
158 159 160 161
        return op


class UniformInitializer(Initializer):
162
    """Implements the random uniform distribution initializer
163 164 165 166 167

    Args:
        low (float): lower boundary of the uniform distribution
        high (float): upper boundary of the uniform distribution
        seed (int): random seed
168 169 170 171 172 173
        diag_num (int): the number of diagonal elements to initialize.
            If set to 0, diagonal initialization will be not performed.
        diag_step (int): Step size between two diagonal elements,
            which is generally the width of the square matrix.
        diag_val (float): the value of the diagonal element to be initialized,
            default 1.0. It takes effect only if the diag_num is greater than 0.
174 175 176 177

    Examples:
        .. code-block:: python

X
xiaoting 已提交
178
            import paddle.fluid as fluid
179
            x = fluid.data(name='x', shape=[None, 1], dtype='float32')
180
            fc = fluid.layers.fc(input=x, size=10,
181
    		param_attr=fluid.initializer.Uniform(low=-0.5, high=0.5))
182 183
    """

184 185 186 187 188 189 190
    def __init__(self,
                 low=-1.0,
                 high=1.0,
                 seed=0,
                 diag_num=0,
                 diag_step=0,
                 diag_val=1.0):
191 192
        assert low is not None
        assert high is not None
193
        assert high >= low
194
        assert seed is not None
195 196 197 198 199
        assert diag_num is not None
        assert diag_step is not None
        assert diag_val is not None
        if diag_num > 0 or diag_step > 0:
            assert (diag_num > 0 and diag_step > 0)
200 201 202 203
        super(UniformInitializer, self).__init__()
        self._low = low
        self._high = high
        self._seed = seed
204 205 206
        self._diag_num = diag_num
        self._diag_step = diag_step
        self._diag_val = diag_val
207 208 209 210 211 212 213 214 215 216 217 218 219

    def __call__(self, var, block):
        """Add uniform distribution initialization ops for a variable

        Args:
            var: Variable that needs to be initialized
            block: The block in which initialization ops
                   should be added

        Returns:
            the initialization op
        """
        assert isinstance(block, framework.Block)
220 221 222
        check_variable_and_dtype(var, "Out", ["float16", "float32", "float64"],
                                 "uniform_random")

223
        # Initialization Ops should be prepended and not appended
D
dzhwinter 已提交
224 225
        if self._seed == 0:
            self._seed = block.program.random_seed
W
Wu Yi 已提交
226

X
polish  
Xin Pan 已提交
227
        # to be compatible of fp16 initializers
W
Wu Yi 已提交
228 229 230
        if var.dtype == VarDesc.VarType.FP16:
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
231 232
                name=unique_name.generate(".".join(
                    ['uniform_random', var.name, 'tmp'])),
W
Wu Yi 已提交
233 234 235 236 237 238 239 240
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

W
Wu Yi 已提交
241
        op = block._prepend_op(
242
            type="uniform_random",
243
            inputs={},
W
Wu Yi 已提交
244
            outputs={"Out": out_var},
245 246
            attrs={
                "shape": var.shape,
W
Wu Yi 已提交
247
                "dtype": out_dtype,
248 249
                "min": self._low,
                "max": self._high,
250 251 252 253
                "seed": self._seed,
                "diag_num": self._diag_num,
                "diag_step": self._diag_step,
                "diag_val": self._diag_val
M
minqiyang 已提交
254 255
            },
            stop_gradient=True)
W
Wu Yi 已提交
256 257 258 259 260 261 262 263 264

        if var.dtype == VarDesc.VarType.FP16:
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})

L
lujun 已提交
265
        if not framework.in_dygraph_mode():
266
            var.op = op
267
        return op
268 269 270


class NormalInitializer(Initializer):
271 272 273 274 275 276 277 278 279 280
    """Implements the Random Normal(Gaussian) distribution initializer

    Args:
        loc (float): mean of the normal distribution
        scale (float): standard deviation of the normal distribution
        seed (int): random seed

