NeuralNetwork.cpp 16.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/utils/Util.h"

17 18
#include "NeuralNetwork.h"
#include "hl_gpu.h"
Z
zhangjinchao01 已提交
19
#include "paddle/utils/CustomStackTrace.h"
Y
Yu Yang 已提交
20
#include "paddle/utils/Logging.h"
21
#include "paddle/utils/Stat.h"
Z
zhangjinchao01 已提交
22

T
tensor-tang 已提交
23
#ifdef PADDLE_WITH_MKLDNN
T
tensor-tang 已提交
24 25 26
#include "paddle/gserver/layers/MKLDNNLayer.h"
#endif

27
#ifndef PADDLE_MOBILE_INFERENCE
Y
Yu Yang 已提交
28
#include "MultiNetwork.h"
Z
zhangjinchao01 已提交
29
#include "RecurrentGradientMachine.h"
H
hedaoyuan 已提交
30
#include "paddle/gserver/layers/AgentLayer.h"
31
#endif
Z
zhangjinchao01 已提交
32 33

namespace paddle {
34 35
void parameterInitNN(int paramId,
                     Parameter* para,
Z
zhangjinchao01 已提交
36 37 38 39 40 41 42 43
                     std::vector<ParameterPtr>* sharedParams) {
  // Create parameters values.
  if (!para->useGpu() && sharedParams) {
    para->enableSharedType(PARAMETER_VALUE,
                           (*sharedParams)[paramId]->getBuf(PARAMETER_VALUE),
                           (*sharedParams)[paramId]->getMat(PARAMETER_VALUE));
  } else {
    if (para->isSparseRemoteUpdate()) {
44 45 46 47
      para->enableType(PARAMETER_VALUE,
                       FLAGS_loadsave_parameters_in_pserver
                           ? Parameter::MAT_SPARSE_ROW_PREFETCH
                           : Parameter::MAT_SPARSE_ROW_PREFETCH_FULL_SIZE);
Z
zhangjinchao01 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
    } else {
      para->enableType(PARAMETER_VALUE);
    }
  }
  // Create parameter gradients.
  if (para->isSparseRemoteUpdate() && !sharedParams) {
    para->enableType(PARAMETER_GRADIENT, Parameter::MAT_SPARSE_ROW);
  } else if (para->isGradSparseUpdate()) {
    para->enableType(PARAMETER_GRADIENT, Parameter::MAT_SPARSE_ROW_AUTO_GROW);
  } else if (!para->isStatic()) {
    para->enableType(PARAMETER_GRADIENT);
  }
}

NeuralNetwork* NeuralNetwork::create(const ModelConfig& config) {
63
#ifndef PADDLE_MOBILE_INFERENCE
Z
zhangjinchao01 已提交
64 65 66 67 68 69 70
  if (config.type() == "recurrent_nn") {
    return newNeuralNetwork("root");
  } else if (config.type() == "multi_nn") {
    return new MultiNetwork("root");
  } else {
    return newNeuralNetwork();
  }
71 72 73
#else
  return new NeuralNetwork();
#endif
Z
zhangjinchao01 已提交
74 75 76 77
}

std::map<std::string, bool> NeuralNetwork::dllInitMap;

78 79
void NeuralNetwork::init(const ModelConfig& config,
                         ParamInitCallback callback,
Z
zhangjinchao01 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
                         const std::vector<ParameterType>& parameterTypes,
                         bool useGpu) {
  using std::placeholders::_1;
  using std::placeholders::_2;
  ParamInitCallback paramCallback = nullptr;
  if (callback != nullptr) {
    paramSelfInited_ = false;
    paramCallback = callback;
  } else {
    paramSelfInited_ = true;
    paramCallback = std::bind(parameterInitNN, _1, _2, nullptr);
  }
  config_ = config;

  if (rootNetwork_ != nullptr) {
    // direct use parameters_ and parameterMap_ from base network
    CHECK_EQ((size_t)config.parameters_size(),
             rootNetwork_->getParameters().size());
    parameters_ = rootNetwork_->getParameters();
    parameterMap_ = *(rootNetwork_->getParameterMap());
  } else {
    parameters_.reserve(config.parameters_size());
    for (const auto& para_config : config.parameters()) {
103 104
      auto parameter = std::make_shared<Parameter>(para_config,
                                                   useGpu,
Z
zhangjinchao01 已提交
105 106 107 108
                                                   /*initialize=*/false);
      paramCallback(parameters_.size(), parameter.get());
      if (!callback) {
        for (ParameterType type :
109
             (parameter->isStatic()
Z
zhangjinchao01 已提交
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
                  ? std::vector<ParameterType>{PARAMETER_VALUE}
                  : parameterTypes)) {
          if (type != PARAMETER_VALUE && type != PARAMETER_GRADIENT) {
            parameter->enableType(type);
          }
        }
      }
      parameter->setID(parameters_.size());
      parameters_.push_back(parameter);
      CHECK(!parameterMap_.count(parameter->getName()));
      parameterMap_[parameter->getName()] = parameter;
    }
  }

