NeuralNetwork.cpp 15.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/utils/Util.h"

17 18 19
#include "NeuralNetwork.h"
#include "hl_gpu.h"
#include "paddle/gserver/layers/AgentLayer.h"
Z
zhangjinchao01 已提交
20
#include "paddle/utils/CustomStackTrace.h"
Y
Yu Yang 已提交
21
#include "paddle/utils/Logging.h"
22
#include "paddle/utils/Stat.h"
Z
zhangjinchao01 已提交
23

24
#ifndef PADDLE_MOBILE_INFERENCE
Y
Yu Yang 已提交
25
#include "MultiNetwork.h"
Z
zhangjinchao01 已提交
26
#include "RecurrentGradientMachine.h"
27
#endif
Z
zhangjinchao01 已提交
28 29

namespace paddle {
30 31
void parameterInitNN(int paramId,
                     Parameter* para,
Z
zhangjinchao01 已提交
32 33 34 35 36 37 38 39
                     std::vector<ParameterPtr>* sharedParams) {
  // Create parameters values.
  if (!para->useGpu() && sharedParams) {
    para->enableSharedType(PARAMETER_VALUE,
                           (*sharedParams)[paramId]->getBuf(PARAMETER_VALUE),
                           (*sharedParams)[paramId]->getMat(PARAMETER_VALUE));
  } else {
    if (para->isSparseRemoteUpdate()) {
40 41 42 43
      para->enableType(PARAMETER_VALUE,
                       FLAGS_loadsave_parameters_in_pserver
                           ? Parameter::MAT_SPARSE_ROW_PREFETCH
                           : Parameter::MAT_SPARSE_ROW_PREFETCH_FULL_SIZE);
Z
zhangjinchao01 已提交
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
    } else {
      para->enableType(PARAMETER_VALUE);
    }
  }
  // Create parameter gradients.
  if (para->isSparseRemoteUpdate() && !sharedParams) {
    para->enableType(PARAMETER_GRADIENT, Parameter::MAT_SPARSE_ROW);
  } else if (para->isGradSparseUpdate()) {
    para->enableType(PARAMETER_GRADIENT, Parameter::MAT_SPARSE_ROW_AUTO_GROW);
  } else if (!para->isStatic()) {
    para->enableType(PARAMETER_GRADIENT);
  }
}

NeuralNetwork* NeuralNetwork::create(const ModelConfig& config) {
59
#ifndef PADDLE_MOBILE_INFERENCE
Z
zhangjinchao01 已提交
60 61 62 63 64 65 66
  if (config.type() == "recurrent_nn") {
    return newNeuralNetwork("root");
  } else if (config.type() == "multi_nn") {
    return new MultiNetwork("root");
  } else {
    return newNeuralNetwork();
  }
67 68 69
#else
  return new NeuralNetwork();
#endif
Z
zhangjinchao01 已提交
70 71 72 73
}

std::map<std::string, bool> NeuralNetwork::dllInitMap;

74 75
void NeuralNetwork::init(const ModelConfig& config,
                         ParamInitCallback callback,
Z
zhangjinchao01 已提交
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
                         const std::vector<ParameterType>& parameterTypes,
                         bool useGpu) {
  using std::placeholders::_1;
  using std::placeholders::_2;
  ParamInitCallback paramCallback = nullptr;
  if (callback != nullptr) {
    paramSelfInited_ = false;
    paramCallback = callback;
  } else {
    paramSelfInited_ = true;
    paramCallback = std::bind(parameterInitNN, _1, _2, nullptr);
  }
  config_ = config;

