dist_multi_trainer.cc 6.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/device_worker_factory.h"
#include "paddle/fluid/framework/trainer.h"

namespace paddle {
namespace framework {

21 22
void DistMultiTrainer::Initialize(const TrainerDesc &trainer_desc,
                                  Dataset *dataset) {
23
  thread_num_ = trainer_desc.thread_num();
24
  SetDataset(dataset);
D
dongdaxiang 已提交
25

H
hutuxian 已提交
26
  ParseDumpConfig(trainer_desc);
X
xujiaqi01 已提交
27 28
  mpi_rank_ = trainer_desc.mpi_rank();
  mpi_size_ = trainer_desc.mpi_size();
T
Thunderbrook 已提交
29
  dump_file_num_ = trainer_desc.dump_file_num();
Y
yaoxuefeng 已提交
30
  user_define_dump_filename_ = trainer_desc.user_define_dump_filename();
31
  const std::vector<paddle::framework::DataFeed *> readers =
32
      dataset->GetReaders();
T
Thunderbrook 已提交
33
  RegisterHeterCallback();
34 35
  thread_num_ = readers.size();
  workers_.resize(thread_num_);
36 37 38 39 40
  for (int i = 0; i < trainer_desc.downpour_param().stat_var_names_size();
       i++) {
    need_merge_var_names_.push_back(
        trainer_desc.downpour_param().stat_var_names(i));
  }
41

42 43 44 45
  for (int i = 0; i < thread_num_; ++i) {
    workers_[i] = DeviceWorkerFactory::CreateDeviceWorker(
        trainer_desc.device_worker_name());
    workers_[i]->SetDeviceIndex(i);
D
dongdaxiang 已提交
46
    workers_[i]->SetDataFeed(readers[i]);
H
hutuxian 已提交
47 48 49 50 51
    workers_[i]->SetNeedDumpField(need_dump_field_);
    workers_[i]->SetNeedDumpParam(need_dump_param_);
    workers_[i]->SetDumpFieldVector(dump_fields_);
    workers_[i]->SetDumpParamVector(dump_param_);
    workers_[i]->InitRandomDumpConfig(trainer_desc);
52
    workers_[i]->Initialize(trainer_desc);
T
Thunderbrook 已提交
53
    workers_[i]->SetWorkerNum(thread_num_);
54 55
  }

D
dongdaxiang 已提交
56
  VLOG(3) << "going to initialize pull dense worker";
57 58
  pull_dense_worker_ = PullDenseWorker::GetInstance();
  pull_dense_worker_->Initialize(trainer_desc);
D
dongdaxiang 已提交
59
  VLOG(3) << "initialize pull dense worker";
60
  SetDebug(trainer_desc.debug());
61 62
}

T
Thunderbrook 已提交
63 64
void DistMultiTrainer::RegisterHeterCallback() {
  auto fleet_ptr = FleetWrapper::GetInstance();
T
Thunderbrook 已提交
65 66
  fleet_ptr->RegisterHeterCallback(
      [this](int worker, int taskid) { workers_[worker]->Schedule(taskid); });
T
Thunderbrook 已提交
67 68
}

69 70 71 72 73
void DistMultiTrainer::InitDumpEnv() {
  queue_ = paddle::framework::MakeChannel<std::string>();
  for (int i = 0; i < thread_num_; ++i) {
    workers_[i]->SetChannelWriter(queue_.get());
  }
T
Thunderbrook 已提交
74 75 76 77 78 79 80 81 82
  dump_thread_num_ = 1;
  if (dump_file_num_ > mpi_size_) {
    dump_thread_num_ = dump_file_num_ / mpi_size_;
    if (dump_file_num_ % mpi_size_ > mpi_rank_) {
      dump_thread_num_ += 1;
    }
  }
  for (int i = 0; i < dump_thread_num_; i++) {
    dump_thread_.push_back(
H
hutuxian 已提交
83
        std::thread(std::bind(&TrainerBase::DumpWork, this, i)));
T
Thunderbrook 已提交
84
  }
85 86
}

