NeuralNetwork.cpp 16.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/utils/Util.h"

17 18
#include "NeuralNetwork.h"
#include "hl_gpu.h"
Z
zhangjinchao01 已提交
19
#include "paddle/utils/CustomStackTrace.h"
Y
Yu Yang 已提交
20
#include "paddle/utils/Logging.h"
21
#include "paddle/utils/Stat.h"
Z
zhangjinchao01 已提交
22

T
tensor-tang 已提交
23 24 25 26
#ifdef PADDLE_USE_MKLDNN
#include "paddle/gserver/layers/MKLDNNLayer.h"
#endif

27
#ifndef PADDLE_MOBILE_INFERENCE
Y
Yu Yang 已提交
28
#include "MultiNetwork.h"
Z
zhangjinchao01 已提交
29
#include "RecurrentGradientMachine.h"
H
hedaoyuan 已提交
30
#include "paddle/gserver/layers/AgentLayer.h"
31
#endif
Z
zhangjinchao01 已提交
32 33

namespace paddle {
34 35
void parameterInitNN(int paramId,
                     Parameter* para,
Z
zhangjinchao01 已提交
36 37 38 39 40 41 42 43
                     std::vector<ParameterPtr>* sharedParams) {
  // Create parameters values.
  if (!para->useGpu() && sharedParams) {
    para->enableSharedType(PARAMETER_VALUE,
                           (*sharedParams)[paramId]->getBuf(PARAMETER_VALUE),
                           (*sharedParams)[paramId]->getMat(PARAMETER_VALUE));
  } else {
    if (para->isSparseRemoteUpdate()) {
44 45 46 47
      para->enableType(PARAMETER_VALUE,
                       FLAGS_loadsave_parameters_in_pserver
                           ? Parameter::MAT_SPARSE_ROW_PREFETCH
                           : Parameter::MAT_SPARSE_ROW_PREFETCH_FULL_SIZE);
Z
zhangjinchao01 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
    } else {
      para->enableType(PARAMETER_VALUE);
    }
  }
  // Create parameter gradients.
  if (para->isSparseRemoteUpdate() && !sharedParams) {
    para->enableType(PARAMETER_GRADIENT, Parameter::MAT_SPARSE_ROW);
  } else if (para->isGradSparseUpdate()) {
    para->enableType(PARAMETER_GRADIENT, Parameter::MAT_SPARSE_ROW_AUTO_GROW);
  } else if (!para->isStatic()) {
    para->enableType(PARAMETER_GRADIENT);
  }
}

NeuralNetwork* NeuralNetwork::create(const ModelConfig& config) {
63
#ifndef PADDLE_MOBILE_INFERENCE
Z
zhangjinchao01 已提交
64 65 66 67 68 69 70
  if (config.type() == "recurrent_nn") {
    return newNeuralNetwork("root");
  } else if (config.type() == "multi_nn") {
    return new MultiNetwork("root");
  } else {
    return newNeuralNetwork();
  }
71 72 73
#else
  return new NeuralNetwork();
#endif
Z
zhangjinchao01 已提交
74 75 76 77
}

std::map<std::string, bool> NeuralNetwork::dllInitMap;

78 79
void NeuralNetwork::init(const ModelConfig& config,
                         ParamInitCallback callback,
Z
zhangjinchao01 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
                         const std::vector<ParameterType>& parameterTypes,
                         bool useGpu) {
  using std::placeholders::_1;
  using std::placeholders::_2;
  ParamInitCallback paramCallback = nullptr;
  if (callback != nullptr) {
    paramSelfInited_ = false;
    paramCallback = callback;
  } else {
    paramSelfInited_ = true;
    paramCallback = std::bind(parameterInitNN, _1, _2, nullptr);
  }
  config_ = config;

