async_executor.cc 12.1 KB
Newer Older
W
Wang Guibao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/async_executor.h"
#include "google/protobuf/io/zero_copy_stream_impl.h"
#include "google/protobuf/message.h"
#include "google/protobuf/text_format.h"

#include "gflags/gflags.h"
#include "paddle/fluid/framework/data_feed_factory.h"
#include "paddle/fluid/framework/executor_thread_worker.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/feed_fetch_type.h"
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/reader.h"
#include "paddle/fluid/inference/io.h"
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/pybind/pybind.h"
H
heqiaozhi 已提交
32
#ifdef PADDLE_WITH_PSLIB
H
pslib  
heqiaozhi 已提交
33
#include "pslib.h"
H
heqiaozhi 已提交
34
#endif
W
Wang Guibao 已提交
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52

namespace paddle {
namespace framework {
AsyncExecutor::AsyncExecutor(Scope* scope, const platform::Place& place)
    : root_scope_(scope), place_(place) {}

void AsyncExecutor::CreateThreads(
    ExecutorThreadWorker* worker, const ProgramDesc& main_program,
    const std::shared_ptr<DataFeed>& reader,
    const std::vector<std::string>& fetch_var_names, Scope* root_scope,
    const int thread_index, const bool debug) {
  worker->SetThreadId(thread_index);
  worker->SetDebug(debug);
  worker->SetRootScope(root_scope);
  worker->CreateThreadResource(main_program, place_);
  worker->SetDataFeed(reader);
  worker->SetFetchVarNames(fetch_var_names);
  worker->BindingDataFeedMemory();
H
heqiaozhi 已提交
53
#ifdef PADDLE_WITH_PSLIB
54 55 56
  worker->SetPSlibPtr(_pslib_ptr);
  worker->SetPullDenseThread(_pull_dense_thread);
  worker->SetParamConfig(&_param_config);
H
heqiaozhi 已提交
57
#endif
W
Wang Guibao 已提交
58 59 60 61 62 63 64 65 66 67 68 69 70
}

void PrepareReaders(std::vector<std::shared_ptr<DataFeed>>& readers,  // NOLINT
                    const int thread_num, const DataFeedDesc& data_feed_desc,
                    const std::vector<std::string>& filelist) {
  readers.resize(thread_num);
  for (size_t i = 0; i < readers.size(); ++i) {
    readers[i] = DataFeedFactory::CreateDataFeed(data_feed_desc.name());
    readers[i]->Init(data_feed_desc);  // set batch_size and queue_size here
  }
  readers[0]->SetFileList(filelist);
}

H
heqiaozhi 已提交
71
#ifdef PADDLE_WITH_PSLIB
H
heqiaozhi 已提交
72
void AsyncExecutor::InitServer(const std::string& dist_desc, int index) {
73 74 75 76
    _pslib_ptr =
        std::shared_ptr<paddle::distributed::PSlib>(
            new paddle::distributed::PSlib());
    _pslib_ptr->init_server(dist_desc, index);
H
heqiaozhi 已提交
77
    InitParamConfig();
78 79
}

80 81 82 83 84 85
void AsyncExecutor::InitWorker(const std::string& dist_desc,
                               const std::vector<uint64_t>& host_sign_list,
                               int node_num, int index) {
    _pslib_ptr = std::shared_ptr<paddle::distributed::PSlib>(
        new paddle::distributed::PSlib());
    _pslib_ptr->init_worker(
86
        dist_desc, (uint64_t*)(host_sign_list.data()), node_num, index);
H
heqiaozhi 已提交
87

H
heqiaozhi 已提交
88
    InitParamConfig();
H
heqiaozhi 已提交
89 90 91 92 93 94
}

uint64_t AsyncExecutor::StartServer() {
    return _pslib_ptr->run_server();
}

H
heqiaozhi 已提交
95 96 97 98
void AsyncExecutor::StopServer() {
    _pslib_ptr->stop_server();
}

99
void AsyncExecutor::GatherServers(
100 101
    const std::vector<uint64_t>& host_sign_list, int node_num) {
    _pslib_ptr->gather_servers((uint64_t*)(host_sign_list.data()), node_num);
102 103
}

H
heqiaozhi 已提交
104
void AsyncExecutor::InitParamConfig() {
105 106 107 108 109 110 111 112 113 114 115 116
    for (int i = 0; i <
        _pslib_ptr->get_param()->server_param().\
                 downpour_server_param().\
                 downpour_table_param_size();
         ++i) {
        if (_pslib_ptr->get_param()->server_param().\
            downpour_server_param().downpour_table_param(i).\
            table_class().find("SparseTable") != -1) {
            _param_config.fea_dim = _pslib_ptr->get_param()->server_param().\
                                    downpour_server_param().\
                                    downpour_table_param(i).\
                                    accessor().fea_dim();
H
heqiaozhi 已提交
117 118 119
            break;
        }
    }
120 121 122 123 124 125 126 127 128 129 130
    _param_config.slot_dim = _param_config.fea_dim - 2;
    _param_config.tmp_push_dense_wait_times = static_cast<int32_t>(
        _pslib_ptr->get_param()->trainer_param().push_dense_per_batch());
    _param_config.tmp_push_sparse_wait_times = static_cast<int32_t>(
        _pslib_ptr->get_param()->trainer_param().push_sparse_per_batch());

