operator.cc 59.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dzhwinter 已提交
14

15 16
#include "paddle/fluid/framework/operator.h"

17
#include <glog/logging.h>
P
peizhilin 已提交
18 19
#include <sstream>
#include <string>
20

21
#include "gflags/gflags.h"
Y
Yi Wang 已提交
22
#include "paddle/fluid/framework/data_transform.h"
23
#include "paddle/fluid/framework/data_type_transform.h"
W
WangXi 已提交
24
#include "paddle/fluid/framework/details/nan_inf_utils.h"
25
#include "paddle/fluid/framework/op_call_stack.h"
Y
Yi Wang 已提交
26
#include "paddle/fluid/framework/shape_inference.h"
27
#include "paddle/fluid/framework/transfer_scope_cache.h"
28
#include "paddle/fluid/framework/unused_var_check.h"
Y
Yi Wang 已提交
29
#include "paddle/fluid/framework/var_type.h"
L
Leo Chen 已提交
30
#include "paddle/fluid/platform/enforce.h"
31
#include "paddle/fluid/platform/profiler.h"
32 33 34 35 36 37

namespace paddle {
namespace framework {
class LoDTensor;
}  // namespace framework
}  // namespace paddle
38 39 40
#ifdef PADDLE_WITH_XPU
#include "paddle/fluid/platform/xpu_info.h"
#endif
Q
Qiao Longfei 已提交
41

42 43 44 45
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

D
dzhwinter 已提交
46
DECLARE_bool(benchmark);
47
DECLARE_bool(check_nan_inf);
48
DECLARE_bool(enable_unused_var_check);
Q
Qiao Longfei 已提交
49
DEFINE_int32(inner_op_parallelism, 0, "number of threads for inner op");
P
pkpk 已提交
50 51 52
DEFINE_bool(fast_check_nan_inf, false,
            "Fast checking NAN/INF after each operation. It will be a little"
            "bit slow, much faster than check_nan_inf");
D
dzhwinter 已提交
53

Q
Qiao Longfei 已提交
54 55 56
namespace paddle {
namespace framework {

57 58 59 60 61 62
std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority = {
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kCUDNN),
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kPlain),
    std::make_tuple(platform::CPUPlace(), LibraryType::kMKLDNN),
    std::make_tuple(platform::CPUPlace(), LibraryType::kPlain),
};
D
dzhwinter 已提交
63

64 65
static DDim GetDimsDebug(const Scope& scope, const std::string& name,
                         bool get_actual_dim = false) {
66
  Variable* var = scope.FindVar(name);
Q
qiaolongfei 已提交
67 68
  if (var == nullptr) {
    return DDim({-1});
Q
Qiao Longfei 已提交
69 70
  }

M
minqiyang 已提交
71 72 73 74 75 76 77 78 79
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    return tensor.dims();
  } else if (var->IsType<SelectedRows>()) {
    if (get_actual_dim) {
      return var->Get<SelectedRows>().value().dims();
    } else {
      return var->Get<SelectedRows>().GetCompleteDims();
    }
80 81 82 83 84
  } else {
    return DDim({-1});
  }
}

Q
Qiao Longfei 已提交
85 86 87 88 89 90
static bool VarInited(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) return false;
  return var->IsInitialized();
}

D
dzhwinter 已提交
91 92 93 94 95
static std::string GetDtype(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
96

M
minqiyang 已提交
97 98 99
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    if (UNLIKELY(!tensor.IsInitialized())) {
100 101
      return "";
    }
Y
Yu Yang 已提交
102
    return DataTypeToString(tensor.type());
M
minqiyang 已提交
103
  } else if (var->IsType<SelectedRows>()) {
Q
Qiao Longfei 已提交
104 105 106 107
    auto tensor = var->Get<SelectedRows>().value();
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
Y
Yu Yang 已提交
108
      return DataTypeToString(tensor.type());
Q
Qiao Longfei 已提交
109
    }
D
dzhwinter 已提交
110 111 112 113 114
  } else {
    return "";
  }
}

L
Leo Chen 已提交
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
static std::string GetPlace(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
  auto to_string = [](const platform::Place& p) {
    std::stringstream sstream;
    sstream << p;
    return sstream.str();
  };

  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "";
    }
    return to_string(tensor.place());
  } else if (var->IsType<SelectedRows>()) {
    auto tensor = var->Get<SelectedRows>().value();
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
      return to_string(tensor.place());
    }
  } else {
    return "";
  }
}

144 145 146 147 148 149
static int GetRowSize(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return -1;
  }

M
minqiyang 已提交
150 151
  if (var->IsType<SelectedRows>()) {
    return var->Get<SelectedRows>().rows().size();
152 153 154 155 156
  }

  return -1;
}

157
static LoD GetLoDDebug(const Scope& scope, const std::string& name) {
Q
Qiao Longfei 已提交
158 159 160 161 162 163 164
  Variable* var = scope.FindVar(name);
  auto default_lod = LoD({{}});

  if (var == nullptr) {
    return default_lod;
  }

M
minqiyang 已提交
165 166 167
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    return tensor.lod();
Q
Qiao Longfei 已提交
168 169 170 171 172
  } else {
    return default_lod;
  }
}

X
Xin Pan 已提交
173 174 175 176 177
RuntimeContext::RuntimeContext(const VariableNameMap& innames,
                               const VariableNameMap& outnames,
                               const Scope& scope) {
  for (auto& var_name_item : innames) {
    std::vector<Variable*>& input_vars = inputs[var_name_item.first];
X
Xin Pan 已提交
178
    input_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
179 180 181 182 183 184
    for (auto& var_name : var_name_item.second) {
      input_vars.push_back(scope.FindVar(var_name));
    }
  }
  for (auto& var_name_item : outnames) {
    std::vector<Variable*>& output_vars = outputs[var_name_item.first];
X
Xin Pan 已提交
185
    output_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
186 187 188 189 190 191
    for (auto& var_name : var_name_item.second) {
      output_vars.push_back(scope.FindVar(var_name));
    }
  }
}

