async_executor.cc 11.8 KB
Newer Older
W
Wang Guibao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/async_executor.h"
#include "google/protobuf/io/zero_copy_stream_impl.h"
#include "google/protobuf/message.h"
#include "google/protobuf/text_format.h"

#include "gflags/gflags.h"
#include "paddle/fluid/framework/data_feed_factory.h"
#include "paddle/fluid/framework/executor_thread_worker.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/feed_fetch_type.h"
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/reader.h"
#include "paddle/fluid/inference/io.h"
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/pybind/pybind.h"
H
heqiaozhi 已提交
32
#ifdef PADDLE_WITH_PSLIB
H
pslib  
heqiaozhi 已提交
33
#include "pslib.h"
H
heqiaozhi 已提交
34
#endif
W
Wang Guibao 已提交
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52

namespace paddle {
namespace framework {
AsyncExecutor::AsyncExecutor(Scope* scope, const platform::Place& place)
    : root_scope_(scope), place_(place) {}

void AsyncExecutor::CreateThreads(
    ExecutorThreadWorker* worker, const ProgramDesc& main_program,
    const std::shared_ptr<DataFeed>& reader,
    const std::vector<std::string>& fetch_var_names, Scope* root_scope,
    const int thread_index, const bool debug) {
  worker->SetThreadId(thread_index);
  worker->SetDebug(debug);
  worker->SetRootScope(root_scope);
  worker->CreateThreadResource(main_program, place_);
  worker->SetDataFeed(reader);
  worker->SetFetchVarNames(fetch_var_names);
  worker->BindingDataFeedMemory();
H
heqiaozhi 已提交
53
#ifdef PADDLE_WITH_PSLIB
54 55 56
  worker->SetPSlibPtr(_pslib_ptr);
  worker->SetPullDenseThread(_pull_dense_thread);
  worker->SetParamConfig(&_param_config);
H
heqiaozhi 已提交
57
#endif
W
Wang Guibao 已提交
58 59 60 61 62 63 64 65 66 67 68 69 70
}

void PrepareReaders(std::vector<std::shared_ptr<DataFeed>>& readers,  // NOLINT
                    const int thread_num, const DataFeedDesc& data_feed_desc,
                    const std::vector<std::string>& filelist) {
  readers.resize(thread_num);
  for (size_t i = 0; i < readers.size(); ++i) {
    readers[i] = DataFeedFactory::CreateDataFeed(data_feed_desc.name());
    readers[i]->Init(data_feed_desc);  // set batch_size and queue_size here
  }
  readers[0]->SetFileList(filelist);
}

H
heqiaozhi 已提交
71
#ifdef PADDLE_WITH_PSLIB
H
heqiaozhi 已提交
72
void AsyncExecutor::InitServer(const std::string& dist_desc, int index) {
73 74 75 76
    _pslib_ptr =
        std::shared_ptr<paddle::distributed::PSlib>(
            new paddle::distributed::PSlib());
    _pslib_ptr->init_server(dist_desc, index);
H
heqiaozhi 已提交
77
    InitParamConfig();
78 79
}

80 81 82 83 84 85
void AsyncExecutor::InitWorker(const std::string& dist_desc,
                               const std::vector<uint64_t>& host_sign_list,
                               int node_num, int index) {
    _pslib_ptr = std::shared_ptr<paddle::distributed::PSlib>(
        new paddle::distributed::PSlib());
    _pslib_ptr->init_worker(
86
        dist_desc, (uint64_t*)(host_sign_list.data()), node_num, index);
H
heqiaozhi 已提交
87

H
heqiaozhi 已提交
88
    InitParamConfig();
H
heqiaozhi 已提交
89 90 91 92 93 94
}

uint64_t AsyncExecutor::StartServer() {
    return _pslib_ptr->run_server();
}

H
heqiaozhi 已提交
95 96 97 98
void AsyncExecutor::StopServer() {
    _pslib_ptr->stop_server();
}

99
void AsyncExecutor::GatherServers(
100 101
    const std::vector<uint64_t>& host_sign_list, int node_num) {
    _pslib_ptr->gather_servers((uint64_t*)(host_sign_list.data()), node_num);
102 103
}

H
heqiaozhi 已提交
104
void AsyncExecutor::InitParamConfig() {
D
dongdaxiang 已提交
105 106 107 108 109 110 111 112 113 114 115 116 117
  for (int i = 0; i <
               _pslib_ptr->get_param()->server_param(). \
               downpour_server_param().                 \
               downpour_table_param_size();
       ++i) {
    if (_pslib_ptr->get_param()->server_param().                \
        downpour_server_param().downpour_table_param(i).        \
        table_class().find("SparseTable") != -1) {
      _param_config.fea_dim = _pslib_ptr->get_param()->server_param().  \
                              downpour_server_param().                  \
                              downpour_table_param(i).                  \
                              accessor().fea_dim();
      break;
H
heqiaozhi 已提交
118
    }
D
dongdaxiang 已提交
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
  }
  _param_config.slot_dim = _param_config.fea_dim - 2;
  _param_config.tmp_push_dense_wait_times = static_cast<int32_t>(
      _pslib_ptr->get_param()->trainer_param().push_dense_per_batch());
  _param_config.tmp_push_sparse_wait_times = static_cast<int32_t>(
      _pslib_ptr->get_param()->trainer_param().push_sparse_per_batch());
  