  if (rootNetwork_ != nullptr) {
    // direct use parameters_ and parameterMap_ from base network
    CHECK_EQ((size_t)config.parameters_size(),
             rootNetwork_->getParameters().size());
    parameters_ = rootNetwork_->getParameters();
    parameterMap_ = *(rootNetwork_->getParameterMap());
  } else {
    parameters_.reserve(config.parameters_size());
    for (const auto& para_config : config.parameters()) {
99 100
      auto parameter = std::make_shared<Parameter>(para_config,
                                                   useGpu,
Z
zhangjinchao01 已提交
101 102 103 104
                                                   /*initialize=*/false);
      paramCallback(parameters_.size(), parameter.get());
      if (!callback) {
        for (ParameterType type :
105
             (parameter->isStatic()
Z
zhangjinchao01 已提交
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
                  ? std::vector<ParameterType>{PARAMETER_VALUE}
                  : parameterTypes)) {
          if (type != PARAMETER_VALUE && type != PARAMETER_GRADIENT) {
            parameter->enableType(type);
          }
        }
      }
      parameter->setID(parameters_.size());
      parameters_.push_back(parameter);
      CHECK(!parameterMap_.count(parameter->getName()));
      parameterMap_[parameter->getName()] = parameter;
    }
  }

  auto layerCreate = [&](const LayerConfig& layer_config) {
    auto layer = Layer::create(layer_config);
    CHECK(layer) << "Create layer failed. Layer name:" << layer->getName();
    layers_.push_back(layer);
    CHECK(!layerMap_.count(layer->getName()));
    layerMap_[layer->getName()] = layer;
  };

128 129 130 131 132
  auto subModelConfig = std::find_if(config.sub_models().begin(),
                                     config.sub_models().end(),
                                     [=](const SubModelConfig& sub_model) {
                                       return sub_model.name() == subModelName_;
                                     });
Z
zhangjinchao01 已提交
133 134 135 136 137 138
  bool useSubModel = (subModelConfig != config.sub_models().end());
  CHECK_EQ(useSubModel, !subModelName_.empty());
  if (useSubModel) {
    layers_.reserve(subModelConfig->layer_names_size());
    for (const auto& layer_name : subModelConfig->layer_names()) {
      auto layer_config =
139 140
          std::find_if(config.layers().begin(),
                       config.layers().end(),
Z
zhangjinchao01 已提交
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
                       [=](const LayerConfig& layer_config) {
                         return layer_config.name() == layer_name;
                       });
      CHECK(layer_config != config.layers().end());
      layerCreate(*layer_config);
    }
  } else {
    layers_.reserve(config.layers_size());
    for (const auto& layer_config : config.layers()) {
      bool useLayer = true;
      if (config.has_external_config()) {
        useLayer = true;
        for (const auto& name : config.external_config().layer_names()) {
          if (layer_config.name() == name) {
            useLayer = false;
            break;
          }
        }
      }
      if (useLayer) {
        layerCreate(layer_config);
      }
    }
  }

  for (const auto& layer : layers_) {
    layer->init(layerMap_, parameterMap_);
    layer->initSubNetwork(this /*root*/, config_, parameterTypes, useGpu);
  }

  for (const auto& layer_name :
       (useSubModel ? subModelConfig->input_layer_names()
                    : config.input_layer_names())) {
    auto it = layerMap_.find(layer_name);
    CHECK(it != layerMap_.end());
    dataLayers_.push_back(std::dynamic_pointer_cast<DataLayer>(it->second));
  }

  for (const auto& layer_name :
       (useSubModel ? subModelConfig->output_layer_names()
                    : config.output_layer_names())) {
    auto it = layerMap_.find(layer_name);
    CHECK(it != layerMap_.end());
    outputLayers_.push_back(it->second);
  }
}

188 189
void NeuralNetwork::connect(LayerPtr agentLayer,
                            LayerPtr realLayer,
Z
zhangjinchao01 已提交
190 191 192 193 194 195
                            int height) {
  AgentLayer* agent = dynamic_cast<AgentLayer*>(agentLayer.get());
  CHECK_NOTNULL(agent);
  agent->setRealLayer(realLayer, height);
}

196 197
void NeuralNetwork::connect(std::string agentLayerName,
                            NeuralNetwork* srcNN,
Z
zhangjinchao01 已提交
198 199 200 201 202 203 204 205 206 207 208
                            std::string realLayerName) {
  connect(this->getLayer(agentLayerName), srcNN->getLayer(realLayerName));
}

void NeuralNetwork::prefetch(const std::vector<Argument>& inArgs) {
  CHECK_EQ(inArgs.size(), dataLayers_.size());