  if (rootNetwork_ != nullptr) {
    // direct use parameters_ and parameterMap_ from base network
    CHECK_EQ((size_t)config.parameters_size(),
             rootNetwork_->getParameters().size());
    parameters_ = rootNetwork_->getParameters();
    parameterMap_ = *(rootNetwork_->getParameterMap());
  } else {
    parameters_.reserve(config.parameters_size());
    for (const auto& para_config : config.parameters()) {
103 104
      auto parameter = std::make_shared<Parameter>(para_config,
                                                   useGpu,
Z
zhangjinchao01 已提交
105 106 107 108
                                                   /*initialize=*/false);
      paramCallback(parameters_.size(), parameter.get());
      if (!callback) {
        for (ParameterType type :
109
             (parameter->isStatic()
Z
zhangjinchao01 已提交
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
                  ? std::vector<ParameterType>{PARAMETER_VALUE}
                  : parameterTypes)) {
          if (type != PARAMETER_VALUE && type != PARAMETER_GRADIENT) {
            parameter->enableType(type);
          }
        }
      }
      parameter->setID(parameters_.size());
      parameters_.push_back(parameter);
      CHECK(!parameterMap_.count(parameter->getName()));
      parameterMap_[parameter->getName()] = parameter;
    }
  }

  auto layerCreate = [&](const LayerConfig& layer_config) {
    auto layer = Layer::create(layer_config);
    CHECK(layer) << "Create layer failed. Layer name:" << layer->getName();
    layers_.push_back(layer);
    CHECK(!layerMap_.count(layer->getName()));
    layerMap_[layer->getName()] = layer;
  };

132 133 134 135 136
  auto subModelConfig = std::find_if(config.sub_models().begin(),
                                     config.sub_models().end(),
                                     [=](const SubModelConfig& sub_model) {
                                       return sub_model.name() == subModelName_;
                                     });
Z
zhangjinchao01 已提交
137 138 139 140 141 142
  bool useSubModel = (subModelConfig != config.sub_models().end());
  CHECK_EQ(useSubModel, !subModelName_.empty());
  if (useSubModel) {
    layers_.reserve(subModelConfig->layer_names_size());
    for (const auto& layer_name : subModelConfig->layer_names()) {
      auto layer_config =
143 144
          std::find_if(config.layers().begin(),
                       config.layers().end(),
Z
zhangjinchao01 已提交
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
                       [=](const LayerConfig& layer_config) {
                         return layer_config.name() == layer_name;
                       });
      CHECK(layer_config != config.layers().end());
      layerCreate(*layer_config);
    }
  } else {
    layers_.reserve(config.layers_size());
    for (const auto& layer_config : config.layers()) {
      bool useLayer = true;
      if (config.has_external_config()) {
        useLayer = true;
        for (const auto& name : config.external_config().layer_names()) {
          if (layer_config.name() == name) {
            useLayer = false;
            break;
          }
        }
      }
      if (useLayer) {
        layerCreate(layer_config);
      }
    }
  }

  for (const auto& layer : layers_) {
    layer->init(layerMap_, parameterMap_);
    layer->initSubNetwork(this /*root*/, config_, parameterTypes, useGpu);
  }

  for (const auto& layer_name :
       (useSubModel ? subModelConfig->input_layer_names()
                    : config.input_layer_names())) {
    auto it = layerMap_.find(layer_name);
    CHECK(it != layerMap_.end());
    dataLayers_.push_back(std::dynamic_pointer_cast<DataLayer>(it->second));
  }

  for (const auto& layer_name :
       (useSubModel ? subModelConfig->output_layer_names()
                    : config.output_layer_names())) {
    auto it = layerMap_.find(layer_name);
    CHECK(it != layerMap_.end());
    outputLayers_.push_back(it->second);
  }
}

192 193
void NeuralNetwork::connect(LayerPtr agentLayer,
                            LayerPtr realLayer,
Z
zhangjinchao01 已提交
194
                            int height) {
H
hedaoyuan 已提交
195
#ifndef PADDLE_MOBILE_INFERENCE
Z
zhangjinchao01 已提交
196 197 198
  AgentLayer* agent = dynamic_cast<AgentLayer*>(agentLayer.get());
  CHECK_NOTNULL(agent);
  agent->setRealLayer(realLayer, height);
H
hedaoyuan 已提交
199
#endif
Z
zhangjinchao01 已提交
200 201
}