  auto layerCreate = [&](const LayerConfig& layer_config) {
    auto layer = Layer::create(layer_config);
    CHECK(layer) << "Create layer failed. Layer name:" << layer->getName();
    layers_.push_back(layer);
    CHECK(!layerMap_.count(layer->getName()));
    layerMap_[layer->getName()] = layer;
  };

132 133 134 135 136
  auto subModelConfig = std::find_if(config.sub_models().begin(),
                                     config.sub_models().end(),
                                     [=](const SubModelConfig& sub_model) {
                                       return sub_model.name() == subModelName_;
                                     });
Z
zhangjinchao01 已提交
137 138 139 140 141 142
  bool useSubModel = (subModelConfig != config.sub_models().end());
  CHECK_EQ(useSubModel, !subModelName_.empty());
  if (useSubModel) {
    layers_.reserve(subModelConfig->layer_names_size());
    for (const auto& layer_name : subModelConfig->layer_names()) {
      auto layer_config =
143 144
          std::find_if(config.layers().begin(),
                       config.layers().end(),
Z
zhangjinchao01 已提交
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
                       [=](const LayerConfig& layer_config) {
                         return layer_config.name() == layer_name;
                       });
      CHECK(layer_config != config.layers().end());
      layerCreate(*layer_config);
    }
  } else {
    layers_.reserve(config.layers_size());
    for (const auto& layer_config : config.layers()) {
      bool useLayer = true;
      if (config.has_external_config()) {
        useLayer = true;
        for (const auto& name : config.external_config().layer_names()) {
          if (layer_config.name() == name) {
            useLayer = false;
            break;
          }
        }
      }
      if (useLayer) {
        layerCreate(layer_config);
      }
    }
  }

  for (const auto& layer : layers_) {
    layer->init(layerMap_, parameterMap_);
    layer->initSubNetwork(this /*root*/, config_, parameterTypes, useGpu);
  }

  for (const auto& layer_name :
       (useSubModel ? subModelConfig->input_layer_names()
                    : config.input_layer_names())) {
    auto it = layerMap_.find(layer_name);
    CHECK(it != layerMap_.end());
    dataLayers_.push_back(std::dynamic_pointer_cast<DataLayer>(it->second));
  }

  for (const auto& layer_name :
       (useSubModel ? subModelConfig->output_layer_names()
                    : config.output_layer_names())) {
    auto it = layerMap_.find(layer_name);
    CHECK(it != layerMap_.end());
    outputLayers_.push_back(it->second);
  }
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214

  for (const auto& layer : layers_) {
    const auto name& = layer->getName();
    bool isMiddleLayer = true;

    // if data layer
    for (const auto& dataLayer : dataLayers_) {
      if (name == dataLayer->getName()) {
        isMiddleLayer = false;
        break;
      }
    }

    // if output layer
    for (const auto& dataLayer : outputLayers_) {
      if (name == dataLayer->getName()) {
        isMiddleLayer = false;
        break;
      }
    }

    if (isMiddleLayer) {
      middleLayers_.push_back(layer);
    }
  }
Z
zhangjinchao01 已提交
215 216
}

217 218
void NeuralNetwork::connect(LayerPtr agentLayer,
                            LayerPtr realLayer,
Z
zhangjinchao01 已提交
219
                            int height) {
H
hedaoyuan 已提交
220
#ifndef PADDLE_MOBILE_INFERENCE
Z
zhangjinchao01 已提交
221 222 223
  AgentLayer* agent = dynamic_cast<AgentLayer*>(agentLayer.get());
  CHECK_NOTNULL(agent);
  agent->setRealLayer(realLayer, height);
H
hedaoyuan 已提交
224
#endif
Z
zhangjinchao01 已提交
225 226
}