  if (paramSelfInited_) {
    for (auto& para : parameters_) {
      if (para->isSparseRemoteUpdate()) {
        auto mat = dynamic_cast<SparsePrefetchRowCpuMatrix*>(
209
            para->getMat(PARAMETER_VALUE).get());
Z
zhangjinchao01 已提交
210
        para->clearGradient();
武毅 已提交
211
        if (mat) mat->clearIndices();
Z
zhangjinchao01 已提交
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
      }
    }
  }

  for (size_t i = 0; i != dataLayers_.size(); ++i) {
    if (FLAGS_parallel_nn) {
      const_cast<Argument&>(inArgs[i]).deviceId = -1;
    }
    dataLayers_[i]->setData(inArgs[i]);
  }

  for (auto& layer : layers_) {
    layer->prefetch();
  }

  if (paramSelfInited_) {
    for (auto& para : parameters_) {
      if (para->isSparseRemoteUpdate()) {
        auto mat = dynamic_cast<SparsePrefetchRowCpuMatrix*>(
231
            para->getMat(PARAMETER_VALUE).get());
Z
zhangjinchao01 已提交
232 233
        mat->setupIndices();
        auto matGrad = dynamic_cast<SparseRowCpuMatrix*>(
234
            para->getMat(PARAMETER_GRADIENT).get());
Z
zhangjinchao01 已提交
235 236 237 238 239 240 241
        matGrad->reserveStore();
      }
    }
  }
}

void NeuralNetwork::forward(const std::vector<Argument>& inArgs,
242 243
                            std::vector<Argument>* outArgs,
                            PassType passType) {
Z
zhangjinchao01 已提交
244 245 246 247 248 249
  CHECK_EQ(inArgs.size(), dataLayers_.size());
  outArgs->resize(outputLayers_.size());
  for (size_t i = 0; i != dataLayers_.size(); ++i) {
    dataLayers_[i]->setData(inArgs[i]);
  }

X
xuwei06 已提交
250 251
  gLayerStackTrace.set_stage(true);

Z
zhangjinchao01 已提交
252 253 254 255 256
  {
    for (auto& layer : layers_) {
      REGISTER_TIMER_INFO("ForwardTimer", layer->getName().c_str());
      gLayerStackTrace.push(layer->getName());
      layer->forward(passType);
X
xuwei06 已提交
257
      gLayerStackTrace.pop(layer->getName());
Z
zhangjinchao01 已提交
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
    }
  }

  outArgs->clear();
  outArgs->reserve(outputLayers_.size());
  for (auto& layer : outputLayers_) {
    outArgs->push_back(layer->getOutput());
  }
}

void NeuralNetwork::resetState() {
  for (auto& layer : layers_) {
    layer->resetState();
  }
}

void NeuralNetwork::setState(const MachineState& machineState) {
  for (size_t i = 0; i < layers_.size(); i++) {
    if (machineState[i] != nullptr) {
      layers_[i]->setState(machineState[i]);
    }
  }
}

void NeuralNetwork::getState(MachineState& machineState) {
  machineState.clear();
  machineState.reserve(layers_.size());
  for (auto& layer : layers_) {
    LayerStatePtr p = layer->getState();
    machineState.push_back(p);
  }
}

void NeuralNetwork::backward(const UpdateCallback& callback) {
X
xuwei06 已提交
292
  gLayerStackTrace.set_stage(false);
Z
zhangjinchao01 已提交
293 294
  FOR_EACH_R(layer, layers_) {
    REGISTER_TIMER_INFO("BackwardTimer", (*layer)->getName().c_str());
X
xuwei06 已提交
295
    gLayerStackTrace.push((*layer)->getName());
Z
zhangjinchao01 已提交
296 297 298 299 300 301 302
    if ((*layer)->needGradient()) {
      (*layer)->backward(callback);
    }
    gLayerStackTrace.pop((*layer)->getName());
  }
}

L
liaogang 已提交
303
Argument NeuralNetwork::getLayerOutput(const std::string& layerName) {
L
liaogang 已提交
304
  return getLayer(layerName)->getOutput();
Z
zhangjinchao01 已提交
305
}
306

Z
zhangjinchao01 已提交
307 308 309 310 311 312
void NeuralNetwork::onPassEnd() {
  for (auto& layer : layers_) {
    layer->onPassEnd();
  }
}