202 203
void NeuralNetwork::connect(std::string agentLayerName,
                            NeuralNetwork* srcNN,
Z
zhangjinchao01 已提交
204 205 206 207 208 209 210 211 212 213 214
                            std::string realLayerName) {
  connect(this->getLayer(agentLayerName), srcNN->getLayer(realLayerName));
}

void NeuralNetwork::prefetch(const std::vector<Argument>& inArgs) {
  CHECK_EQ(inArgs.size(), dataLayers_.size());

  if (paramSelfInited_) {
    for (auto& para : parameters_) {
      if (para->isSparseRemoteUpdate()) {
        auto mat = dynamic_cast<SparsePrefetchRowCpuMatrix*>(
215
            para->getMat(PARAMETER_VALUE).get());
Z
zhangjinchao01 已提交
216
        para->clearGradient();
武毅 已提交
217
        if (mat) mat->clearIndices();
Z
zhangjinchao01 已提交
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
      }
    }
  }

  for (size_t i = 0; i != dataLayers_.size(); ++i) {
    if (FLAGS_parallel_nn) {
      const_cast<Argument&>(inArgs[i]).deviceId = -1;
    }
    dataLayers_[i]->setData(inArgs[i]);
  }

  for (auto& layer : layers_) {
    layer->prefetch();
  }

  if (paramSelfInited_) {
    for (auto& para : parameters_) {
      if (para->isSparseRemoteUpdate()) {
        auto mat = dynamic_cast<SparsePrefetchRowCpuMatrix*>(
237
            para->getMat(PARAMETER_VALUE).get());
Z
zhangjinchao01 已提交
238 239
        mat->setupIndices();
        auto matGrad = dynamic_cast<SparseRowCpuMatrix*>(
240
            para->getMat(PARAMETER_GRADIENT).get());
Z
zhangjinchao01 已提交
241 242 243 244 245 246 247
        matGrad->reserveStore();
      }
    }
  }
}

void NeuralNetwork::forward(const std::vector<Argument>& inArgs,
248 249
                            std::vector<Argument>* outArgs,
                            PassType passType) {
Z
zhangjinchao01 已提交
250 251 252 253 254 255
  CHECK_EQ(inArgs.size(), dataLayers_.size());
  outArgs->resize(outputLayers_.size());
  for (size_t i = 0; i != dataLayers_.size(); ++i) {
    dataLayers_[i]->setData(inArgs[i]);
  }

X
xuwei06 已提交
256 257
  gLayerStackTrace.set_stage(true);

Z
zhangjinchao01 已提交
258 259 260 261 262
  {
    for (auto& layer : layers_) {
      REGISTER_TIMER_INFO("ForwardTimer", layer->getName().c_str());
      gLayerStackTrace.push(layer->getName());
      layer->forward(passType);
X
xuwei06 已提交
263
      gLayerStackTrace.pop(layer->getName());
Z
zhangjinchao01 已提交
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
    }
  }

  outArgs->clear();
  outArgs->reserve(outputLayers_.size());
  for (auto& layer : outputLayers_) {
    outArgs->push_back(layer->getOutput());
  }
}

void NeuralNetwork::resetState() {
  for (auto& layer : layers_) {
    layer->resetState();
  }
}

void NeuralNetwork::setState(const MachineState& machineState) {
  for (size_t i = 0; i < layers_.size(); i++) {
    if (machineState[i] != nullptr) {
      layers_[i]->setState(machineState[i]);
    }
  }
}

void NeuralNetwork::getState(MachineState& machineState) {
  machineState.clear();
  machineState.reserve(layers_.size());
  for (auto& layer : layers_) {
    LayerStatePtr p = layer->getState();
    machineState.push_back(p);
  }
}

void NeuralNetwork::backward(const UpdateCallback& callback) {
X
xuwei06 已提交
298
  gLayerStackTrace.set_stage(false);
Z
zhangjinchao01 已提交
299 300
  FOR_EACH_R(layer, layers_) {
    REGISTER_TIMER_INFO("BackwardTimer", (*layer)->getName().c_str());
X
xuwei06 已提交
301
    gLayerStackTrace.push((*layer)->getName());
Z
zhangjinchao01 已提交
302 303 304 305 306 307 308
    if ((*layer)->needGradient()) {
      (*layer)->backward(callback);
    }
    gLayerStackTrace.pop((*layer)->getName());
  }
}

T
tensor-tang 已提交
309 310 311 312 313 314 315 316 317 318 319
void NeuralNetwork::finish() {
#ifdef PADDLE_USE_MKLDNN
  FOR_EACH_R(layer, layers_) {
    MKLDNNLayerPtr dnnLayer = std::dynamic_pointer_cast<MKLDNNLayer>(*layer);
    if (dnnLayer) {
      dnnLayer->convertWeightsToPaddle();
    }
  }
#endif
}