192
void OperatorBase::Run(const Scope& scope, const platform::Place& place) {
P
peizhilin 已提交
193 194 195
  try {
    VLOG(4) << place << " " << DebugStringEx(&scope);
    if (platform::is_gpu_place(place)) {
196
#ifndef PADDLE_WITH_CUDA
197 198 199 200
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with CUDA support.",
          place));
201
#else
202
      auto dev_id = BOOST_GET_CONST(platform::CUDAPlace, place).device;
P
peizhilin 已提交
203
      platform::SetDeviceId(dev_id);
204 205 206
#endif
    } else if (platform::is_xpu_place(place)) {
#ifndef PADDLE_WITH_XPU
207 208 209 210
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with XPU support.",
          place));
211 212 213
#else
      auto dev_id = BOOST_GET_CONST(platform::XPUPlace, place).device;
      platform::SetXPUDeviceId(dev_id);
214
#endif
P
peizhilin 已提交
215
    }
P
peizhilin 已提交
216

217
    {
218 219 220 221 222 223
      // TODO(wangchaochaohu) : refine code to use only one RecordEvent)
      // in order to record different op type cost time
      // and different op name cost time,we set two event.
      platform::RecordEvent op_type_record_event(Type());
      auto op_name = platform::OpName(outputs_, Type());
      platform::RecordEvent op_name_record_event(
224
          op_name, platform::EventRole::kUniqueOp);
P
peizhilin 已提交
225 226
      RunImpl(scope, place);
    }
227

Z
Zhang Ting 已提交
228
    VLOG(3) << GetExecutionPlace(place) << " " << DebugStringEx(&scope);
229
  } catch (platform::EnforceNotMet& exception) {
230
    framework::InsertCallStackInfo(Type(), Attrs(), &exception);
231
    throw std::move(exception);
232 233 234 235 236 237
  } catch (platform::EOFException&) {
    std::rethrow_exception(std::current_exception());
  } catch (std::exception& ex) {
    LOG(WARNING) << Type() << " raises an exception "
                 << platform::demangle(typeid(ex).name()) << ", " << ex.what();
    std::rethrow_exception(std::current_exception());
P
peizhilin 已提交
238
  } catch (...) {
239
    LOG(WARNING) << Type() << " raises an unknown exception";
P
peizhilin 已提交
240
    std::rethrow_exception(std::current_exception());
241
  }
242 243
}

244
bool OperatorBase::HasInputs(const std::string& name) const {
M
minqiyang 已提交
245
  return inputs_.find(name) != inputs_.end();
246 247
}

248
std::string OperatorBase::Input(const std::string& name) const {
Y
Yu Yang 已提交
249
  auto& ins = Inputs(name);
250 251
  PADDLE_ENFORCE_LE(
      ins.size(), 1UL,
252
      platform::errors::InvalidArgument(
253 254
          "Operator %s's input %s should contain only one variable.", type_,
          name));
Y
Yu Yang 已提交
255
  return ins.empty() ? kEmptyVarName : ins[0];
Y
Yan Chunwei 已提交
256 257
}

Y
Yu Yang 已提交
258 259
const std::vector<std::string>& OperatorBase::Inputs(
    const std::string& name) const {
Y
Yu Yang 已提交
260
  auto it = inputs_.find(name);
261 262 263 264
  PADDLE_ENFORCE_NE(
      it, inputs_.end(),
      platform::errors::NotFound("Operator %s does not have the input %s.",
                                 type_, name));
Y
Yu Yang 已提交
265
  return it->second;
Y
Yan Chunwei 已提交
266 267
}

268
bool OperatorBase::HasOutputs(const std::string& name) const {
269
  if (outputs_.find(name) != outputs_.end()) {
270 271 272 273 274 275
    return true;
  } else {
    return false;
  }
}

276
std::string OperatorBase::Output(const std::string& name) const {
Y
Yu Yang 已提交
277
  auto& outs = Outputs(name);
278 279 280 281 282
  PADDLE_ENFORCE_LE(
      outs.size(), 1UL,
      platform::errors::InvalidArgument(
          "Operator %s's output %s should contain only one variable.", type_,
          name));
Y
Yu Yang 已提交
283
  return outs.empty() ? kEmptyVarName : outs[0];
Y
Yan Chunwei 已提交
284 285
}

Y
Yu Yang 已提交
286 287
const std::vector<std::string>& OperatorBase::Outputs(
    const std::string& name) const {
Y
Yu Yang 已提交
288
  auto it = outputs_.find(name);
289 290 291 292
  PADDLE_ENFORCE_NE(
      it, outputs_.end(),
      platform::errors::NotFound(
          "Operator %s does not have an output called %s.", type_, name));
Y
Yu Yang 已提交
293
  return it->second;
Y
Yan Chunwei 已提交
294 295
}

296
std::string OperatorBase::DebugStringEx(const Scope* scope) const {
Q
Qiao Longfei 已提交
297
  std::stringstream ss;
Y
Yu Yang 已提交
298
  ss << "Op(" << type_ << "), inputs:{";
299

300
  const std::unordered_set<std::string>* no_need_buffer_vars = nullptr;
301 302
  if (info_ && info_->NoNeedBufferVarsInferer()) {
    no_need_buffer_vars =
303 304
        &(Info().NoNeedBufferVarsInferer()(Inputs(), Outputs(), Attrs()));
    if (no_need_buffer_vars->empty()) no_need_buffer_vars = nullptr;
305 306
  }