313 314
#ifndef PADDLE_MOBILE_INFERENCE

Z
zhangjinchao01 已提交
315 316 317 318 319
class CombinedEvaluator : public Evaluator {
public:
  void addEvaluator(std::unique_ptr<Evaluator>&& evaluator) {
    evaluators_.emplace_back(std::move(evaluator));
  }
Y
Yu Yang 已提交
320
  void start() override {
Z
zhangjinchao01 已提交
321 322 323 324 325
    for (auto& evaluator : evaluators_) {
      evaluator->start();
    }
  }

Y
Yu Yang 已提交
326
  void finish() override {
Z
zhangjinchao01 已提交
327 328 329 330 331
    for (auto& evaluator : evaluators_) {
      evaluator->finish();
    }
  }

Y
Yu Yang 已提交
332
  void eval(const NeuralNetwork& nn) override {
Z
zhangjinchao01 已提交
333 334 335 336
    for (auto& evaluator : evaluators_) {
      evaluator->eval(nn);
    }
  }
Y
Yu Yang 已提交
337
  real evalImp(std::vector<Argument>& arguments) override {
Z
zhangjinchao01 已提交
338 339 340
    (void)arguments;
    return -1;
  }
Y
Yu Yang 已提交
341
  void printStats(std::ostream& os) const override {
Z
zhangjinchao01 已提交
342 343 344 345 346 347
    for (auto& evaluator : evaluators_) {
      evaluator->printStats(os);
      os << ' ';
    }
  }

Y
Yu Yang 已提交
348
  void distributeEval(ParameterClient2* client) override {
Z
zhangjinchao01 已提交
349 350 351 352 353 354 355
    for (auto& evaluator : evaluators_) {
      evaluator->distributeEval(client);
    }
  }

protected:
  std::vector<std::unique_ptr<Evaluator>> evaluators_;
Y
Yu Yang 已提交
356 357 358

  // Evaluator interface
public:
Y
Yu Yang 已提交
359 360 361 362
  /**
   * @brief getNames will return all inside evaluators' names.
   * @param names [out]: return names.
   */
Y
Yu Yang 已提交
363
  void getNames(std::vector<std::string>* names) override {
Y
Yu Yang 已提交
364 365 366 367 368
    for (auto& eval : evaluators_) {
      eval->getNames(names);
    }
  }

Y
Yu Yang 已提交
369 370 371
  /**
   * @brief getValue could get all inside evaluators' value.
   */
Y
Yu Yang 已提交
372
  real getValue(const std::string& name, Error* err) const override {
Y
Yu Yang 已提交
373 374 375 376 377
    return this->getMethodHelper<real>(
        name, err, [&name, err](const std::unique_ptr<Evaluator>& eval) {
          return eval->getValue(name, err);
        });
  }
Y
Yu Yang 已提交
378 379 380 381

  /**
   * @brief getType could get all inside evaluators' type.
   */
Y
Yu Yang 已提交
382
  std::string getType(const std::string& name, Error* err) const override {
Y
Yu Yang 已提交
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
    return this->getMethodHelper<std::string>(
        name, err, [&name, err](const std::unique_ptr<Evaluator>& eval) {
          return eval->getType(name, err);
        });
  }

private:
  template <typename T>
  T getMethodHelper(const std::string& name,
                    Error* err,
                    const std::function<T(const std::unique_ptr<Evaluator>&)>&
                        callback) const {
    for (auto& eval : evaluators_) {
      std::vector<std::string> names;
      eval->getNames(&names);
      if (std::find(names.begin(), names.end(), name) != names.end()) {
        return callback(eval);
      }
    }
402
    *err = Error("No such key %s", name.c_str());
Y
Yu Yang 已提交
403 404
    return T();
  }
Z
zhangjinchao01 已提交
405 406
};

