async_executor.cc 10.4 KB
Newer Older
W
Wang Guibao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/async_executor.h"
#include "google/protobuf/io/zero_copy_stream_impl.h"
#include "google/protobuf/message.h"
#include "google/protobuf/text_format.h"

#include "gflags/gflags.h"
#include "paddle/fluid/framework/data_feed_factory.h"
#include "paddle/fluid/framework/executor_thread_worker.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/feed_fetch_type.h"
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/reader.h"
#include "paddle/fluid/inference/io.h"
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/pybind/pybind.h"
H
pslib  
heqiaozhi 已提交
32
#include "pslib.h"
W
Wang Guibao 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

namespace paddle {
namespace framework {
AsyncExecutor::AsyncExecutor(Scope* scope, const platform::Place& place)
    : root_scope_(scope), place_(place) {}

void AsyncExecutor::CreateThreads(
    ExecutorThreadWorker* worker, const ProgramDesc& main_program,
    const std::shared_ptr<DataFeed>& reader,
    const std::vector<std::string>& fetch_var_names, Scope* root_scope,
    const int thread_index, const bool debug) {
  worker->SetThreadId(thread_index);
  worker->SetDebug(debug);
  worker->SetRootScope(root_scope);
  worker->CreateThreadResource(main_program, place_);
  worker->SetDataFeed(reader);
  worker->SetFetchVarNames(fetch_var_names);
  worker->BindingDataFeedMemory();
51 52 53 54
  worker->SetPSlibPtr(_pslib_ptr);
  worker->SetPullDenseThread(_pull_dense_thread);
  worker->BindingSlotVariableMemory();
  worker->SetParamConfig(&_param_config);
W
Wang Guibao 已提交
55 56 57 58 59 60 61 62 63 64 65 66 67
}

void PrepareReaders(std::vector<std::shared_ptr<DataFeed>>& readers,  // NOLINT
                    const int thread_num, const DataFeedDesc& data_feed_desc,
                    const std::vector<std::string>& filelist) {
  readers.resize(thread_num);
  for (size_t i = 0; i < readers.size(); ++i) {
    readers[i] = DataFeedFactory::CreateDataFeed(data_feed_desc.name());
    readers[i]->Init(data_feed_desc);  // set batch_size and queue_size here
  }
  readers[0]->SetFileList(filelist);
}

68 69
void AsyncExecutor::ConfigPslib(const std::string& dist_desc, std::vector<uint64_t>& host_sign_list, int node_num, int index) {
    _pslib_ptr = std::shared_ptr<paddle::distributed::PSlib>(new paddle::distributed::PSlib());
H
heqiaozhi 已提交
70
    _pslib_ptr->init_and_config(dist_desc, host_sign_list, node_num, index);//TODO done
71 72 73
}

void AsyncExecutor::StartServer() {
H
heqiaozhi 已提交
74
    InitParamConfig();
75 76 77
    _pslib_ptr->run_server();
}

H
heqiaozhi 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
void AsyncExecutor::InitParamConfig() {
    _param_config.fea_dim = _pslib_ptr->get_param()->trainer_param().sparse_table(0).feature_dim(); //TODO
    _param_config.slot_dim = _param_config.fea_dim - 2; //TODO
    _param_config.tmp_push_dense_wait_times = (int32_t)(_pslib_ptr->get_param()->trainer_param().pull_dense_per_batch());
    _param_config.tmp_push_sparse_wait_times = (int32_t)(_pslib_ptr->get_param()->trainer_param().push_dense_per_batch());
    //sparse
    for (auto t = 0u; t < _pslib_ptr->get_param()->trainer_param().sparse_table_size(); ++t) {
        auto& table = _pslib_ptr->get_param()->trainer_param().sparse_table(t);
        std::vector<std::string> tmp_sparse_variable_name;
        for (int i = 0u; i < table.slot_value_size(); ++i) {
            tmp_sparse_variable_name.push_back(table.slot_value(i));
            _param_config.slot_alias_to_table[table.slot_value(i)] = table.table_id();
        }
        std::vector<std::string> tmp_sparse_gradient_variable_name;
        for (auto i = 0u; i < table.slot_gradient_size(); ++i) {
            tmp_sparse_gradient_variable_name.push_back(
                    table.slot_gradient(i));
        }
        _param_config.slot_input_vec[table.table_id()] = std::move(tmp_sparse_variable_name);
        _param_config.gradient_var[table.table_id()] = std::move(tmp_sparse_gradient_variable_name);
        _param_config.sparse_table_id.push_back(table.table_id());
    }
    //dense
    for (auto t = 0u; t < _pslib_ptr->get_param()->trainer_param().dense_table_size(); ++t) {
        auto& table = _pslib_ptr->get_param()->trainer_param().dense_table(t);
        std::vector<std::string> tmp_dense_variable_name;
        for (int i = 0u; i < table.dense_variable_name_size(); ++i) {
            tmp_dense_variable_name.push_back(table.dense_variable_name(i));
        }
        std::vector<std::string> tmp_dense_gradient_variable_name;
        for (auto i = 0u; i < table.dense_gradient_variable_name_size(); ++i) {
            tmp_dense_gradient_variable_name.push_back(
                    table.dense_gradient_variable_name(i));
        }
        _param_config.dense_variable_name[table.table_id()] = std::move(tmp_dense_variable_name);
        _param_config.dense_gradient_variable_name[table.table_id()] = std::move(tmp_dense_gradient_variable_name);
        _param_config.dense_table_id.push_back(table.table_id());
        _param_config.dense_table_size.push_back(table.fea_dim()); //TODO
    }
}