Y
Yu Yang 已提交
307 308
  for (auto it = inputs_.begin(); it != inputs_.end();) {
    auto& input = *it;
309 310
    bool is_no_need_buffer_var =
        (no_need_buffer_vars && no_need_buffer_vars->count(input.first) > 0);
Y
Yu Yang 已提交
311 312
    ss << input.first << "[";
    for (size_t i = 0; i < input.second.size(); ++i) {
Q
Qiao Longfei 已提交
313 314
      auto var_name = input.second[i];
      ss << var_name;
315
      if (scope) {
Q
Qiao Longfei 已提交
316 317 318 319 320 321 322
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, var_name);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
323 324 325
          std::string dtype = is_no_need_buffer_var
                                  ? "unknown_dtype"
                                  : GetDtype(*scope, var_name);
Q
Qiao Longfei 已提交
326
          ss << ":" << dtype;
327 328
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
L
Leo Chen 已提交
329
          ss << "(" << GetPlace(*scope, var_name) << ")";
330
        }
331
      }
Y
Yu Yang 已提交
332 333 334
      if (i != input.second.size() - 1) {
        ss << ", ";
      }
335
    }
Y
Yu Yang 已提交
336
    ss << "]";
Y
Yu Yang 已提交
337 338
    ++it;
    if (it != inputs_.end()) {
339 340
      ss << ", ";
    }
Q
Qiao Longfei 已提交
341
  }
Y
Yu Yang 已提交
342
  ss << "}, outputs:{";
Y
Yu Yang 已提交
343 344
  for (auto it = outputs_.begin(); it != outputs_.end();) {
    auto& output = *it;
Y
Yu Yang 已提交
345 346
    ss << output.first << "[";
    for (size_t i = 0; i < output.second.size(); ++i) {
Q
Qiao Longfei 已提交
347 348
      auto var_name = output.second[i];
      ss << var_name;
349
      if (scope) {
Q
Qiao Longfei 已提交
350 351 352 353 354 355 356
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, output.second[i]);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
C
chengduo 已提交
357 358
          std::string dtype = GetDtype(*scope, output.second[i]);
          ss << ":" << dtype;
359 360
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
L
Leo Chen 已提交
361
          ss << "(" << GetPlace(*scope, var_name) << ")";
362
        }
363
      }
Y
Yu Yang 已提交
364 365 366
      if (i != output.second.size() - 1) {
        ss << ", ";
      }
367
    }
Y
Yu Yang 已提交
368
    ss << "]";
Y
Yu Yang 已提交
369 370
    ++it;
    if (it != outputs_.end()) {
371 372
      ss << ", ";
    }
Q
Qiao Longfei 已提交
373
  }
Y
Yu Yang 已提交
374
  ss << "}.";
Q
Qiao Longfei 已提交
375 376 377
  return ss.str();
}

Y
Yu Yang 已提交
378
OperatorBase::OperatorBase(const std::string& type,
Y
Yu Yang 已提交
379 380
                           const VariableNameMap& inputs,
                           const VariableNameMap& outputs,
Y
Yu Yang 已提交
381
                           const AttributeMap& attrs)
S
sneaxiy 已提交
382 383 384 385 386 387
    : type_(type),
      inputs_(inputs),
      outputs_(outputs),
      attrs_(attrs),
      // NOTE(zjl): why op_info may be nullptr?
      info_(OpInfoMap::Instance().GetNullable(type)) {
H
hong 已提交
388 389 390 391 392 393 394 395
  // In dygraph mode, all the OperatorBase will be constructed by function:
  // framework::OpRegistry::CreateOp(type, {}, {}, {}, false).
  // Inputs, outputs and attrs will be set to empty map
  // to improve the execution efficiency of dygraph.
  if (inputs_.size() > 0 || outputs_.size() > 0) {
    GenerateTemporaryNames();
    CheckAllInputOutputSet();
  }
Y
Yu Yang 已提交
396
}
397

Q
qijun 已提交
398 399
std::vector<std::string> OperatorBase::InputVars() const {
  std::vector<std::string> ret_val;
Y
Yu Yang 已提交
400
  for (auto& o : inputs_) {
Q
qijun 已提交
401 402 403 404 405 406
    ret_val.reserve(ret_val.size() + o.second.size());
    ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
  }
  return ret_val;
}

Y
Yu Yang 已提交
407 408 409 410 411 412 413 414 415 416
std::vector<std::string> OperatorBase::OutputVars(bool has_intermediate) const {
  std::vector<std::string> ret_val;
  if (has_intermediate) {
    // push all outputs into ret_val
    for (auto& o : outputs_) {
      ret_val.reserve(ret_val.size() + o.second.size());
      ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
    }
    return ret_val;
  }
S
sneaxiy 已提交
417
  auto& info = Info();
Y
Yu Yang 已提交
418 419

  // get all OpProto::Var for outputs
Y
Yu Yang 已提交
420
  for (auto& o : info.Proto().outputs()) {
Y
Yu Yang 已提交
421 422 423 424 425 426 427 428 429
    // ignore all intermediate output
    if (o.intermediate()) continue;
    auto out = outputs_.find(o.name());
    if (out != outputs_.end()) {
      ret_val.reserve(ret_val.size() + out->second.size());
      ret_val.insert(ret_val.end(), out->second.begin(), out->second.end());
    }
  }
  return ret_val;
D
dongzhihong 已提交
430 431
}

432
void OperatorBase::CheckAllInputOutputSet() const {
S
sneaxiy 已提交
433
  if (info_ == nullptr || info_->proto_ == nullptr) return;
434

S
sneaxiy 已提交
435
  for (auto& in : info_->Proto().inputs()) {
436
    if (!in.dispensable()) {
437 438 439 440
      PADDLE_ENFORCE_NE(
          inputs_.find(in.name()), inputs_.end(),
          platform::errors::NotFound("Operator %s's input (%s) is not set.",
                                     Type(), in.name()));
441
    }
442 443
  }

S
sneaxiy 已提交
444
  for (auto& out : info_->Proto().outputs()) {
445
    if (!out.dispensable()) {
446 447 448 449
      PADDLE_ENFORCE_NE(
          outputs_.find(out.name()), outputs_.end(),
          platform::errors::NotFound("Operator %s's output (%s) is not set.",
                                     Type(), out.name()));
450
    }
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
  }
}

void OperatorBase::GenerateTemporaryNames() {
  static std::atomic<size_t> gUniqId(0UL);
  for (auto& output : outputs_) {
    for (auto& output_name : output.second) {
      if (output_name == kTempVarName) {
        output_name += type_;
        output_name += "@";
        output_name += std::to_string(gUniqId.fetch_add(1));
      }
    }
  }
}

