/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/framework/device_worker_factory.h" #include "paddle/fluid/framework/trainer.h" namespace paddle { namespace framework { void DistMultiTrainer::Initialize(const TrainerDesc &trainer_desc, Dataset *dataset) { thread_num_ = trainer_desc.thread_num(); SetDataset(dataset); ParseDumpConfig(trainer_desc); mpi_rank_ = trainer_desc.mpi_rank(); mpi_size_ = trainer_desc.mpi_size(); dump_file_num_ = trainer_desc.dump_file_num(); user_define_dump_filename_ = trainer_desc.user_define_dump_filename(); const std::vector readers = dataset->GetReaders(); RegisterHeterCallback(); thread_num_ = readers.size(); workers_.resize(thread_num_); for (int i = 0; i < trainer_desc.downpour_param().stat_var_names_size(); i++) { need_merge_var_names_.push_back( trainer_desc.downpour_param().stat_var_names(i)); } for (int i = 0; i < thread_num_; ++i) { workers_[i] = DeviceWorkerFactory::CreateDeviceWorker( trainer_desc.device_worker_name()); workers_[i]->SetDeviceIndex(i); workers_[i]->SetDataFeed(readers[i]); workers_[i]->SetNeedDumpField(need_dump_field_); workers_[i]->SetNeedDumpParam(need_dump_param_); workers_[i]->SetDumpFieldVector(dump_fields_); workers_[i]->SetDumpParamVector(dump_param_); workers_[i]->InitRandomDumpConfig(trainer_desc); workers_[i]->Initialize(trainer_desc); workers_[i]->SetWorkerNum(thread_num_); } VLOG(3) << "going to initialize pull dense worker"; pull_dense_worker_ = PullDenseWorker::GetInstance(); pull_dense_worker_->Initialize(trainer_desc); VLOG(3) << "initialize pull dense worker"; SetDebug(trainer_desc.debug()); } void DistMultiTrainer::RegisterHeterCallback() { auto fleet_ptr = FleetWrapper::GetInstance(); fleet_ptr->RegisterHeterCallback( [this](int worker, int taskid) { workers_[worker]->Schedule(taskid); }); } void DistMultiTrainer::InitDumpEnv() { queue_ = paddle::framework::MakeChannel(); for (int i = 0; i < thread_num_; ++i) { workers_[i]->SetChannelWriter(queue_.get()); } dump_thread_num_ = 1; if (dump_file_num_ > mpi_size_) { dump_thread_num_ = dump_file_num_ / mpi_size_; if (dump_file_num_ % mpi_size_ > mpi_rank_) { dump_thread_num_ += 1; } } for (int i = 0; i < dump_thread_num_; i++) { dump_thread_.push_back( std::thread(std::bind(&TrainerBase::DumpWork, this, i))); } } void DistMultiTrainer::InitTrainerEnv(const ProgramDesc &main_program, const platform::Place &place) { for (int i = 0; i < thread_num_; ++i) { workers_[i]->SetPlace(place); workers_[i]->SetReaderPlace(place); workers_[i]->SetRootScope(root_scope_); workers_[i]->CreateDeviceResource(main_program); // Program workers_[i]->BindingDataFeedMemory(); #ifdef PADDLE_WITH_PSLIB workers_[i]->CacheProgram(main_program); #endif } // Scope* -> thread id, it will be used in push_dense op for (int i = 0; i < thread_num_; ++i) { Scope *thread_scope = workers_[i]->GetThreadScope(); pull_dense_worker_->SetThreadIdByScope(thread_scope, i); } } void DistMultiTrainer::InitOtherEnv(const ProgramDesc &main_program) { if (need_dump_field_ || need_dump_param_) { InitDumpEnv(); } pull_dense_worker_->SetRootScope(root_scope_); pull_dense_worker_->Start(); #ifdef PADDLE_WITH_PSLIB for (int i = 0; i < thread_num_; ++i) { workers_[i]->GetXpuOpIndex(); } #endif VLOG(3) << "init other env done."; } void DistMultiTrainer::Run() { for (int thidx = 0; thidx < thread_num_; ++thidx) { if (!debug_) { threads_.push_back( std::thread(&DeviceWorker::TrainFiles, workers_[thidx].get())); } else { threads_.push_back(std::thread(&DeviceWorker::TrainFilesWithProfiler, workers_[thidx].get())); } } } Scope *DistMultiTrainer::GetWorkerScope(int thread_id) { return workers_[thread_id]->GetThreadScope(); } void DistMultiTrainer::Finalize() { for (auto &th : threads_) { th.join(); } for (size_t i = 0; i < need_merge_var_names_.size(); i++) { Variable *root_var = root_scope_->FindVar(need_merge_var_names_[i]); if (root_var == nullptr) { continue; } LoDTensor *root_tensor = root_var->GetMutable(); for (int j = 1; j < thread_num_; j++) { Scope *cur_thread_scope = workers_[j]->GetThreadScope(); Variable *thread_var = cur_thread_scope->FindVar(need_merge_var_names_[i]); LoDTensor *thread_tensor = thread_var->GetMutable(); if (root_tensor->numel() != thread_tensor->numel()) { continue; } #define MergeCallback(cpp_type, proto_type) \ do { \ if (root_tensor->type() == proto_type) { \ if (thread_tensor->type() != proto_type) { \ VLOG(0) << "Error: thread id=" << j << ", need_merge_var_names_[" << i \ << "] " << need_merge_var_names_[i] \ << ", root tensor type=" << root_tensor->type() \ << ", thread tensor type=" << thread_tensor->type(); \ exit(-1); \ } \ MergeToRootScope(root_tensor, thread_tensor); \ } \ } while (0) _ForEachDataType_(MergeCallback); } } if (need_dump_field_ || need_dump_param_) { FinalizeDumpEnv(); } pull_dense_worker_->Stop(); root_scope_->DropKids(); // flush local client push queue auto fleet_ptr_ = FleetWrapper::GetInstance(); fleet_ptr_->ClientFlush(); } template void DistMultiTrainer::MergeToRootScope(LoDTensor *root_tensor, LoDTensor *tensor) { T *root_data = root_tensor->data(); T *data = tensor->data(); for (int i = 0; i < tensor->numel(); i++) { root_data[i] += data[i]; } } } // namespace framework } // namespace paddle