L
liaogang 已提交
320
Argument NeuralNetwork::getLayerOutput(const std::string& layerName) {
L
liaogang 已提交
321
  return getLayer(layerName)->getOutput();
Z
zhangjinchao01 已提交
322
}
323

Z
zhangjinchao01 已提交
324 325 326 327 328 329
void NeuralNetwork::onPassEnd() {
  for (auto& layer : layers_) {
    layer->onPassEnd();
  }
}

330 331
#ifndef PADDLE_MOBILE_INFERENCE

Z
zhangjinchao01 已提交
332 333 334 335 336
class CombinedEvaluator : public Evaluator {
public:
  void addEvaluator(std::unique_ptr<Evaluator>&& evaluator) {
    evaluators_.emplace_back(std::move(evaluator));
  }
Y
Yu Yang 已提交
337
  void start() override {
Z
zhangjinchao01 已提交
338 339 340 341 342
    for (auto& evaluator : evaluators_) {
      evaluator->start();
    }
  }

Y
Yu Yang 已提交
343
  void finish() override {
Z
zhangjinchao01 已提交
344 345 346 347 348
    for (auto& evaluator : evaluators_) {
      evaluator->finish();
    }
  }

Y
Yu Yang 已提交
349
  void eval(const NeuralNetwork& nn) override {
Z
zhangjinchao01 已提交
350 351 352 353
    for (auto& evaluator : evaluators_) {
      evaluator->eval(nn);
    }
  }
Y
Yu Yang 已提交
354
  real evalImp(std::vector<Argument>& arguments) override {
Z
zhangjinchao01 已提交
355 356 357
    (void)arguments;
    return -1;
  }
Y
Yu Yang 已提交
358
  void printStats(std::ostream& os) const override {
Z
zhangjinchao01 已提交
359 360 361 362 363 364
    for (auto& evaluator : evaluators_) {
      evaluator->printStats(os);
      os << ' ';
    }
  }

Y
Yu Yang 已提交
365
  void distributeEval(ParameterClient2* client) override {
Z
zhangjinchao01 已提交
366 367 368 369 370 371 372
    for (auto& evaluator : evaluators_) {
      evaluator->distributeEval(client);
    }
  }

protected:
  std::vector<std::unique_ptr<Evaluator>> evaluators_;
Y
Yu Yang 已提交
373 374 375

  // Evaluator interface
public:
Y
Yu Yang 已提交
376 377 378 379
  /**
   * @brief getNames will return all inside evaluators' names.
   * @param names [out]: return names.
   */
Y
Yu Yang 已提交
380
  void getNames(std::vector<std::string>* names) override {
Y
Yu Yang 已提交
381 382 383 384 385
    for (auto& eval : evaluators_) {
      eval->getNames(names);
    }
  }

Y
Yu Yang 已提交
386 387 388
  /**
   * @brief getValue could get all inside evaluators' value.
   */
Y
Yu Yang 已提交
389
  real getValue(const std::string& name, Error* err) const override {
Y
Yu Yang 已提交
390 391 392 393 394
    return this->getMethodHelper<real>(
        name, err, [&name, err](const std::unique_ptr<Evaluator>& eval) {
          return eval->getValue(name, err);
        });
  }
Y
Yu Yang 已提交
395 396 397 398

  /**
   * @brief getType could get all inside evaluators' type.
   */
Y
Yu Yang 已提交
399
  std::string getType(const std::string& name, Error* err) const override {
Y
Yu Yang 已提交
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
    return this->getMethodHelper<std::string>(
        name, err, [&name, err](const std::unique_ptr<Evaluator>& eval) {
          return eval->getType(name, err);
        });
  }

private:
  template <typename T>
  T getMethodHelper(const std::string& name,
                    Error* err,
                    const std::function<T(const std::unique_ptr<Evaluator>&)>&
                        callback) const {
    for (auto& eval : evaluators_) {
      std::vector<std::string> names;
      eval->getNames(&names);
      if (std::find(names.begin(), names.end(), name) != names.end()) {
        return callback(eval);
      }
    }
419
    *err = Error("No such key %s", name.c_str());
Y
Yu Yang 已提交
420 421
    return T();
  }
Z
zhangjinchao01 已提交
422 423
};

