dist_multi_trainer.cc 5.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <string>
#include <vector>
17
#include "io/fs.h"
18
#include "paddle/fluid/framework/data_feed_factory.h"
D
dongdaxiang 已提交
19
#include "paddle/fluid/framework/data_set.h"
20 21 22 23 24 25
#include "paddle/fluid/framework/device_worker_factory.h"
#include "paddle/fluid/framework/trainer.h"

namespace paddle {
namespace framework {

26 27
void DistMultiTrainer::Initialize(const TrainerDesc &trainer_desc,
                                  Dataset *dataset) {
28
  thread_num_ = trainer_desc.thread_num();
29
  SetDataset(dataset);
D
dongdaxiang 已提交
30

31 32 33 34 35 36 37
  dump_fields_path_ = trainer_desc.dump_fields_path();
  dump_converter_ = trainer_desc.dump_converter();
  need_dump_field_ = false;
  if (trainer_desc.dump_fields_size() != 0 && dump_fields_path_ != "") {
    need_dump_field_ = true;
  }
  if (need_dump_field_) {
38
    auto &file_list = dataset->GetFileList();
39 40 41 42 43
    if (file_list.size() == 0) {
      need_dump_field_ = false;
    }
  }
  mpi_rank_ = trainer_desc.mpi_rank() / 2;
44
  const std::vector<paddle::framework::DataFeed *> readers =
45
      dataset->GetReaders();
46

47 48
  thread_num_ = readers.size();
  workers_.resize(thread_num_);
49 50 51 52 53
  for (int i = 0; i < trainer_desc.downpour_param().stat_var_names_size();
       i++) {
    need_merge_var_names_.push_back(
        trainer_desc.downpour_param().stat_var_names(i));
  }
54

55 56 57 58
  for (int i = 0; i < thread_num_; ++i) {
    workers_[i] = DeviceWorkerFactory::CreateDeviceWorker(
        trainer_desc.device_worker_name());
    workers_[i]->SetDeviceIndex(i);
D
dongdaxiang 已提交
59
    workers_[i]->SetDataFeed(readers[i]);
60
    workers_[i]->Initialize(trainer_desc);
61
    workers_[i]->SetNeedDump(need_dump_field_);
62 63
  }

D
dongdaxiang 已提交
64
  VLOG(3) << "going to initialize pull dense worker";
65 66
  pull_dense_worker_ = PullDenseWorker::GetInstance();
  pull_dense_worker_->Initialize(trainer_desc);
D
dongdaxiang 已提交
67
  VLOG(3) << "initialize pull dense worker";
68
  SetDebug(trainer_desc.debug());
69 70
}

71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
void DistMultiTrainer::DumpWork() {
#ifdef _LINUX
  while (1) {
    std::string out_str;
    if (!queue_->Get(out_str)) {
      break;
    }
    size_t write_count =
        fwrite_unlocked(out_str.data(), 1, out_str.length(), fp_.get());
    if (write_count != out_str.length()) {
      VLOG(3) << "dump text failed";
      continue;
    }
    write_count = fwrite_unlocked("\n", 1, 1, fp_.get());
    if (write_count != 1) {
      VLOG(3) << "dump text failed";
      continue;
    }
  }
#endif
}

void DistMultiTrainer::InitDumpEnv() {
  queue_ = paddle::framework::MakeChannel<std::string>();
  int err_no = 0;
  std::string path = string::format_string(
      "%s/part-%03d", dump_fields_path_.c_str(), mpi_rank_);

  fp_ = fs_open_write(path, &err_no, dump_converter_);
  for (int i = 0; i < thread_num_; ++i) {
    workers_[i]->SetChannelWriter(queue_.get());
  }
  dump_thread_ = std::thread(&DistMultiTrainer::DumpWork, this);
}

void DistMultiTrainer::FinalizeDumpEnv() {
  queue_->Close();
  dump_thread_.join();
  queue_.reset();
}

112
void DistMultiTrainer::InitOtherEnv(const ProgramDesc &main_program) {
113 114 115
  if (need_dump_field_) {
    InitDumpEnv();
  }
116
  pull_dense_worker_->SetRootScope(root_scope_);
117
  pull_dense_worker_->Start();
D
dongdaxiang 已提交
118
  VLOG(3) << "init other env done.";
119 120
}

121 122 123 124 125 126 127 128 129 130 131 132
void DistMultiTrainer::Run() {
  for (int thidx = 0; thidx < thread_num_; ++thidx) {
    if (!debug_) {
      threads_.push_back(
          std::thread(&DeviceWorker::TrainFiles, workers_[thidx].get()));
    } else {
      threads_.push_back(std::thread(&DeviceWorker::TrainFilesWithProfiler,
                                     workers_[thidx].get()));
    }
  }
}

133
void DistMultiTrainer::Finalize() {
134
  for (auto &th : threads_) {
135 136
    th.join();
  }
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
  for (int i = 0; i < need_merge_var_names_.size(); i++) {
    Variable *root_var = root_scope_->FindVar(need_merge_var_names_[i]);
    if (root_var == nullptr) {
      continue;
    }
    LoDTensor *root_tensor = root_var->GetMutable<LoDTensor>();
    for (int j = 1; j < thread_num_; j++) {
      Scope *cur_thread_scope = workers_[j]->GetThreadScope();
      Variable *thread_var =
          cur_thread_scope->FindVar(need_merge_var_names_[i]);
      LoDTensor *thread_tensor = thread_var->GetMutable<LoDTensor>();
      if (root_tensor->numel() != thread_tensor->numel()) {
        continue;
      }
#define MergeCallback(cpp_type, proto_type)                   \
  do {                                                        \
    if (root_tensor->type() == proto_type) {                  \
      MergeToRootScope<cpp_type>(root_tensor, thread_tensor); \
    }                                                         \
  } while (0)
      _ForEachDataType_(MergeCallback);
    }
  }

161 162 163
  if (need_dump_field_) {
    FinalizeDumpEnv();
  }
164
  pull_dense_worker_->Stop();
165
  root_scope_->DropKids();
166 167
}

168 169 170 171 172 173 174 175 176
template <typename T>
void DistMultiTrainer::MergeToRootScope(LoDTensor *root_tensor,
                                        LoDTensor *tensor) {
  T *root_data = root_tensor->data<T>();
  T *data = tensor->data<T>();
  for (int i = 0; i < tensor->numel(); i++) {
    root_data[i] += data[i];
  }
}
177 178
}  // end namespace framework
}  // end namespace paddle