X
xuwei06 已提交
407 408 409 410 411 412 413
class SubnetEvaluator : public CombinedEvaluator {
public:
  SubnetEvaluator(const std::string& layerName,
                  std::unique_ptr<Evaluator>&& evaluator)
      : layerName_(layerName) {
    addEvaluator(std::move(evaluator));
  }
L
liaogang 已提交
414
  void eval(const NeuralNetwork& nn) override {
X
xuwei06 已提交
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
    const LayerPtr& layer = nn.getLayer(layerName_);
    CHECK(layer) << "Nonexisted layer: " << layerName_ << " in submodel "
                 << nn.getName();
    bool accessed = false;
    layer->accessSubNetwork([this, &accessed](NeuralNetwork& subnet) {
      subnet.eval(evaluators_[0].get());
      accessed = true;
    });
    CHECK(accessed) << "There is no subnetwork for layer " << layerName_
                    << " in submodel " << nn.getName();
  }

protected:
  std::string layerName_;
};

Y
Yu Yang 已提交
431
Evaluator* NeuralNetwork::makeEvaluator() const {
Z
zhangjinchao01 已提交
432
  CombinedEvaluator* combinedEvaluator = new CombinedEvaluator();
433 434 435 436 437
  auto subModelConfig = std::find_if(config_.sub_models().begin(),
                                     config_.sub_models().end(),
                                     [=](const SubModelConfig& sub_model) {
                                       return sub_model.name() == subModelName_;
                                     });
Z
zhangjinchao01 已提交
438 439 440 441 442 443 444
  bool useSubModel = (subModelConfig != config_.sub_models().end());
  CHECK_EQ(useSubModel, !subModelName_.empty());
  if (useSubModel) {
    // create the evaluators that belong to CURRENT submodel
    for (int i = 0; i < subModelConfig->evaluator_names_size(); ++i) {
      // find evaluator by name
      auto thisEvalConfig = std::find_if(
445 446
          config_.evaluators().begin(),
          config_.evaluators().end(),
Z
zhangjinchao01 已提交
447 448 449 450 451 452 453 454 455 456
          [=](const EvaluatorConfig& ecfg) {
            return ecfg.name() == subModelConfig->evaluator_names(i);
          });
      bool validConfig = (thisEvalConfig != config_.evaluators().end());
      if (validConfig) {
        std::unique_ptr<Evaluator> evaluator(
            Evaluator::create(*thisEvalConfig));
        combinedEvaluator->addEvaluator(std::move(evaluator));
      }
    }
X
xuwei06 已提交
457 458 459 460 461 462 463 464 465
    for (auto& layer : layers_) {
      layer->accessSubNetwork(
          [layer, combinedEvaluator](NeuralNetwork& subnet) {
            std::unique_ptr<Evaluator> subEvaluator(new SubnetEvaluator(
                layer->getName(),
                std::unique_ptr<Evaluator>(subnet.makeEvaluator())));
            combinedEvaluator->addEvaluator(std::move(subEvaluator));
          });
    }
Z
zhangjinchao01 已提交
466 467 468 469 470 471 472 473 474
  } else {
    for (const EvaluatorConfig& evalConfig : config_.evaluators()) {
      std::unique_ptr<Evaluator> evaluator(Evaluator::create(evalConfig));
      combinedEvaluator->addEvaluator(std::move(evaluator));
    }
  }
  return combinedEvaluator;
}

Y
Yu Yang 已提交
475
void NeuralNetwork::eval(Evaluator* evaluator) const { evaluator->eval(*this); }
Z
zhangjinchao01 已提交
476

477 478
#endif

Z
zhangjinchao01 已提交
479 480 481 482 483 484 485
void NeuralNetwork::setOutputGrad(const std::vector<Argument>& args) {
  CHECK_GE(outputLayers_.size(), args.size());
  for (size_t i = 0; i < args.size(); ++i) {
    outputLayers_[i]->getOutput().grad = args[i].grad;
  }
}

486 487 488
extern NeuralNetwork* newCustomNerualNetwork(const std::string& name,
                                             NeuralNetwork* network)
    __attribute__((weak));
L
liaogang 已提交
489

490 491 492 493 494 495 496
NeuralNetwork* NeuralNetwork::newNeuralNetwork(const std::string& name,
                                               NeuralNetwork* rootNetwork) {
  if (newCustomNerualNetwork) {
    return newCustomNerualNetwork(name, rootNetwork);
  } else {
    return new NeuralNetwork(name, rootNetwork);
  }
Z
zhangjinchao01 已提交
497 498 499
}

}  // namespace paddle