X
xuwei06 已提交
424 425 426 427 428 429 430
class SubnetEvaluator : public CombinedEvaluator {
public:
  SubnetEvaluator(const std::string& layerName,
                  std::unique_ptr<Evaluator>&& evaluator)
      : layerName_(layerName) {
    addEvaluator(std::move(evaluator));
  }
L
liaogang 已提交
431
  void eval(const NeuralNetwork& nn) override {
X
xuwei06 已提交
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
    const LayerPtr& layer = nn.getLayer(layerName_);
    CHECK(layer) << "Nonexisted layer: " << layerName_ << " in submodel "
                 << nn.getName();
    bool accessed = false;
    layer->accessSubNetwork([this, &accessed](NeuralNetwork& subnet) {
      subnet.eval(evaluators_[0].get());
      accessed = true;
    });
    CHECK(accessed) << "There is no subnetwork for layer " << layerName_
                    << " in submodel " << nn.getName();
  }

protected:
  std::string layerName_;
};

Y
Yu Yang 已提交
448
Evaluator* NeuralNetwork::makeEvaluator() const {
Z
zhangjinchao01 已提交
449
  CombinedEvaluator* combinedEvaluator = new CombinedEvaluator();
450 451 452 453 454
  auto subModelConfig = std::find_if(config_.sub_models().begin(),
                                     config_.sub_models().end(),
                                     [=](const SubModelConfig& sub_model) {
                                       return sub_model.name() == subModelName_;
                                     });
Z
zhangjinchao01 已提交
455 456 457 458 459 460 461
  bool useSubModel = (subModelConfig != config_.sub_models().end());
  CHECK_EQ(useSubModel, !subModelName_.empty());
  if (useSubModel) {
    // create the evaluators that belong to CURRENT submodel
    for (int i = 0; i < subModelConfig->evaluator_names_size(); ++i) {
      // find evaluator by name
      auto thisEvalConfig = std::find_if(
462 463
          config_.evaluators().begin(),
          config_.evaluators().end(),
Z
zhangjinchao01 已提交
464 465 466 467 468 469 470 471 472 473
          [=](const EvaluatorConfig& ecfg) {
            return ecfg.name() == subModelConfig->evaluator_names(i);
          });
      bool validConfig = (thisEvalConfig != config_.evaluators().end());
      if (validConfig) {
        std::unique_ptr<Evaluator> evaluator(
            Evaluator::create(*thisEvalConfig));
        combinedEvaluator->addEvaluator(std::move(evaluator));
      }
    }
X
xuwei06 已提交
474 475 476 477 478 479 480 481 482
    for (auto& layer : layers_) {
      layer->accessSubNetwork(
          [layer, combinedEvaluator](NeuralNetwork& subnet) {
            std::unique_ptr<Evaluator> subEvaluator(new SubnetEvaluator(
                layer->getName(),
                std::unique_ptr<Evaluator>(subnet.makeEvaluator())));
            combinedEvaluator->addEvaluator(std::move(subEvaluator));
          });
    }
Z
zhangjinchao01 已提交
483 484 485 486 487 488 489 490 491
  } else {
    for (const EvaluatorConfig& evalConfig : config_.evaluators()) {
      std::unique_ptr<Evaluator> evaluator(Evaluator::create(evalConfig));
      combinedEvaluator->addEvaluator(std::move(evaluator));
    }
  }
  return combinedEvaluator;
}

Y
Yu Yang 已提交
492
void NeuralNetwork::eval(Evaluator* evaluator) const { evaluator->eval(*this); }
Z
zhangjinchao01 已提交
493

494 495
#endif

Z
zhangjinchao01 已提交
496 497 498 499 500 501 502
void NeuralNetwork::setOutputGrad(const std::vector<Argument>& args) {
  CHECK_GE(outputLayers_.size(), args.size());
  for (size_t i = 0; i < args.size(); ++i) {
    outputLayers_[i]->getOutput().grad = args[i].grad;
  }
}

503 504 505
extern NeuralNetwork* newCustomNerualNetwork(const std::string& name,
                                             NeuralNetwork* network)
    __attribute__((weak));
L
liaogang 已提交
506

507 508 509 510 511 512 513
NeuralNetwork* NeuralNetwork::newNeuralNetwork(const std::string& name,
                                               NeuralNetwork* rootNetwork) {
  if (newCustomNerualNetwork) {
    return newCustomNerualNetwork(name, rootNetwork);
  } else {
    return new NeuralNetwork(name, rootNetwork);
  }
Z
zhangjinchao01 已提交
514 515 516
}

}  // namespace paddle