    for (auto t = 0u;
         t < _pslib_ptr->get_param()->trainer_param().skip_op_size();
         ++t) {
        _param_config.skip_op.push_back(
            _pslib_ptr->get_param()->trainer_param().skip_op(t));
H
heqiaozhi 已提交
131
    }
132 133 134 135

    for (auto t = 0u;
         t < _pslib_ptr->get_param()->trainer_param().sparse_table_size();
         ++t) {
H
heqiaozhi 已提交
136 137 138 139
        auto& table = _pslib_ptr->get_param()->trainer_param().sparse_table(t);
        std::vector<std::string> tmp_sparse_variable_name;
        for (int i = 0u; i < table.slot_value_size(); ++i) {
            tmp_sparse_variable_name.push_back(table.slot_value(i));
140 141
            _param_config.slot_alias_to_table[table.slot_key(i)] =
                table.table_id();
H
heqiaozhi 已提交
142 143 144 145 146 147
        }
        std::vector<std::string> tmp_sparse_gradient_variable_name;
        for (auto i = 0u; i < table.slot_gradient_size(); ++i) {
            tmp_sparse_gradient_variable_name.push_back(
                    table.slot_gradient(i));
        }
148 149 150 151
        _param_config.slot_input_vec[table.table_id()] =
            std::move(tmp_sparse_variable_name);
        _param_config.gradient_var[table.table_id()] =
            std::move(tmp_sparse_gradient_variable_name);
H
heqiaozhi 已提交
152 153
        _param_config.sparse_table_id.push_back(table.table_id());
    }
154 155 156 157

    for (auto t = 0u;
         t < _pslib_ptr->get_param()->trainer_param().dense_table_size();
         ++t) {
H
heqiaozhi 已提交
158 159 160 161 162 163 164 165 166 167
        auto& table = _pslib_ptr->get_param()->trainer_param().dense_table(t);
        std::vector<std::string> tmp_dense_variable_name;
        for (int i = 0u; i < table.dense_variable_name_size(); ++i) {
            tmp_dense_variable_name.push_back(table.dense_variable_name(i));
        }
        std::vector<std::string> tmp_dense_gradient_variable_name;
        for (auto i = 0u; i < table.dense_gradient_variable_name_size(); ++i) {
            tmp_dense_gradient_variable_name.push_back(
                    table.dense_gradient_variable_name(i));
        }
168 169 170 171
        _param_config.dense_variable_name[table.table_id()] =
            std::move(tmp_dense_variable_name);
        _param_config.dense_gradient_variable_name[table.table_id()] =
            std::move(tmp_dense_gradient_variable_name);
H
heqiaozhi 已提交
172
        _param_config.dense_table_id.push_back(table.table_id());
173
        _param_config.dense_table_size.push_back(table.fea_dim());
H
heqiaozhi 已提交
174 175 176
    }
}

177
void AsyncExecutor::InitModel() {
178
    for (auto table_id : _param_config.dense_table_id) {
179
        std::vector<paddle::ps::Region> regions;
H
heqiaozhi 已提交
180
        for (auto& t : _param_config.dense_variable_name[table_id]) {
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
            Variable* var = root_scope_->FindVar(t);
            CHECK(var != nullptr) << "var[" << t << "] not found";
            LoDTensor* tensor = var->GetMutable<LoDTensor>();

            float* g = tensor->data<float>();
            CHECK(g != nullptr) << "var[" << t << "] value not initialized";

            float init_range = 0.2;
            int rown = tensor->dims()[0];
            init_range /= sqrt(rown);

            std::normal_distribution<float> ndistr(0.0, 1.0);
            for (auto i = 0u; i < tensor->numel(); ++i) {
                g[i] = ndistr(local_random_engine()) * init_range;
            }

            paddle::ps::Region reg(g, tensor->numel());
            regions.emplace_back(std::move(reg));
        }

201 202 203
        auto push_status =
            _pslib_ptr->_worker_ptr->push_dense_param(
                regions.data(), regions.size(), table_id);
204 205 206 207 208
        push_status.wait();
        auto status = push_status.get();
        if (status != 0) {
            LOG(FATAL) << "push dense param failed, status[" << status << "]";
            exit(-1);
209
        }
210 211 212 213 214 215 216 217 218
    }
}

void AsyncExecutor::SaveModel(const std::string& path) {
    auto ret = _pslib_ptr->_worker_ptr->flush();
    ret.wait();
    ret = _pslib_ptr->_worker_ptr->save(path, 0);
    ret.wait();
    int32_t feasign_cnt = ret.get();
219
    if (feasign_cnt == -1) {  // (colourful-tree) TODO should be feasign_cnt < 0
220 221 222 223 224
        LOG(FATAL) << "save model failed";
        exit(-1);
    }
}