B
baojun-nervana 已提交
467
static bool VarIsTensor(const Variable& var) {
C
chengduo 已提交
468
  return var.IsType<LoDTensor>() || var.IsType<SelectedRows>();
469 470
}

C
chengduo 已提交
471
const Tensor* GetLoDTensorOrSelectedRowsValueFromVar(const Variable& var) {
C
chengduo 已提交
472 473 474 475
  if (var.IsType<LoDTensor>()) {
    return static_cast<const Tensor*>(&(var.Get<LoDTensor>()));
  } else if (var.IsType<SelectedRows>()) {
    return &(var.Get<SelectedRows>().value());
Q
QI JUN 已提交
476
  } else {
477 478 479
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Variable type is %s, expect LoDTensor or SelectedRows.",
        ToTypeName(var.Type())));
Q
QI JUN 已提交
480 481 482
  }
}

C
chengduo 已提交
483
Tensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var) {
Q
QI JUN 已提交
484
  if (var->IsType<LoDTensor>()) {
485
    return var->GetMutable<LoDTensor>();
Q
QI JUN 已提交
486
  } else if (var->IsType<SelectedRows>()) {
487
    return var->GetMutable<SelectedRows>()->mutable_value();
Q
QI JUN 已提交
488
  } else {
489 490 491
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Variable type is %s, expect LoDTensor or SelectedRows.",
        ToTypeName(var->Type())));
Q
QI JUN 已提交
492 493 494
  }
}

495
bool ExecutionContext::HasInput(const std::string& name) const {
496
  auto* var = InputVar(name);
497 498 499 500
  return var != nullptr;
}

bool ExecutionContext::HasOutput(const std::string& name) const {
501
  auto* var = OutputVar(name);
502 503 504
  return var != nullptr;
}

X
Xin Pan 已提交
505
const Variable* ExecutionContext::InputVar(const std::string& name) const {
506 507
  LogVarUsageIfUnusedVarCheckEnabled(name);

X
Xin Pan 已提交
508 509 510
  auto it = ctx_.inputs.find(name);
  if (it == ctx_.inputs.end()) return nullptr;

511 512
  PADDLE_ENFORCE_LE(
      it->second.size(), 1UL,
513
      platform::errors::InvalidArgument(
514 515
          "Operator %s's input %s should contain only one variable.",
          op_.Type(), name));
X
Xin Pan 已提交
516 517 518
  return it->second.empty() ? nullptr : it->second[0];
}

X
clean  
Xin Pan 已提交
519
Variable* ExecutionContext::OutputVar(const std::string& name) const {
X
Xin Pan 已提交
520 521 522
  auto it = ctx_.outputs.find(name);
  if (it == ctx_.outputs.end()) return nullptr;

523 524 525 526 527
  PADDLE_ENFORCE_LE(
      it->second.size(), 1UL,
      platform::errors::InvalidArgument(
          "Operator %s's output %s should contain only one variable.",
          op_.Type(), name));
X
Xin Pan 已提交
528 529 530
  return it->second.empty() ? nullptr : it->second[0];
}

531
template <>
532
const Tensor* ExecutionContext::Input<Tensor>(const std::string& name) const {
C
chengduo 已提交
533
  return Input<LoDTensor>(name);
534 535 536
}

template <>
537
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
538
    const std::string& name) const {
539 540
  LogVarUsageIfUnusedVarCheckEnabled(name);

H
hong 已提交
541 542
  auto vars = MultiInputVar(name);
  if (vars.size() == 0) {
X
Xin Pan 已提交
543 544 545 546 547
    return {};
  }
  std::vector<const Tensor*> res;
  res.reserve(vars.size());
  std::transform(vars.begin(), vars.end(), std::back_inserter(res),
H
hong 已提交
548
                 [&](const Variable* var) -> const Tensor* {
X
Xin Pan 已提交
549
                   if (var == nullptr) return nullptr;
550 551 552 553 554
                   PADDLE_ENFORCE_EQ(var->IsType<LoDTensor>(), true,
                                     platform::errors::InvalidArgument(
                                         "Input variable should be LoDTensor, "
                                         "but the received type is %s.",
                                         ToTypeName(var->Type())));
X
Xin Pan 已提交
555 556 557 558 559
                   return &(var->Get<LoDTensor>());
                 });
  return res;
}

560
template <>
561
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const {
C
chengduo 已提交
562
  return Output<LoDTensor>(name);
563 564 565
}

template <>
566
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
567
    const std::string& name) const {
H
hong 已提交
568 569 570
  auto vars = MultiOutputVar(name);

  if (vars.size() == 0) {
571 572
    return {};
  }
573
  std::vector<Tensor*> res;
574 575 576 577 578
  res.reserve(vars.size());
  std::transform(vars.begin(), vars.end(), std::back_inserter(res),
                 [&](Variable* var) -> Tensor* {
                   return var == nullptr ? nullptr
                                         : var->GetMutable<LoDTensor>();
579
                 });
580 581 582
  return res;
}

Y
Yu Yang 已提交
583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
bool OpSupportGPU(const std::string& op_type) {
  auto& all_kernels = OperatorWithKernel::AllOpKernels();
  auto it = all_kernels.find(op_type);
  if (it == all_kernels.end()) {
    // All control operator must support GPU
    return true;
  }
  for (auto& kern_pair : it->second) {
    if (platform::is_gpu_place(kern_pair.first.place_)) {
      return true;
    }
  }
  return false;
}