227 228
void NeuralNetwork::connect(std::string agentLayerName,
                            NeuralNetwork* srcNN,
Z
zhangjinchao01 已提交
229 230 231 232 233 234 235 236 237 238 239
                            std::string realLayerName) {
  connect(this->getLayer(agentLayerName), srcNN->getLayer(realLayerName));
}

void NeuralNetwork::prefetch(const std::vector<Argument>& inArgs) {
  CHECK_EQ(inArgs.size(), dataLayers_.size());

  if (paramSelfInited_) {
    for (auto& para : parameters_) {
      if (para->isSparseRemoteUpdate()) {
        auto mat = dynamic_cast<SparsePrefetchRowCpuMatrix*>(
240
            para->getMat(PARAMETER_VALUE).get());
Z
zhangjinchao01 已提交
241
        para->clearGradient();
武毅 已提交
242
        if (mat) mat->clearIndices();
Z
zhangjinchao01 已提交
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
      }
    }
  }

  for (size_t i = 0; i != dataLayers_.size(); ++i) {
    if (FLAGS_parallel_nn) {
      const_cast<Argument&>(inArgs[i]).deviceId = -1;
    }
    dataLayers_[i]->setData(inArgs[i]);
  }

  for (auto& layer : layers_) {
    layer->prefetch();
  }

  if (paramSelfInited_) {
    for (auto& para : parameters_) {
      if (para->isSparseRemoteUpdate()) {
        auto mat = dynamic_cast<SparsePrefetchRowCpuMatrix*>(
262
            para->getMat(PARAMETER_VALUE).get());
Z
zhangjinchao01 已提交
263 264
        mat->setupIndices();
        auto matGrad = dynamic_cast<SparseRowCpuMatrix*>(
265
            para->getMat(PARAMETER_GRADIENT).get());
Z
zhangjinchao01 已提交
266 267 268 269 270 271 272
        matGrad->reserveStore();
      }
    }
  }
}

void NeuralNetwork::forward(const std::vector<Argument>& inArgs,
273 274
                            std::vector<Argument>* outArgs,
                            PassType passType) {
Z
zhangjinchao01 已提交
275 276 277 278 279 280
  CHECK_EQ(inArgs.size(), dataLayers_.size());
  outArgs->resize(outputLayers_.size());
  for (size_t i = 0; i != dataLayers_.size(); ++i) {
    dataLayers_[i]->setData(inArgs[i]);
  }

X
xuwei06 已提交
281 282
  gLayerStackTrace.set_stage(true);

Z
zhangjinchao01 已提交
283 284 285 286 287
  {
    for (auto& layer : layers_) {
      REGISTER_TIMER_INFO("ForwardTimer", layer->getName().c_str());
      gLayerStackTrace.push(layer->getName());
      layer->forward(passType);
X
xuwei06 已提交
288
      gLayerStackTrace.pop(layer->getName());
Z
zhangjinchao01 已提交
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
    }
  }

  outArgs->clear();
  outArgs->reserve(outputLayers_.size());
  for (auto& layer : outputLayers_) {
    outArgs->push_back(layer->getOutput());
  }
}

void NeuralNetwork::resetState() {
  for (auto& layer : layers_) {
    layer->resetState();
  }
}

void NeuralNetwork::setState(const MachineState& machineState) {
  for (size_t i = 0; i < layers_.size(); i++) {
    if (machineState[i] != nullptr) {
      layers_[i]->setState(machineState[i]);
    }
  }
}

void NeuralNetwork::getState(MachineState& machineState) {
  machineState.clear();
  machineState.reserve(layers_.size());
  for (auto& layer : layers_) {
    LayerStatePtr p = layer->getState();
    machineState.push_back(p);
  }
}

void NeuralNetwork::backward(const UpdateCallback& callback) {
X
xuwei06 已提交
323
  gLayerStackTrace.set_stage(false);
Z
zhangjinchao01 已提交
324 325
  FOR_EACH_R(layer, layers_) {
    REGISTER_TIMER_INFO("BackwardTimer", (*layer)->getName().c_str());
X
xuwei06 已提交
326
    gLayerStackTrace.push((*layer)->getName());
Z
zhangjinchao01 已提交
327 328 329 330 331 332 333
    if ((*layer)->needGradient()) {
      (*layer)->backward(callback);
    }
    gLayerStackTrace.pop((*layer)->getName());
  }
}

T
tensor-tang 已提交
334
void NeuralNetwork::finish() {
T
tensor-tang 已提交
335
#ifdef PADDLE_WITH_MKLDNN
T
tensor-tang 已提交
336 337 338 339 340 341 342 343 344
  FOR_EACH_R(layer, layers_) {
    MKLDNNLayerPtr dnnLayer = std::dynamic_pointer_cast<MKLDNNLayer>(*layer);
    if (dnnLayer) {
      dnnLayer->convertWeightsToPaddle();
    }
  }
#endif
}