H
heqiaozhi 已提交
225 226 227 228
void AsyncExecutor::PrepareDenseThread(const std::string& mode) {
    if (mode == "mpi") {
        DensePullThreadParam param;
        param.ps_client = _pslib_ptr->_worker_ptr;;
229
        param.threshold = 1;
H
heqiaozhi 已提交
230 231 232 233
        param.training_thread_num = actual_thread_num;
        param.root_scope = root_scope_;
        param.dense_params = &_param_config.dense_variable_name;

234 235
        _pull_dense_thread = std::shared_ptr<DensePullThread>(
            new DensePullThread(param));
H
heqiaozhi 已提交
236 237
        _pull_dense_thread->start();
    }
238
}
H
heqiaozhi 已提交
239
#endif
240

W
Wang Guibao 已提交
241 242 243 244 245
void AsyncExecutor::RunFromFile(const ProgramDesc& main_program,
                                const std::string& data_feed_desc_str,
                                const std::vector<std::string>& filelist,
                                const int thread_num,
                                const std::vector<std::string>& fetch_var_names,
H
heqiaozhi 已提交
246
                                const std::string& mode,
W
Wang Guibao 已提交
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
                                const bool debug) {
  std::vector<std::thread> threads;

  auto& block = main_program.Block(0);
  for (auto var_name : fetch_var_names) {
    auto var_desc = block.FindVar(var_name);
    auto shapes = var_desc->GetShape();
    PADDLE_ENFORCE(shapes[shapes.size() - 1] == 1,
                   "var %s: Fetched var has wrong shape, "
                   "only variables with the last dimension size 1 supported",
                   var_name);
  }

  DataFeedDesc data_feed_desc;
  google::protobuf::TextFormat::ParseFromString(data_feed_desc_str,
                                                &data_feed_desc);

264
  actual_thread_num = thread_num;
W
Wang Guibao 已提交
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
  int file_cnt = filelist.size();
  PADDLE_ENFORCE(file_cnt > 0, "File list cannot be empty");

  if (actual_thread_num > file_cnt) {
    VLOG(1) << "Thread num = " << thread_num << ", file num = " << file_cnt
            << ". Changing thread_num = " << file_cnt;
    actual_thread_num = file_cnt;
  }

  /*
    readerDesc: protobuf description for reader initlization
    argument: class_name, batch_size, use_slot, queue_size, buffer_size,
    padding_index

    reader:
    1) each thread has a reader, reader will read input data and
    put it into input queue
    2) each reader has a Next() iterface, that can fetch an instance
    from the input queue
   */
  // todo: should be factory method for creating datafeed
  std::vector<std::shared_ptr<DataFeed>> readers;
  PrepareReaders(readers, actual_thread_num, data_feed_desc, filelist);
H
heqiaozhi 已提交
288
#ifdef PADDLE_WITH_PSLIB
H
heqiaozhi 已提交
289
  PrepareDenseThread(mode);
H
heqiaozhi 已提交
290
#endif
W
Wang Guibao 已提交
291 292 293
  std::vector<std::shared_ptr<ExecutorThreadWorker>> workers;
  workers.resize(actual_thread_num);
  for (auto& worker : workers) {
H
heqiaozhi 已提交
294
#ifdef PADDLE_WITH_PSLIB
H
heqiaozhi 已提交
295 296 297 298 299
    if (mode == "mpi") {
        worker.reset(new AsyncExecutorThreadWorker);
    } else {
        worker.reset(new ExecutorThreadWorker);
    }
H
heqiaozhi 已提交
300 301 302
#else
    worker.reset(new ExecutorThreadWorker);
#endif
W
Wang Guibao 已提交
303 304 305 306 307 308 309 310
  }

  // prepare thread resource here
  for (int thidx = 0; thidx < actual_thread_num; ++thidx) {
    CreateThreads(workers[thidx].get(), main_program, readers[thidx],
                  fetch_var_names, root_scope_, thidx, debug);
  }

H
heqiaozhi 已提交
311
  
W
Wang Guibao 已提交
312 313 314 315 316 317 318 319 320
  // start executing ops in multiple threads
  for (int thidx = 0; thidx < actual_thread_num; ++thidx) {
    threads.push_back(
        std::thread(&ExecutorThreadWorker::TrainFiles, workers[thidx].get()));
  }

  for (auto& th : threads) {
    th.join();
  }
H
heqiaozhi 已提交
321
#ifdef PADDLE_WITH_PSLIB
H
heqiaozhi 已提交
322 323 324
  if (mode == "mpi") {
    _pull_dense_thread->stop();
  }
H
heqiaozhi 已提交
325
#endif
W
Wang Guibao 已提交
326 327 328 329 330 331 332
  root_scope_->DropKids();

  return;
}

}  // einit_modelnd namespace framework
}  // end namespace paddle