598 599
class RuntimeInferShapeContext : public InferShapeContext {
 public:
600
  RuntimeInferShapeContext(const OperatorBase& op, const RuntimeContext& ctx)
G
Gabor Buella 已提交
601
      : op_(op), ctx_(ctx) {}
602 603

  bool HasInput(const std::string& name) const override {
604
    // has only one input
X
Xin Pan 已提交
605
    const auto& ins = ctx_.inputs;
606 607
    auto it = ins.find(name);
    if (it == ins.end()) {
608 609
      return false;
    }
610
    const auto& in = it->second;
X
Xin Pan 已提交
611
    if (in.size() == 0) return false;
612 613 614 615
    PADDLE_ENFORCE_EQ(
        in.size(), 1UL,
        platform::errors::InvalidArgument(
            "Input %s should not contain more than one inputs.", name));
X
Xin Pan 已提交
616
    return in[0] != nullptr;
617 618 619
  }

  bool HasOutput(const std::string& name) const override {
620
    // has only one output
X
Xin Pan 已提交
621
    const auto& outs = ctx_.outputs;
622 623
    auto it = outs.find(name);
    if (it == outs.end()) {
624 625
      return false;
    }
626
    const auto& out = it->second;
X
Xin Pan 已提交
627
    if (out.size() == 0) {
628 629
      return false;
    }
630 631 632 633
    PADDLE_ENFORCE_EQ(
        out.size(), 1UL,
        platform::errors::InvalidArgument(
            "Output %s should not contain more than one outputs.", name));
X
Xin Pan 已提交
634
    return out[0] != nullptr;
635 636 637
  }

  bool HasInputs(const std::string& name) const override {
X
Xin Pan 已提交
638 639
    const auto& ins = ctx_.inputs;
    auto it = ins.find(name);
X
fix  
Xin Pan 已提交
640
    if (it == ins.end() || it->second.empty()) {
641 642
      return false;
    }
X
Xin Pan 已提交
643 644
    for (auto& input : it->second) {
      if (input == nullptr) {
645 646 647 648 649 650 651
        return false;
      }
    }
    return true;
  }

  bool HasOutputs(const std::string& name) const override {
X
Xin Pan 已提交
652 653
    const auto& outs = ctx_.outputs;
    auto it = outs.find(name);
X
fix  
Xin Pan 已提交
654
    if (it == outs.end() || it->second.empty()) {
655 656
      return false;
    }
X
Xin Pan 已提交
657 658
    for (auto& output : it->second) {
      if (output == nullptr) {
659 660 661 662 663 664 665 666
        return false;
      }
    }
    return true;
  }

  AttrReader Attrs() const override { return AttrReader(op_.Attrs()); }

H
hong 已提交
667
  std::vector<std::string> Inputs(const std::string& name) const override {
668 669 670
    return op_.Inputs(name);
  }

H
hong 已提交
671
  std::vector<std::string> Outputs(const std::string& name) const override {
672 673 674
    return op_.Outputs(name);
  }

675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
  std::string GetInputNameByIdx(size_t idx) const override {
    auto& op_proto =
        paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_;
    PADDLE_ENFORCE_LT(idx, op_proto->inputs().size(),
                      platform::errors::OutOfRange(
                          "The index should be less than the size of inputs of "
                          "operator %s, but got index is %d and size is %d",
                          op_.Type(), idx, op_proto->inputs().size()));
    return op_proto->inputs()[idx].name();
  }

  std::string GetOutputNameByIdx(size_t idx) const override {
    auto& op_proto =
        paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_;
    PADDLE_ENFORCE_LT(
        idx, op_proto->outputs().size(),
        platform::errors::OutOfRange(
            "The index should be less than the size of outputs of "
            "operator %s, but got index is %d and size is %d",
            op_.Type(), idx, op_proto->outputs().size()));
    return op_proto->outputs()[idx].name();
  }

698 699
  void ShareDim(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) override {
X
Xin Pan 已提交
700 701
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
    PADDLE_ENFORCE_NE(
        in_it, ctx_.inputs.end(),
        platform::errors::NotFound("Input %s does not exist.", in));
    PADDLE_ENFORCE_NE(
        out_it, ctx_.outputs.end(),
        platform::errors::NotFound("Output %s does not exist.", out));
    PADDLE_ENFORCE_LT(i, in_it->second.size(),
                      platform::errors::InvalidArgument(
                          "The index of input dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
                          in_it->second.size(), i));
    PADDLE_ENFORCE_LT(j, out_it->second.size(),
                      platform::errors::InvalidArgument(
                          "The index of output dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
                          out_it->second.size(), j));
X
Xin Pan 已提交
718 719 720

    Variable* in_var = in_it->second[i];
    Variable* out_var = out_it->second[j];
721

722 723 724 725 726
    PADDLE_ENFORCE_EQ(
        in_var->Type(), out_var->Type(),
        platform::errors::InvalidArgument(
            "The type of input (%s) and output (%s) are inconsistent.", in,
            out));
727 728 729 730 731 732 733 734 735 736 737 738

    if (in_var->IsType<framework::SelectedRows>()) {
      auto& in_sele_rows = in_var->Get<framework::SelectedRows>();
      auto out_sele_rows = out_var->GetMutable<framework::SelectedRows>();
      out_sele_rows->mutable_value()->Resize(in_sele_rows.value().dims());
      out_sele_rows->set_rows(in_sele_rows.rows());
      out_sele_rows->set_height(in_sele_rows.height());
    } else if (in_var->IsType<framework::LoDTensor>()) {
      auto& in_lod_tensor = in_var->Get<framework::LoDTensor>();
      auto* out_lod_tensor = out_var->GetMutable<framework::LoDTensor>();
      out_lod_tensor->Resize(in_lod_tensor.dims());
    } else {
739
      PADDLE_THROW(platform::errors::Unimplemented(
740
          "Currently, the input type of ShareDim only can be LoDTensor "
741
          "or SelectedRows."));
742 743 744
    }
  }

H
hong 已提交
745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762
  void ShareAllLoD(const std::string& in,
                   const std::string& out) const override {
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
    PADDLE_ENFORCE_NE(in_it, ctx_.inputs.end(),
                      platform::errors::NotFound(
                          "Input [%s] found error in Op [%s]", in, op_.Type()));
    PADDLE_ENFORCE_NE(
        out_it, ctx_.outputs.end(),
        platform::errors::NotFound("Output [%s] found error in Op [%s]", out,
                                   op_.Type()));

    auto& in_var_list = in_it->second;
    auto& out_var_list = out_it->second;