  for (auto t = 0u;
       t < _pslib_ptr->get_param()->trainer_param().skip_op_size();
       ++t) {
    _param_config.skip_op.push_back(
        _pslib_ptr->get_param()->trainer_param().skip_op(t));
  }
  
  for (auto t = 0u;
       t < _pslib_ptr->get_param()->trainer_param().sparse_table_size();
       ++t) {
    auto& table = _pslib_ptr->get_param()->trainer_param().sparse_table(t);
    std::vector<std::string> tmp_sparse_variable_name;
    for (int i = 0u; i < table.slot_value_size(); ++i) {
      tmp_sparse_variable_name.push_back(table.slot_value(i));
      _param_config.slot_alias_to_table[table.slot_key(i)] =
          table.table_id();
H
heqiaozhi 已提交
142
    }
D
dongdaxiang 已提交
143 144 145 146
    std::vector<std::string> tmp_sparse_gradient_variable_name;
    for (auto i = 0u; i < table.slot_gradient_size(); ++i) {
      tmp_sparse_gradient_variable_name.push_back(
          table.slot_gradient(i));
H
heqiaozhi 已提交
147
    }
D
dongdaxiang 已提交
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
    _param_config.slot_input_vec[table.table_id()] =
        std::move(tmp_sparse_variable_name);
    _param_config.gradient_var[table.table_id()] =
        std::move(tmp_sparse_gradient_variable_name);
    _param_config.sparse_table_id.push_back(table.table_id());
  }
  
  for (auto t = 0u;
       t < _pslib_ptr->get_param()->trainer_param().dense_table_size();
       ++t) {
    auto& table = _pslib_ptr->get_param()->trainer_param().dense_table(t);
    std::vector<std::string> tmp_dense_variable_name;
    for (int i = 0u; i < table.dense_variable_name_size(); ++i) {
      tmp_dense_variable_name.push_back(table.dense_variable_name(i));
    }
    std::vector<std::string> tmp_dense_gradient_variable_name;
    for (auto i = 0u; i < table.dense_gradient_variable_name_size(); ++i) {
      tmp_dense_gradient_variable_name.push_back(
          table.dense_gradient_variable_name(i));
H
heqiaozhi 已提交
167
    }
D
dongdaxiang 已提交
168 169 170 171 172 173 174
    _param_config.dense_variable_name[table.table_id()] =
        std::move(tmp_dense_variable_name);
    _param_config.dense_gradient_variable_name[table.table_id()] =
        std::move(tmp_dense_gradient_variable_name);
    _param_config.dense_table_id.push_back(table.table_id());
    _param_config.dense_table_size.push_back(table.fea_dim());
  }
H
heqiaozhi 已提交
175 176
}

177
void AsyncExecutor::InitModel() {
D
dongdaxiang 已提交
178 179 180 181 182 183 184 185 186
  for (auto table_id : _param_config.dense_table_id) {
    std::vector<paddle::ps::Region> regions;
    for (auto& t : _param_config.dense_variable_name[table_id]) {
      Variable* var = root_scope_->FindVar(t);
      CHECK(var != nullptr) << "var[" << t << "] not found";
      LoDTensor* tensor = var->GetMutable<LoDTensor>();
      
      float* g = tensor->data<float>();
      CHECK(g != nullptr) << "var[" << t << "] value not initialized";
187

D
dongdaxiang 已提交
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
      float init_range = 0.2;
      int rown = tensor->dims()[0];
      init_range /= sqrt(rown);
      
      std::normal_distribution<float> ndistr(0.0, 1.0);
      for (auto i = 0u; i < tensor->numel(); ++i) {
        g[i] = ndistr(local_random_engine()) * init_range;
      }
      
      paddle::ps::Region reg(g, tensor->numel());
      regions.emplace_back(std::move(reg));
    }
    
    auto push_status =
        _pslib_ptr->_worker_ptr->push_dense_param(
            regions.data(), regions.size(), table_id);
    push_status.wait();
    auto status = push_status.get();
    if (status != 0) {
      LOG(FATAL) << "push dense param failed, status[" << status << "]";
      exit(-1);
209
    }
D
dongdaxiang 已提交
210
  }
211 212 213
}

void AsyncExecutor::SaveModel(const std::string& path) {
D
dongdaxiang 已提交
214 215 216 217 218 219 220 221 222
  auto ret = _pslib_ptr->_worker_ptr->flush();
  ret.wait();
  ret = _pslib_ptr->_worker_ptr->save(path, 0);
  ret.wait();
  int32_t feasign_cnt = ret.get();
  if (feasign_cnt == -1) {  // (colourful-tree) TODO should be feasign_cnt < 0
    LOG(FATAL) << "save model failed";
    exit(-1);
  }
223 224
}