L
liaogang 已提交
345
Argument NeuralNetwork::getLayerOutput(const std::string& layerName) {
L
liaogang 已提交
346
  return getLayer(layerName)->getOutput();
Z
zhangjinchao01 已提交
347
}
348

Z
zhangjinchao01 已提交
349 350 351 352 353 354
void NeuralNetwork::onPassEnd() {
  for (auto& layer : layers_) {
    layer->onPassEnd();
  }
}

355 356 357 358 359 360 361
void NeuralNetwork::releaseOutput() {
  for (auto& layer : middleLayers_) {
    Argument& arg = layer->getOutput();
    arg.value.reset();
  }
}

362 363
#ifndef PADDLE_MOBILE_INFERENCE

Z
zhangjinchao01 已提交
364 365 366 367 368
class CombinedEvaluator : public Evaluator {
public:
  void addEvaluator(std::unique_ptr<Evaluator>&& evaluator) {
    evaluators_.emplace_back(std::move(evaluator));
  }
Y
Yu Yang 已提交
369
  void start() override {
Z
zhangjinchao01 已提交
370 371 372 373 374
    for (auto& evaluator : evaluators_) {
      evaluator->start();
    }
  }

Y
Yu Yang 已提交
375
  void finish() override {
Z
zhangjinchao01 已提交
376 377 378 379 380
    for (auto& evaluator : evaluators_) {
      evaluator->finish();
    }
  }

Y
Yu Yang 已提交
381
  void eval(const NeuralNetwork& nn) override {
Z
zhangjinchao01 已提交
382 383 384 385
    for (auto& evaluator : evaluators_) {
      evaluator->eval(nn);
    }
  }
Y
Yu Yang 已提交
386
  real evalImp(std::vector<Argument>& arguments) override {
Z
zhangjinchao01 已提交
387 388 389
    (void)arguments;
    return -1;
  }
Y
Yu Yang 已提交
390
  void printStats(std::ostream& os) const override {
Z
zhangjinchao01 已提交
391 392 393 394 395 396
    for (auto& evaluator : evaluators_) {
      evaluator->printStats(os);
      os << ' ';
    }
  }

Y
Yu Yang 已提交
397
  void distributeEval(ParameterClient2* client) override {
Z
zhangjinchao01 已提交
398 399 400 401 402 403 404
    for (auto& evaluator : evaluators_) {
      evaluator->distributeEval(client);
    }
  }

protected:
  std::vector<std::unique_ptr<Evaluator>> evaluators_;
Y
Yu Yang 已提交
405 406 407

  // Evaluator interface
public:
Y
Yu Yang 已提交
408 409 410 411
  /**
   * @brief getNames will return all inside evaluators' names.
   * @param names [out]: return names.
   */
Y
Yu Yang 已提交
412
  void getNames(std::vector<std::string>* names) override {
Y
Yu Yang 已提交
413 414 415 416 417
    for (auto& eval : evaluators_) {
      eval->getNames(names);
    }
  }

Y
Yu Yang 已提交
418 419 420
  /**
   * @brief getValue could get all inside evaluators' value.
   */
Y
Yu Yang 已提交
421
  real getValue(const std::string& name, Error* err) const override {
Y
Yu Yang 已提交
422 423 424 425 426
    return this->getMethodHelper<real>(
        name, err, [&name, err](const std::unique_ptr<Evaluator>& eval) {
          return eval->getValue(name, err);
        });
  }
Y
Yu Yang 已提交
427 428 429 430

  /**
   * @brief getType could get all inside evaluators' type.
   */
Y
Yu Yang 已提交
431
  std::string getType(const std::string& name, Error* err) const override {
Y
Yu Yang 已提交
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
    return this->getMethodHelper<std::string>(
        name, err, [&name, err](const std::unique_ptr<Evaluator>& eval) {
          return eval->getType(name, err);
        });
  }

private:
  template <typename T>
  T getMethodHelper(const std::string& name,
                    Error* err,
                    const std::function<T(const std::unique_ptr<Evaluator>&)>&
                        callback) const {
    for (auto& eval : evaluators_) {
      std::vector<std::string> names;
      eval->getNames(&names);
      if (std::find(names.begin(), names.end(), name) != names.end()) {
        return callback(eval);
      }
    }
451
    *err = Error("No such key %s", name.c_str());
Y
Yu Yang 已提交
452 453
    return T();
  }
Z
zhangjinchao01 已提交
454 455
};