    PADDLE_ENFORCE_EQ(
        in_var_list.size(), out_var_list.size(),
        platform::errors::PreconditionNotMet(
T
tianshuo78520a 已提交
763
            "Op [%s]: Input var size should be equal with output var size",
H
hong 已提交
764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
            op_.Type()));

    auto& out_var_names = op_.Outputs(out);

    for (size_t i = 0; i < in_var_list.size(); ++i) {
      if (out_var_names[i] == framework::kEmptyVarName) {
        continue;
      }

      Variable* in_var = in_var_list[i];
      if (!in_var->IsType<LoDTensor>()) return;
      Variable* out_var = out_var_list[i];
      PADDLE_ENFORCE_EQ(out_var->IsType<LoDTensor>(), true,
                        platform::errors::PreconditionNotMet(
                            "The %d-th output of Output(%s) must be LoDTensor.",
                            i, out_var_names[i]));
      auto& in_tensor = in_var->Get<LoDTensor>();
      auto* out_tensor = out_var->GetMutable<LoDTensor>();
      out_tensor->set_lod(in_tensor.lod());
#ifdef PADDLE_WITH_MKLDNN
      if (in_tensor.layout() != DataLayout::kMKLDNN)
#endif
        out_tensor->set_layout(in_tensor.layout());
    }
  }

Q
Qiao Longfei 已提交
790 791
  void ShareLoD(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) const override {
X
Xin Pan 已提交
792 793
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
    PADDLE_ENFORCE_NE(
        in_it, ctx_.inputs.end(),
        platform::errors::NotFound("Input %s does not exist.", in));
    PADDLE_ENFORCE_NE(
        out_it, ctx_.outputs.end(),
        platform::errors::NotFound("Output %s does not exist.", out));
    PADDLE_ENFORCE_LT(i, in_it->second.size(),
                      platform::errors::InvalidArgument(
                          "The index of input dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
                          in_it->second.size(), i));
    PADDLE_ENFORCE_LT(j, out_it->second.size(),
                      platform::errors::InvalidArgument(
                          "The index of output dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
                          out_it->second.size(), j));
X
Xin Pan 已提交
810 811

    Variable* in_var = in_it->second.at(i);
Q
Qiao Longfei 已提交
812
    if (!in_var->IsType<LoDTensor>()) return;
X
Xin Pan 已提交
813
    Variable* out_var = out_it->second.at(j);
814 815 816 817
    PADDLE_ENFORCE_EQ(
        out_var->IsType<LoDTensor>(), true,
        platform::errors::InvalidArgument(
            "The %zu-th output of Output(%s) must be LoDTensor.", j, out));
818
    auto& in_tensor = in_var->Get<LoDTensor>();
Q
Qiao Longfei 已提交
819 820
    auto* out_tensor = out_var->GetMutable<LoDTensor>();
    out_tensor->set_lod(in_tensor.lod());
D
dzhwinter 已提交
821

M
mozga-intel 已提交
822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
// TODO(dzhwinter) : reuse ShareLoD in most operators.
// Need to call ShareLayout explicitly in sequence related ops.
// Shall we have a better method to shared info between in/out Tensor?
#ifdef PADDLE_WITH_MKLDNN
    // Fix me: ugly workaround below
    // Correct solution:
    //    set_layout() should NOT be called here (i.e. ShareLoD). Instead,
    //    layout of output tensor should be set "manually" in Compute()
    //    of each OPKernel. The reason layout should NOT be shared between
    //    input and output "automatically" (now by InferShape()->ShareLoD())
    //    is that layout transform may occur after InferShape().
    // Workaround:
    //    Skip set_layout() when input layout is kMKLDNN
    //    This is to avoid kMKLDNN is populated wrongly into a non-MKLDNN
    //    OPKernel. In all MKLDNN OPkernel, set_layout(kMKLDNN) should be called
    //    in Compute()
    if (in_tensor.layout() != DataLayout::kMKLDNN)
#endif
      out_tensor->set_layout(in_tensor.layout());
D
dzhwinter 已提交
841 842
  }

843
  int32_t GetLoDLevel(const std::string& in, size_t i = 0) const override {
844
    PADDLE_THROW(platform::errors::PreconditionNotMet(
845
        "GetLoDLevel is only used in compile time. The calculation of "
846
        "output's actual lod is different among operators so that should be "
847
        "set in the runtime kernel."));
848 849
  }

850 851
  void SetLoDLevel(const std::string& out, int32_t lod_level,
                   size_t j = 0) const override {
852
    PADDLE_THROW(platform::errors::PreconditionNotMet(
853
        "SetLoDLevel is only used in compile time. The calculation of "
854
        "output's actual lod is different among operators so that should be "
855
        "set in the runtime kernel."));
C
chengduo 已提交
856 857
  }

858 859
  bool IsRuntime() const override { return true; }

860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
  // TODO(paddle-dev): Can this be template?
  std::vector<InferShapeVarPtr> GetInputVarPtrs(
      const std::string& name) override {
    const std::vector<Variable*>& vars = InputVars(name);
    std::vector<InferShapeVarPtr> res;
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

  std::vector<InferShapeVarPtr> GetOutputVarPtrs(
      const std::string& name) override {
    const std::vector<Variable*>& vars = OutputVars(name);
    std::vector<InferShapeVarPtr> res;
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

X
Xin Pan 已提交
879 880
  DDim GetInputDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
881 882 883 884 885
    PADDLE_ENFORCE_EQ(
        vars.size(), 1UL,
        platform::errors::InvalidArgument(
            "Input(%s) should hold one element, but now it holds %zu elements.",
            name, vars.size()));
X
Xin Pan 已提交
886 887 888 889 890 891 892 893
    return this->GetDim(vars[0]);
  }

  std::vector<DDim> GetInputsDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
    return GetDims(vars);
  }

X
Xin Pan 已提交
894 895 896 897 898 899 900 901 902 903
  std::vector<proto::VarType::Type> GetInputsVarType(
      const std::string& name) const override {
    return GetVarTypes(InputVars(name));
  }

  std::vector<proto::VarType::Type> GetOutputsVarType(
      const std::string& name) const override {
    return GetVarTypes(OutputVars(name));
  }