    Examples:
        .. code-block:: python

X
xsrobin 已提交
281
            import paddle.fluid as fluid
282
            x = fluid.data(name="data", shape=[None, 32, 32], dtype="float32")
X
xsrobin 已提交
283 284
            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.Normal(loc=0.0, scale=2.0))
285

286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
    """

    def __init__(self, loc=0.0, scale=1.0, seed=0):
        assert loc is not None
        assert scale is not None
        assert seed is not None
        super(NormalInitializer, self).__init__()
        self._mean = loc
        self._std_dev = scale
        self._seed = seed

    def __call__(self, var, block):
        """Add normal distribution initialization ops for a variable

        Args:
            var: Variable that needs to be initialized
            block: The block in which initialization ops
                   should be added

        Returns:
            the initialization op
        """
        assert isinstance(block, framework.Block)
309 310 311

        check_variable_and_dtype(var, "Out", ["float16", "float32", "float64"],
                                 "guassian_random")
312
        # Initialization Ops should be prepended and not appended
D
dzhwinter 已提交
313 314
        if self._seed == 0:
            self._seed = block.program.random_seed
W
Wu Yi 已提交
315 316 317 318 319

        # to be compatible of fp16 initalizers
        if var.dtype == VarDesc.VarType.FP16:
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
320 321
                name=unique_name.generate(".".join(
                    ['gaussian_random', var.name, 'tmp'])),
W
Wu Yi 已提交
322 323 324 325 326 327 328 329
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

W
Wu Yi 已提交
330
        op = block._prepend_op(
331
            type="gaussian_random",
W
Wu Yi 已提交
332
            outputs={"Out": out_var},
333 334
            attrs={
                "shape": var.shape,
W
Wu Yi 已提交
335
                "dtype": out_dtype,
336 337
                "mean": self._mean,
                "std": self._std_dev,
G
gongweibao 已提交
338 339
                "seed": self._seed,
                "use_mkldnn": False
M
minqiyang 已提交
340 341
            },
            stop_gradient=True)
W
Wu Yi 已提交
342 343 344 345 346 347 348 349

        if var.dtype == VarDesc.VarType.FP16:
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})
L
lujun 已提交
350
        if not framework.in_dygraph_mode():
351
            var.op = op
352
        return op
353 354


355 356 357 358 359 360 361 362 363 364 365
class TruncatedNormalInitializer(Initializer):
    """Implements the Random TruncatedNormal(Gaussian) distribution initializer

    Args:
        loc (float): mean of the normal distribution
        scale (float): standard deviation of the normal distribution
        seed (int): random seed

    Examples:
        .. code-block:: python

X
xiaoting 已提交
366
            import paddle.fluid as fluid
367
            x = fluid.data(name='x', shape=[None, 1], dtype='float32')
368 369 370 371 372 373 374 375
            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.TruncatedNormal(loc=0.0, scale=2.0))
    """

    def __init__(self, loc=0.0, scale=1.0, seed=0):
        assert loc is not None
        assert scale is not None
        assert seed is not None
W
whs 已提交
376
        super(TruncatedNormalInitializer, self).__init__()
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
        self._mean = loc
        self._std_dev = scale
        self._seed = seed

    def __call__(self, var, block):
        """Add truncated normal distribution initialization ops for a variable

        Args:
            var: Variable that needs to be initialized
            block: The block in which initialization ops
                   should be added

        Returns:
            the initialization op
        """
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
        # Initialization Ops should be prepended and not appended
        if self._seed == 0:
            self._seed = block.program.random_seed
397 398 399 400 401 402

        # to be compatible of fp16 initalizers
        if var.dtype == VarDesc.VarType.FP16:
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
                name=unique_name.generate(".".join(
403
                    ['truncated_gaussian_random', var.name, 'tmp'])),
404 405 406 407 408 409 410 411
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