87 88 89 90 91 92 93 94
void DistMultiTrainer::InitTrainerEnv(const ProgramDesc &main_program,
                                      const platform::Place &place) {
  for (int i = 0; i < thread_num_; ++i) {
    workers_[i]->SetPlace(place);
    workers_[i]->SetReaderPlace(place);
    workers_[i]->SetRootScope(root_scope_);
    workers_[i]->CreateDeviceResource(main_program);  // Program
    workers_[i]->BindingDataFeedMemory();
T
Thunderbrook 已提交
95 96 97
#ifdef PADDLE_WITH_PSLIB
    workers_[i]->CacheProgram(main_program);
#endif
98 99 100 101 102 103 104 105
  }
  // Scope* -> thread id, it will be used in push_dense op
  for (int i = 0; i < thread_num_; ++i) {
    Scope *thread_scope = workers_[i]->GetThreadScope();
    pull_dense_worker_->SetThreadIdByScope(thread_scope, i);
  }
}

106
void DistMultiTrainer::InitOtherEnv(const ProgramDesc &main_program) {
X
xujiaqi01 已提交
107
  if (need_dump_field_ || need_dump_param_) {
108 109
    InitDumpEnv();
  }
110
  pull_dense_worker_->SetRootScope(root_scope_);
111
  pull_dense_worker_->Start();
T
Thunderbrook 已提交
112 113 114 115 116
#ifdef PADDLE_WITH_PSLIB
  for (int i = 0; i < thread_num_; ++i) {
    workers_[i]->GetXpuOpIndex();
  }
#endif
D
dongdaxiang 已提交
117
  VLOG(3) << "init other env done.";
118 119
}

120 121 122 123 124 125 126 127 128 129 130 131
void DistMultiTrainer::Run() {
  for (int thidx = 0; thidx < thread_num_; ++thidx) {
    if (!debug_) {
      threads_.push_back(
          std::thread(&DeviceWorker::TrainFiles, workers_[thidx].get()));
    } else {
      threads_.push_back(std::thread(&DeviceWorker::TrainFilesWithProfiler,
                                     workers_[thidx].get()));
    }
  }
}

132 133 134 135
Scope *DistMultiTrainer::GetWorkerScope(int thread_id) {
  return workers_[thread_id]->GetThreadScope();
}

136
void DistMultiTrainer::Finalize() {
137
  for (auto &th : threads_) {
138 139
    th.join();
  }
140
  for (size_t i = 0; i < need_merge_var_names_.size(); i++) {
141 142 143 144 145 146 147 148 149 150 151 152 153
    Variable *root_var = root_scope_->FindVar(need_merge_var_names_[i]);
    if (root_var == nullptr) {
      continue;
    }
    LoDTensor *root_tensor = root_var->GetMutable<LoDTensor>();
    for (int j = 1; j < thread_num_; j++) {
      Scope *cur_thread_scope = workers_[j]->GetThreadScope();
      Variable *thread_var =
          cur_thread_scope->FindVar(need_merge_var_names_[i]);
      LoDTensor *thread_tensor = thread_var->GetMutable<LoDTensor>();
      if (root_tensor->numel() != thread_tensor->numel()) {
        continue;
      }
154 155 156 157 158 159 160 161 162 163 164 165
#define MergeCallback(cpp_type, proto_type)                                    \
  do {                                                                         \
    if (root_tensor->type() == proto_type) {                                   \
      if (thread_tensor->type() != proto_type) {                               \
        VLOG(0) << "Error: thread id=" << j << ", need_merge_var_names_[" << i \
                << "] " << need_merge_var_names_[i]                            \
                << ", root tensor type=" << root_tensor->type()                \
                << ", thread tensor type=" << thread_tensor->type();           \
        exit(-1);                                                              \
      }                                                                        \
      MergeToRootScope<cpp_type>(root_tensor, thread_tensor);                  \
    }                                                                          \
166 167 168 169 170
  } while (0)
      _ForEachDataType_(MergeCallback);
    }
  }

X
xujiaqi01 已提交
171
  if (need_dump_field_ || need_dump_param_) {
172 173
    FinalizeDumpEnv();
  }
174
  pull_dense_worker_->Stop();
175
  root_scope_->DropKids();
176 177 178 179

  // flush local client push queue
  auto fleet_ptr_ = FleetWrapper::GetInstance();
  fleet_ptr_->ClientFlush();
180 181
}

182 183 184 185 186 187 188 189 190
template <typename T>
void DistMultiTrainer::MergeToRootScope(LoDTensor *root_tensor,
                                        LoDTensor *tensor) {
  T *root_data = root_tensor->data<T>();
  T *data = tensor->data<T>();
  for (int i = 0; i < tensor->numel(); i++) {
    root_data[i] += data[i];
  }
}
191 192
}  // namespace framework
}  // namespace paddle