X
Xin Pan 已提交
904 905
  void SetOutputDim(const std::string& name, const DDim& dim) override {
    auto& vars = OutputVars(name);
906 907 908 909 910
    PADDLE_ENFORCE_EQ(
        vars.size(), 1UL,
        platform::errors::InvalidArgument("Output(%s) should hold one element, "
                                          "but now it holds %zu elements.",
                                          name, vars.size()));
X
Xin Pan 已提交
911 912 913 914 915 916 917 918 919
    SetDim(vars[0], dim);
  }

  void SetOutputsDim(const std::string& name,
                     const std::vector<DDim>& dims) override {
    auto& vars = OutputVars(name);
    SetDims(vars, dims);
  }

920
 protected:
X
Xin Pan 已提交
921
  DDim GetDim(Variable* var) const {
922 923
    PADDLE_ENFORCE_NOT_NULL(
        var, platform::errors::InvalidArgument("Input variable is nullptr."));
924 925 926 927 928
    if (var->IsType<LoDTensor>()) {
      return var->Get<LoDTensor>().dims();
    } else if (var->IsType<SelectedRows>()) {
      return var->Get<SelectedRows>().GetCompleteDims();
    } else {
929 930 931 932
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Only LoDTensor or SelectedRows support 'GetDim', but input "
          "Variable's type is %s.",
          ToTypeName(var->Type())));
F
fengjiayi 已提交
933 934 935
    }
  }

X
Xin Pan 已提交
936 937 938 939 940 941 942 943
  std::vector<DDim> GetDims(const std::vector<Variable*>& vars) const {
    std::vector<DDim> ret;
    ret.reserve(vars.size());
    std::transform(vars.begin(), vars.end(), std::back_inserter(ret),
                   [this](Variable* var) { return this->GetDim(var); });
    return ret;
  }

F
fengjiayi 已提交
944
  std::vector<DDim> GetRepeatedDims(const std::string& name) const override {
945 946
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "GetRepeatedDims method only ban be used in compile time."));
947 948
  }

X
Xin Pan 已提交
949
  void SetDim(Variable* var, const DDim& dim) {
950 951 952 953 954
    if (var->IsType<LoDTensor>()) {
      var->GetMutable<LoDTensor>()->Resize(dim);
    } else if (var->IsType<SelectedRows>()) {
      var->GetMutable<SelectedRows>()->set_height(dim[0]);
    } else {
955 956 957 958
      PADDLE_THROW(platform::errors::Unimplemented(
          "Variable type error, expect LoDTensor or SelectedRows, but received "
          "(%s).",
          ToTypeName(var->Type())));
X
Xin Pan 已提交
959 960 961 962 963 964
    }
  }

  void SetDims(const std::vector<Variable*>& vars,
               const std::vector<DDim>& dims) {
    size_t length = vars.size();
965 966 967 968 969 970
    PADDLE_ENFORCE_EQ(length, dims.size(),
                      platform::errors::InvalidArgument(
                          "The number of input variables do not match the "
                          "number of input dimensions, the number of variables "
                          "is %zu, the number of dimensions is %zu.",
                          length, dims.size()));
X
Xin Pan 已提交
971 972 973 974 975
    for (size_t i = 0; i < length; ++i) {
      if (vars[i] == nullptr) {
        continue;
      }
      SetDim(vars[i], dims[i]);
976 977 978
    }
  }

F
fengjiayi 已提交
979 980
  void SetRepeatedDims(const std::string& name,
                       const std::vector<DDim>& dims) override {
981 982
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "SetRepeatedDims method only can be used in compile time."));
F
fengjiayi 已提交
983 984
  }

X
Xin Pan 已提交
985 986 987 988 989 990 991 992 993 994 995
  std::vector<proto::VarType::Type> GetVarTypes(
      const std::vector<Variable*>& vars) const {
    std::vector<proto::VarType::Type> retv;
    retv.resize(vars.size());
    std::transform(vars.begin(), vars.end(), retv.begin(),
                   std::bind(std::mem_fn(&RuntimeInferShapeContext::GetVarType),
                             this, std::placeholders::_1));
    return retv;
  }

  proto::VarType::Type GetVarType(Variable* var) const {
996 997 998
    return ToVarType(var->Type());
  }

999 1000 1001
 private:
  const std::vector<Variable*>& InputVars(const std::string& name) const {
    auto it = ctx_.inputs.find(name);
1002 1003 1004 1005
    PADDLE_ENFORCE_NE(
        it, ctx_.inputs.end(),
        platform::errors::NotFound(
            "Operator (%s) does not have the input (%s).", op_.Type(), name));
1006 1007 1008 1009 1010
    return it->second;
  }

  const std::vector<Variable*>& OutputVars(const std::string& name) const {
    auto it = ctx_.outputs.find(name);
1011 1012 1013 1014
    PADDLE_ENFORCE_NE(
        it, ctx_.outputs.end(),
        platform::errors::NotFound(
            "Operator (%s) does not have the outputs (%s).", op_.Type(), name));
1015
    return it->second;
F
fengjiayi 已提交
1016 1017
  }

1018
  const OperatorBase& op_;
X
Xin Pan 已提交
1019
  const RuntimeContext& ctx_;
1020 1021
};

1022 1023
static void CheckTensorNANOrInf(const std::string& op_type,
                                const std::string& name,
C
chengduoZH 已提交
1024 1025 1026 1027
                                const framework::Tensor& tensor) {
  if (tensor.memory_size() == 0) {
    return;
  }
Y
Yu Yang 已提交
1028 1029
  if (tensor.type() != proto::VarType::FP32 &&
      tensor.type() != proto::VarType::FP64) {
C
chengduoZH 已提交
1030 1031
    return;
  }
1032 1033 1034 1035 1036 1037 1038 1039
  PADDLE_ENFORCE_NE(
      framework::TensorContainsInf(tensor), true,
      platform::errors::Fatal("Operator %s output Tensor %s contains Inf.",
                              op_type, name));
  PADDLE_ENFORCE_NE(
      framework::TensorContainsNAN(tensor), true,
      platform::errors::Fatal("Operator %s output Tensor %s contains NAN.",
                              op_type, name));
C
chengduoZH 已提交
1040 1041
}