X
xuwei06 已提交
456 457 458 459 460 461 462
class SubnetEvaluator : public CombinedEvaluator {
public:
  SubnetEvaluator(const std::string& layerName,
                  std::unique_ptr<Evaluator>&& evaluator)
      : layerName_(layerName) {
    addEvaluator(std::move(evaluator));
  }
L
liaogang 已提交
463
  void eval(const NeuralNetwork& nn) override {
X
xuwei06 已提交
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
    const LayerPtr& layer = nn.getLayer(layerName_);
    CHECK(layer) << "Nonexisted layer: " << layerName_ << " in submodel "
                 << nn.getName();
    bool accessed = false;
    layer->accessSubNetwork([this, &accessed](NeuralNetwork& subnet) {
      subnet.eval(evaluators_[0].get());
      accessed = true;
    });
    CHECK(accessed) << "There is no subnetwork for layer " << layerName_
                    << " in submodel " << nn.getName();
  }

protected:
  std::string layerName_;
};

Y
Yu Yang 已提交
480
Evaluator* NeuralNetwork::makeEvaluator() const {
Z
zhangjinchao01 已提交
481
  CombinedEvaluator* combinedEvaluator = new CombinedEvaluator();
482 483 484 485 486
  auto subModelConfig = std::find_if(config_.sub_models().begin(),
                                     config_.sub_models().end(),
                                     [=](const SubModelConfig& sub_model) {
                                       return sub_model.name() == subModelName_;
                                     });
Z
zhangjinchao01 已提交
487 488 489 490 491 492 493
  bool useSubModel = (subModelConfig != config_.sub_models().end());
  CHECK_EQ(useSubModel, !subModelName_.empty());
  if (useSubModel) {
    // create the evaluators that belong to CURRENT submodel
    for (int i = 0; i < subModelConfig->evaluator_names_size(); ++i) {
      // find evaluator by name
      auto thisEvalConfig = std::find_if(
494 495
          config_.evaluators().begin(),
          config_.evaluators().end(),
Z
zhangjinchao01 已提交
496 497 498 499 500 501 502 503 504 505
          [=](const EvaluatorConfig& ecfg) {
            return ecfg.name() == subModelConfig->evaluator_names(i);
          });
      bool validConfig = (thisEvalConfig != config_.evaluators().end());
      if (validConfig) {
        std::unique_ptr<Evaluator> evaluator(
            Evaluator::create(*thisEvalConfig));
        combinedEvaluator->addEvaluator(std::move(evaluator));
      }
    }
X
xuwei06 已提交
506 507 508 509 510 511 512 513 514
    for (auto& layer : layers_) {
      layer->accessSubNetwork(
          [layer, combinedEvaluator](NeuralNetwork& subnet) {
            std::unique_ptr<Evaluator> subEvaluator(new SubnetEvaluator(
                layer->getName(),
                std::unique_ptr<Evaluator>(subnet.makeEvaluator())));
            combinedEvaluator->addEvaluator(std::move(subEvaluator));
          });
    }
Z
zhangjinchao01 已提交
515 516 517 518 519 520 521 522 523
  } else {
    for (const EvaluatorConfig& evalConfig : config_.evaluators()) {
      std::unique_ptr<Evaluator> evaluator(Evaluator::create(evalConfig));
      combinedEvaluator->addEvaluator(std::move(evaluator));
    }
  }
  return combinedEvaluator;
}

Y
Yu Yang 已提交
524
void NeuralNetwork::eval(Evaluator* evaluator) const { evaluator->eval(*this); }
Z
zhangjinchao01 已提交
525

526 527
#endif

Z
zhangjinchao01 已提交
528 529 530 531 532 533 534
void NeuralNetwork::setOutputGrad(const std::vector<Argument>& args) {
  CHECK_GE(outputLayers_.size(), args.size());
  for (size_t i = 0; i < args.size(); ++i) {
    outputLayers_[i]->getOutput().grad = args[i].grad;
  }
}

535 536 537
extern NeuralNetwork* newCustomNerualNetwork(const std::string& name,
                                             NeuralNetwork* network)
    __attribute__((weak));
L
liaogang 已提交
538

539 540 541 542 543 544 545
NeuralNetwork* NeuralNetwork::newNeuralNetwork(const std::string& name,
                                               NeuralNetwork* rootNetwork) {
  if (newCustomNerualNetwork) {
    return newCustomNerualNetwork(name, rootNetwork);
  } else {
    return new NeuralNetwork(name, rootNetwork);
  }
Z
zhangjinchao01 已提交
546 547 548
}

}  // namespace paddle