412 413
        op = block._prepend_op(
            type="truncated_gaussian_random",
414
            outputs={"Out": out_var},
415 416
            attrs={
                "shape": var.shape,
417
                "dtype": out_dtype,
418 419 420
                "mean": self._mean,
                "std": self._std_dev,
                "seed": self._seed
M
minqiyang 已提交
421 422
            },
            stop_gradient=True)
423 424 425 426 427 428 429 430

        if var.dtype == VarDesc.VarType.FP16:
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})
L
lujun 已提交
431
        if not framework.in_dygraph_mode():
432
            var.op = op
433 434 435
        return op


436
class XavierInitializer(Initializer):
Q
qiaolongfei 已提交
437
    """
438
    This class implements the Xavier weight initializer from the paper
Q
qiaolongfei 已提交
439 440 441
    `Understanding the difficulty of training deep feedforward neural
    networks <http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf>`_
    by Xavier Glorot and Yoshua Bengio.
442 443 444

    This initializer is designed to keep the scale of the gradients
    approximately same in all the layers. In case of Uniform distribution,
Q
qiaolongfei 已提交
445 446 447 448 449 450
    the range is [-x, x], where

    .. math::

        x = \sqrt{\\frac{6.0}{fan\_in + fan\_out}}

451
    In case of Normal distribution, the mean is 0 and the standard deviation
Q
qiaolongfei 已提交
452
    is
453

Q
qiaolongfei 已提交
454
    .. math::
455

Q
qiaolongfei 已提交
456
        \sqrt{\\frac{2.0}{fan\_in + fan\_out}}
457 458


Q
qiaolongfei 已提交
459
    Args:
X
xiaoting 已提交
460 461
        uniform (bool,default True): whether to use uniform ,if False use normal distribution
        fan_in (float,default None): fan_in for Xavier initialization. If None, it is
Q
qiaolongfei 已提交
462
                inferred from the variable.
X
xiaoting 已提交
463
        fan_out (float,default None): fan_out for Xavier initialization. If None, it is
Q
qiaolongfei 已提交
464 465 466 467 468 469 470 471 472
                 inferred from the variable.
        seed (int): random seed

    Note:
        It is recommended to set fan_in and fan_out to None for most cases.

    Examples:
        .. code-block:: python

X
xiaoting 已提交
473
            import paddle.fluid as fluid
X
xiaoting 已提交
474
            queries = fluid.data(name='x', shape=[None,1], dtype='float32')
Q
qiaolongfei 已提交
475 476 477 478 479 480 481
            fc = fluid.layers.fc(
                input=queries, size=10,
                param_attr=fluid.initializer.Xavier(uniform=False))

    """

    def __init__(self, uniform=True, fan_in=None, fan_out=None, seed=0):
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
        assert uniform is not None
        assert seed is not None
        super(XavierInitializer, self).__init__()
        self._uniform = uniform
        self._fan_in = fan_in
        self._fan_out = fan_out
        self._seed = seed

    def __call__(self, var, block):
        """Add xavier initialization ops for a variable

        Args:
            var: Variable that needs to be initialized
            block: The block in which initialization ops
                   should be added

        Returns:
            the initialization op
        """
        assert isinstance(block, framework.Block)
502 503 504
        check_variable_and_dtype(var, "Out", ["float16", "float32", "float64"],
                                 "xavier_init")

505 506 507 508 509 510
        f_in, f_out = self._compute_fans(var)

        # If fan_in and fan_out are passed, use them
        fan_in = f_in if self._fan_in is None else self._fan_in
        fan_out = f_out if self._fan_out is None else self._fan_out

D
dzhwinter 已提交
511 512 513
        if self._seed == 0:
            self._seed = block.program.random_seed

514 515 516 517 518 519 520 521 522 523 524 525 526 527
        # to be compatible of fp16 initalizers
        if var.dtype == VarDesc.VarType.FP16:
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
                name=unique_name.generate(".".join(
                    ['xavier_init', var.name, 'tmp'])),
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