119 120
void AsyncExecutor::InitModel() {
    //TODO only rank = 0 do this
H
heqiaozhi 已提交
121 122 123
    //std::vector<int> all_dense_table_id; //TODO 
    //all_dense_table_id.push_back(0); //done
    for (auto table_id: _param_config.dense_table_id) {
124
        std::vector<paddle::ps::Region> regions;
H
heqiaozhi 已提交
125 126
        //std::vector<std::string> variables;  //TODO
        for (auto& t : _param_config.dense_variable_name[table_id]) {
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
            Variable* var = root_scope_->FindVar(t);
            CHECK(var != nullptr) << "var[" << t << "] not found";
            LoDTensor* tensor = var->GetMutable<LoDTensor>();

            float* g = tensor->data<float>();
            CHECK(g != nullptr) << "var[" << t << "] value not initialized";

            float init_range = 0.2;
            int rown = tensor->dims()[0];
            init_range /= sqrt(rown);

            std::normal_distribution<float> ndistr(0.0, 1.0);
            for (auto i = 0u; i < tensor->numel(); ++i) {
                g[i] = ndistr(local_random_engine()) * init_range;
            }

            paddle::ps::Region reg(g, tensor->numel());
            regions.emplace_back(std::move(reg));
        }

        auto push_status = _pslib_ptr->_worker_ptr->push_dense_param(regions.data(), regions.size(), table_id);
        push_status.wait();
        auto status = push_status.get();
        if (status != 0) {
            LOG(FATAL) << "push dense param failed, status[" << status << "]";
            exit(-1);
        } 
    }
}

void AsyncExecutor::SaveModel(const std::string& path) {
    auto ret = _pslib_ptr->_worker_ptr->flush();
    ret.wait();
    ret = _pslib_ptr->_worker_ptr->save(path, 0);
    ret.wait();
    int32_t feasign_cnt = ret.get();
    if (feasign_cnt == -1) { // TODO should be feasign_cnt < 0, because server bug
        LOG(FATAL) << "save model failed";
        exit(-1);
    }
}

void AsyncExecutor::PrepareDenseThread() {
    DensePullThreadParam param;
    param.ps_client = _pslib_ptr->_worker_ptr;;
    param.threshold = 1;//GlobalConfig::instance().pull_dense_per_batch; //TODO
    param.training_thread_num = actual_thread_num;
    param.root_scope = root_scope_;
    //param.dense_params = &GlobalConfig::instance().dense_variable_name; //TODO
H
heqiaozhi 已提交
176
    param.dense_params = &_param_config.dense_variable_name;
177 178 179 180 181

    _pull_dense_thread = std::shared_ptr<DensePullThread>(new DensePullThread(param));

}

W
Wang Guibao 已提交
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
void AsyncExecutor::RunFromFile(const ProgramDesc& main_program,
                                const std::string& data_feed_desc_str,
                                const std::vector<std::string>& filelist,
                                const int thread_num,
                                const std::vector<std::string>& fetch_var_names,
                                const bool debug) {
  std::vector<std::thread> threads;

  auto& block = main_program.Block(0);
  for (auto var_name : fetch_var_names) {
    auto var_desc = block.FindVar(var_name);
    auto shapes = var_desc->GetShape();
    PADDLE_ENFORCE(shapes[shapes.size() - 1] == 1,
                   "var %s: Fetched var has wrong shape, "
                   "only variables with the last dimension size 1 supported",
                   var_name);
  }

  DataFeedDesc data_feed_desc;
  google::protobuf::TextFormat::ParseFromString(data_feed_desc_str,
                                                &data_feed_desc);

204
  actual_thread_num = thread_num;
W
Wang Guibao 已提交
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
  int file_cnt = filelist.size();
  PADDLE_ENFORCE(file_cnt > 0, "File list cannot be empty");

  if (actual_thread_num > file_cnt) {
    VLOG(1) << "Thread num = " << thread_num << ", file num = " << file_cnt
            << ". Changing thread_num = " << file_cnt;
    actual_thread_num = file_cnt;
  }

  /*
    readerDesc: protobuf description for reader initlization
    argument: class_name, batch_size, use_slot, queue_size, buffer_size,
    padding_index

    reader:
    1) each thread has a reader, reader will read input data and
    put it into input queue
    2) each reader has a Next() iterface, that can fetch an instance
    from the input queue
   */
  // todo: should be factory method for creating datafeed
  std::vector<std::shared_ptr<DataFeed>> readers;
  PrepareReaders(readers, actual_thread_num, data_feed_desc, filelist);
228
  PrepareDenseThread();
W
Wang Guibao 已提交
229 230 231
  std::vector<std::shared_ptr<ExecutorThreadWorker>> workers;
  workers.resize(actual_thread_num);
  for (auto& worker : workers) {
232
    worker.reset(new AsyncExecutorThreadWorker);
W
Wang Guibao 已提交
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
  }

  // prepare thread resource here
  for (int thidx = 0; thidx < actual_thread_num; ++thidx) {
    CreateThreads(workers[thidx].get(), main_program, readers[thidx],
                  fetch_var_names, root_scope_, thidx, debug);
  }

  // start executing ops in multiple threads
  for (int thidx = 0; thidx < actual_thread_num; ++thidx) {
    threads.push_back(
        std::thread(&ExecutorThreadWorker::TrainFiles, workers[thidx].get()));
  }

  for (auto& th : threads) {
    th.join();
  }
250
  _pull_dense_thread->stop();
W
Wang Guibao 已提交
251 252 253 254 255 256 257
  root_scope_->DropKids();

  return;
}

}  // einit_modelnd namespace framework
}  // end namespace paddle