H
heqiaozhi 已提交
225
void AsyncExecutor::PrepareDenseThread(const std::string& mode) {
D
dongdaxiang 已提交
226 227 228 229 230 231 232 233 234 235 236 237
  if (mode == "mpi") {
    DensePullThreadParam param;
    param.ps_client = _pslib_ptr->_worker_ptr;;
    param.threshold = 1;
    param.training_thread_num = actual_thread_num;
    param.root_scope = root_scope_;
    param.dense_params = &_param_config.dense_variable_name;
    
    _pull_dense_thread = std::shared_ptr<DensePullThread>(
        new DensePullThread(param));
    _pull_dense_thread->start();
  }
238
}
H
heqiaozhi 已提交
239
#endif
240

W
Wang Guibao 已提交
241 242 243 244 245
void AsyncExecutor::RunFromFile(const ProgramDesc& main_program,
                                const std::string& data_feed_desc_str,
                                const std::vector<std::string>& filelist,
                                const int thread_num,
                                const std::vector<std::string>& fetch_var_names,
H
heqiaozhi 已提交
246
                                const std::string& mode,
W
Wang Guibao 已提交
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
                                const bool debug) {
  std::vector<std::thread> threads;

  auto& block = main_program.Block(0);
  for (auto var_name : fetch_var_names) {
    auto var_desc = block.FindVar(var_name);
    auto shapes = var_desc->GetShape();
    PADDLE_ENFORCE(shapes[shapes.size() - 1] == 1,
                   "var %s: Fetched var has wrong shape, "
                   "only variables with the last dimension size 1 supported",
                   var_name);
  }

  DataFeedDesc data_feed_desc;
  google::protobuf::TextFormat::ParseFromString(data_feed_desc_str,
                                                &data_feed_desc);

264
  actual_thread_num = thread_num;
W
Wang Guibao 已提交
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
  int file_cnt = filelist.size();
  PADDLE_ENFORCE(file_cnt > 0, "File list cannot be empty");

  if (actual_thread_num > file_cnt) {
    VLOG(1) << "Thread num = " << thread_num << ", file num = " << file_cnt
            << ". Changing thread_num = " << file_cnt;
    actual_thread_num = file_cnt;
  }

  /*
    readerDesc: protobuf description for reader initlization
    argument: class_name, batch_size, use_slot, queue_size, buffer_size,
    padding_index

    reader:
    1) each thread has a reader, reader will read input data and
    put it into input queue
    2) each reader has a Next() iterface, that can fetch an instance
    from the input queue
   */
  // todo: should be factory method for creating datafeed
  std::vector<std::shared_ptr<DataFeed>> readers;
  PrepareReaders(readers, actual_thread_num, data_feed_desc, filelist);
H
heqiaozhi 已提交
288
#ifdef PADDLE_WITH_PSLIB
H
heqiaozhi 已提交
289
  PrepareDenseThread(mode);
H
heqiaozhi 已提交
290
#endif
W
Wang Guibao 已提交
291 292 293
  std::vector<std::shared_ptr<ExecutorThreadWorker>> workers;
  workers.resize(actual_thread_num);
  for (auto& worker : workers) {
H
heqiaozhi 已提交
294
#ifdef PADDLE_WITH_PSLIB
H
heqiaozhi 已提交
295 296 297 298 299
    if (mode == "mpi") {
        worker.reset(new AsyncExecutorThreadWorker);
    } else {
        worker.reset(new ExecutorThreadWorker);
    }
H
heqiaozhi 已提交
300 301 302
#else
    worker.reset(new ExecutorThreadWorker);
#endif
W
Wang Guibao 已提交
303 304 305 306 307 308 309 310
  }

  // prepare thread resource here
  for (int thidx = 0; thidx < actual_thread_num; ++thidx) {
    CreateThreads(workers[thidx].get(), main_program, readers[thidx],
                  fetch_var_names, root_scope_, thidx, debug);
  }

H
heqiaozhi 已提交
311
  
W
Wang Guibao 已提交
312 313 314 315 316 317 318 319 320
  // start executing ops in multiple threads
  for (int thidx = 0; thidx < actual_thread_num; ++thidx) {
    threads.push_back(
        std::thread(&ExecutorThreadWorker::TrainFiles, workers[thidx].get()));
  }

  for (auto& th : threads) {
    th.join();
  }
H
heqiaozhi 已提交
321
#ifdef PADDLE_WITH_PSLIB
H
heqiaozhi 已提交
322 323 324
  if (mode == "mpi") {
    _pull_dense_thread->stop();
  }
H
heqiaozhi 已提交
325
#endif
W
Wang Guibao 已提交
326 327 328 329 330 331 332
  root_scope_->DropKids();

  return;
}

}  // einit_modelnd namespace framework
}  // end namespace paddle