528 529
        if self._uniform:
            limit = np.sqrt(6.0 / float(fan_in + fan_out))
W
Wu Yi 已提交
530
            op = block._prepend_op(
531
                type="uniform_random",
532
                inputs={},
533
                outputs={"Out": out_var},
534
                attrs={
535 536
                    "shape": out_var.shape,
                    "dtype": out_dtype,
537 538 539
                    "min": -limit,
                    "max": limit,
                    "seed": self._seed
M
minqiyang 已提交
540 541
                },
                stop_gradient=True)
542 543 544

        else:
            std = np.sqrt(2.0 / float(fan_in + fan_out))
W
Wu Yi 已提交
545
            op = block._prepend_op(
546
                type="gaussian_random",
547
                outputs={"Out": out_var},
548
                attrs={
549 550
                    "shape": out_var.shape,
                    "dtype": out_dtype,
551 552 553
                    "mean": 0.0,
                    "std": std,
                    "seed": self._seed
M
minqiyang 已提交
554 555
                },
                stop_gradient=True)
556 557 558 559 560 561 562 563 564

        if var.dtype == VarDesc.VarType.FP16:
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})

L
lujun 已提交
565
        if not framework.in_dygraph_mode():
566
            var.op = op
567
        return op
568 569 570 571 572 573


class MSRAInitializer(Initializer):
    """Implements the MSRA initializer a.k.a. Kaiming Initializer

    This class implements the weight initialization from the paper
574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
    `Delving Deep into Rectifiers: Surpassing Human-Level Performance on
    ImageNet Classification <https://arxiv.org/abs/1502.01852>`_
    by Kaiming He, Xiangyu Zhang, Shaoqing Ren and Jian Sun. This is a
    robust initialization method that particularly considers the rectifier
    nonlinearities. In case of Uniform distribution, the range is [-x, x], where

    .. math::

        x = \sqrt{\\frac{6.0}{fan\_in}}

    In case of Normal distribution, the mean is 0 and the standard deviation
    is

    .. math::

        \sqrt{\\frac{2.0}{fan\_in}}

    Args:
        uniform (bool): whether to use uniform or normal distribution
D
Double_V 已提交
593 594 595
        fan_in (float32|None): fan_in for MSRAInitializer. If None, it is\
        inferred from the variable. default is None.
        seed (int32): random seed
596 597 598 599 600 601

    Note:
        It is recommended to set fan_in to None for most cases.

    Examples:
        .. code-block:: python
X
xsrobin 已提交
602 603

            import paddle.fluid as fluid
D
Double_V 已提交
604
            x = fluid.data(name="data", shape=[8, 32, 32], dtype="float32")
X
xsrobin 已提交
605 606
            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.MSRA(uniform=False))
607

608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
    """

    def __init__(self, uniform=True, fan_in=None, seed=0):
        """Constructor for MSRAInitializer
        """
        assert uniform is not None
        assert seed is not None
        super(MSRAInitializer, self).__init__()
        self._uniform = uniform
        self._fan_in = fan_in
        self._seed = seed

    def __call__(self, var, block):
        """Add MSRA initialization ops for a variable

        Args:
            var: Variable that needs to be initialized
            block: The block in which initialization ops
                   should be added

        Returns:
            the initialization op
        """
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
        f_in, f_out = self._compute_fans(var)

        # If fan_in is passed, use it
        fan_in = f_in if self._fan_in is None else self._fan_in

D
dzhwinter 已提交
638 639 640
        if self._seed == 0:
            self._seed = block.program.random_seed

641 642 643 644 645 646 647 648 649 650 651 652 653 654
        # to be compatible of fp16 initalizers
        if var.dtype == VarDesc.VarType.FP16:
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
                name=unique_name.generate(".".join(
                    ['masra_init', var.name, 'tmp'])),
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

655 656
        if self._uniform:
            limit = np.sqrt(6.0 / float(fan_in))
W
Wu Yi 已提交
657
            op = block._prepend_op(
658
                type="uniform_random",
659
                inputs={},
660
                outputs={"Out": out_var},
661
                attrs={
662 663
                    "shape": out_var.shape,
                    "dtype": int(out_dtype),
664 665 666
                    "min": -limit,
                    "max": limit,
                    "seed": self._seed
M
minqiyang 已提交
667 668
                },
                stop_gradient=True)
669 670 671

        else:
            std = np.sqrt(2.0 / float(fan_in))
W
Wu Yi 已提交
672
            op = block._prepend_op(
673
                type="gaussian_random",
674
                outputs={"Out": out_var},
675
                attrs={
676 677
                    "shape": out_var.shape,
                    "dtype": int(out_dtype),
678 679 680
                    "mean": 0.0,
                    "std": std,
                    "seed": self._seed
M
minqiyang 已提交
681 682
                },
                stop_gradient=True)
683 684 685 686 687 688 689 690 691

        if var.dtype == VarDesc.VarType.FP16:
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})

L
lujun 已提交
692
        if not framework.in_dygraph_mode():
693
            var.op = op
694
        return op
695 696


697
class BilinearInitializer(Initializer):
698
    """
699 700 701
    This initializer can be used in transposed convolution operator to
    act as upsampling. Users can upsample a feature map with shape of
    (B, C, H, W) by any integer factor. The usage is:
702 703 704 705 706

    Examples:

        .. code-block:: python

X
xsrobin 已提交
707
            import paddle.fluid as fluid
708
            import math
X
xsrobin 已提交
709 710
            factor = 2
            C = 2
D
Double_V 已提交
711 712
            B = 8
            H = W = 32
X
xsrobin 已提交
713 714 715
            w_attr = fluid.param_attr.ParamAttr(
                learning_rate=0., 
                regularizer=fluid.regularizer.L2Decay(0.),
716
                initializer=fluid.initializer.Bilinear())
D
Double_V 已提交
717
            x = fluid.data(name="data", shape=[B, 3, H, W], 
X
xsrobin 已提交
718 719 720 721 722 723 724 725 726 727 728
                                  dtype="float32")
            conv_up = fluid.layers.conv2d_transpose(
                input=x,
                num_filters=C,
                output_size=None,
                filter_size=2 * factor - factor % 2,
                padding=int(math.ceil((factor - 1) / 2.)),
                stride=factor,
                groups=C,
                param_attr=w_attr,
                bias_attr=False)
729 730

    Where, `num_filters=C` and `groups=C` means this is channel-wise transposed
731 732 733 734 735
    convolution. The filter shape will be (C, 1, K, K) where K is `filer_size`,
    This initializer will set a (K, K) interpolation kernel for every channel
    of the filter identically. The resulting shape of the output feature map
    will be (B, C, factor * H, factor * W). Note that the learning rate and the
    weight decay are set to 0 in order to keep coefficient values of bilinear
736 737
    interpolation unchanged during training.

738 739 740 741 742 743 744 745
    """

    def __init__(self):
        """Constructor for BilinearInitializer.
        """
        super(BilinearInitializer, self).__init__()

    def __call__(self, var, block):
T
tianshuo78520a 已提交
746
        """Add bilinear initialization ops for a variable
747 748 749 750 751 752 753

        Args:
            var (Variable): Variable that needs to be initialized.
            block (Block): The block in which initialization ops should
                           be added.

        Returns:
754
            Operator: the initialization op
755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784

        Raises:
            ValueError: If type of `var` and `block` is not right.
                        If the shape of `var` size is not 4 and
                        var.shape[2] != var.shape[3].
        """
        if not isinstance(var, framework.Variable):
            raise ValueError("var must be framework.Variable.")

        if not isinstance(block, framework.Block):
            raise ValueError("block must be framework.Block.")

        shape = var.shape
        if len(shape) != 4:
            raise ValueError("the length of shape must be 4.")
        if shape[2] != shape[3]:
            raise ValueError("shape[2] must be equal to shape[3].")

        weight = np.zeros(np.prod(var.shape), dtype='float32')
        size = shape[3]
        # factor
        f = np.ceil(size / 2.)
        # center
        c = (2 * f - 1 - f % 2) / (2. * f)
        for i in range(np.prod(shape)):
            x = i % size
            y = (i / size) % size
            weight[i] = (1 - abs(x / f - c)) * (1 - abs(y / f - c))
        weight = np.reshape(weight, shape)

785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
        # to be compatible of fp16 initalizers
        if var.dtype == VarDesc.VarType.FP16:
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
                name=unique_name.generate(".".join(
                    ['bilinear_init', var.name, 'tmp'])),
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

        if out_dtype == VarDesc.VarType.FP32:
800 801 802 803 804 805 806 807
            value_name = "fp32_values"
            values = [float(v) for v in weight.flat]
        else:
            raise ValueError("Unsupported dtype %s", input.dtype)
        if np.prod(shape) > 1024 * 1024:
            raise ValueError("The size of input is too big. ")
        op = block.append_op(
            type='assign_value',
808
            outputs={'Out': [out_var]},
809
            attrs={
810
                'dtype': out_dtype,
811 812 813
                'shape': list(shape),
                value_name: values
            })
814 815 816 817 818 819 820 821 822

        if var.dtype == VarDesc.VarType.FP16:
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})

L
lujun 已提交
823
        if not framework.in_dygraph_mode():
824
            var.op = op
825 826 827
        return op


828 829
class NumpyArrayInitializer(Initializer):
    """Init an parameter with an numpy array
830
    This op initialize the variable by numpy array.
831 832 833 834

    Args:
        value (numpy): numpy array to initialize the variable

835 836 837
    Returns:
        A Tensor variable initialized by numpy.

838 839 840
    Examples:
        .. code-block:: python

841
            import paddle.fluid as fluid
842 843
            import numpy
            x = fluid.data(name="x", shape=[2, 1], dtype='float32')
844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.NumpyArrayInitializer(numpy.array([1,2])))
    """

    def __init__(self, value):
        import numpy
        assert isinstance(value, numpy.ndarray)
        super(NumpyArrayInitializer, self).__init__()
        self._value = value

    def __call__(self, var, block):
        """Add constant initialization ops for a variable

        Args:
            var: Variable that needs to be initialized
            block: The block in which initialization ops
                   should be added

        Returns:
            the initialization op
        """
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883

        # to be compatible of fp16 initalizers
        if var.dtype == VarDesc.VarType.FP16:
            out_dtype = VarDesc.VarType.FP32
            np_value = self._value.astype("float32")
            out_var = block.create_var(
                name=unique_name.generate(".".join(
                    ['numpy_array_init', var.name, 'tmp'])),
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_var = var
            out_dtype = var.dtype
            np_value = self._value

884
        # Initialization Ops should be prepended and not appended
885
        if out_dtype == VarDesc.VarType.FP32:
886
            value_name = "fp32_values"
887 888
            values = [float(v) for v in np_value.flat]
        elif out_dtype == VarDesc.VarType.INT32:
889
            value_name = "int32_values"
890
            values = [int(v) for v in np_value.flat]
891 892
        else:
            raise ValueError("Unsupported dtype %s", self._value.dtype)
X
Xin Pan 已提交
893
        if self._value.size > 1024 * 1024 * 1024:
894 895 896 897
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
        op = block._prepend_op(
            type='assign_value',
898
            outputs={'Out': out_var},
899
            attrs={
900
                'dtype': out_dtype,
901
                'shape': list(self._value.shape),
902 903 904
                value_name: values
            },
            stop_gradient=True)
905 906 907 908 909 910 911 912 913

        if var.dtype == VarDesc.VarType.FP16:
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})

L
lujun 已提交
914
        if not framework.in_dygraph_mode():
915
            var.op = op
916 917 918
        return op


919 920 921 922 923 924 925 926 927 928 929 930
# We short the class name, since users will use the initializer with the package
# name. The sample code:
#
# import paddle.fluid as fluid
#
# hidden = fluid.layers.fc(...,
#                          param_attr=ParamAttr(fluid.initializer.Xavier()))
#
# It is no need to add an `Initializer` as the class suffix
Constant = ConstantInitializer
Uniform = UniformInitializer
Normal = NormalInitializer
931
TruncatedNormal = TruncatedNormalInitializer
932 933
Xavier = XavierInitializer
MSRA = MSRAInitializer
934
Bilinear = BilinearInitializer