1042 1043
bool OperatorWithKernel::SupportsMKLDNN(
    const proto::VarType::Type data_type) const {
1044 1045
  auto& op_kernels = OperatorWithKernel::AllOpKernels().at(type_);
  return std::any_of(op_kernels.begin(), op_kernels.end(),
1046
                     [data_type](OpKernelMap::const_reference kern_pair) {
1047 1048
                       return platform::is_cpu_place(kern_pair.first.place_) &&
                              kern_pair.first.library_type_ ==
1049 1050
                                  LibraryType::kMKLDNN &&
                              kern_pair.first.data_type_ == data_type;
1051 1052 1053
                     });
}

1054 1055
bool OperatorWithKernel::CanMKLDNNBeUsed(const framework::ExecutionContext& ctx,
                                         proto::VarType::Type data_type) const {
1056 1057
  bool use_mkldnn_ctx =
      ctx.Attr<bool>("use_mkldnn") && platform::is_cpu_place(ctx.GetPlace());
1058
  return use_mkldnn_ctx && this->SupportsMKLDNN(data_type);
1059 1060
}

B
baojun-nervana 已提交
1061
void OperatorWithKernel::RuntimeInferShape(const Scope& scope,
X
Xin Pan 已提交
1062 1063
                                           const platform::Place& place,
                                           const RuntimeContext& ctx) const {
1064
  RuntimeInferShapeContext infer_shape_ctx(*this, ctx);
B
baojun-nervana 已提交
1065 1066 1067
  this->InferShape(&infer_shape_ctx);
}

L
luotao1 已提交
1068 1069
void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place) const {
L
luotao1 已提交
1070 1071
  // To reduce the elapsed time of HasAttr, we use bool variable to record the
  // result of HasAttr.
1072 1073 1074
  if (!enable_cache_runtime_context_ && HasAttr(kEnableCacheRuntimeContext))
    enable_cache_runtime_context_ = true;
  if (!all_kernels_must_compute_runtime_shape_ &&
L
luotao1 已提交
1075
      HasAttr(kAllKernelsMustComputeRuntimeShape))
1076
    all_kernels_must_compute_runtime_shape_ = true;
1077
  const Scope* cur_scope = &scope;
1078
  if (!enable_cache_runtime_context_) {
L
luotao1 已提交
1079 1080
    RuntimeContext ctx(Inputs(), Outputs(), scope);
    RunImpl(scope, place, &ctx);
1081
    pre_scope_ = cur_scope;
L
luotao1 已提交
1082
  } else {
1083 1084 1085 1086 1087 1088
    if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
      std::lock_guard<std::mutex> lock(cache_update_mutex_);
      if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
        runtime_ctx_.reset(new RuntimeContext(Inputs(), Outputs(), scope));
        pre_scope_ = cur_scope;
      }
L
luotao1 已提交
1089 1090 1091 1092 1093 1094 1095 1096
    }
    RunImpl(scope, place, runtime_ctx_.get());
  }
}

void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place,
                                 RuntimeContext* runtime_ctx) const {
Y
Yu Yang 已提交
1097
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
1098
  auto* dev_ctx = pool.Get(place);
1099

1100
  if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
1101
    ChooseKernel(*runtime_ctx, scope, place);
1102 1103
  }

Y
yuyang18 已提交
1104 1105
  // do data transformScope &transfer_scope;
  std::vector<std::string> transfered_inplace_vars;
1106 1107
  Scope* transfer_scope = nullptr;
  {
1108
    platform::RecordEvent record_event("prepare_data",
1109
                                       platform::EventRole::kInnerOp);
1110 1111 1112 1113
    if (need_prepare_data_) {
      transfer_scope = PrepareData(scope, *kernel_type_,
                                   &transfered_inplace_vars, runtime_ctx);
    }
1114
  }
Y
yuyang18 已提交
1115 1116 1117 1118
  // exec scope is the scope that kernel actually executed on.
  const Scope& exec_scope =
      (transfer_scope == nullptr ? scope : *transfer_scope);

1119 1120
  if (!(kernel_type_->place_ == dev_ctx->GetPlace())) {
    dev_ctx = pool.Get(kernel_type_->place_);
1121
  }
Q
QI JUN 已提交
1122

1123
  if (!all_kernels_must_compute_runtime_shape_) {
1124
    platform::RecordEvent record_event("infer_shape",
1125
                                       platform::EventRole::kInnerOp);
1126
    RuntimeInferShapeContext infer_shape_ctx(*this, *runtime_ctx);
1127 1128
    this->InferShape(&infer_shape_ctx);
  }
1129 1130 1131 1132 1133

  if (FLAGS_enable_unused_var_check) {
    GetThreadLocalUsedVarNameSet()->clear();
  }

X
clean  
Xin Pan 已提交
1134 1135
  // TODO(panyx0718): ExecutionContext should only depend on RuntimeContext
  // not Scope. Imperative mode only pass inputs and get outputs.
1136
  {
1137
    platform::RecordEvent record_event("compute",
1138
                                       platform::EventRole::kInnerOp);
1139 1140
    (*kernel_func_)(
        ExecutionContext(*this, exec_scope, *dev_ctx, *runtime_ctx));
1141
  }
D
dzhwinter 已提交
1142

Y
yuyang18 已提交
1143
  if (!transfered_inplace_vars.empty()) {
T
tianshuo78520a 已提交
1144
    // there is inplace variable has been transferred.
Y
yuyang18 已提交
1145
    TransferInplaceVarsBack(scope, transfered_inplace_vars, *transfer_scope);
1146
  }
1147 1148 1149 1150 1151 1152 1153

  // See [ Why need handle complex gradient to real gradient? ]
  // Only handle the case where the current kernel data type is complex
  if (framework::IsComplexType(kernel_type_->data_type_)) {
    HandleComplexGradToRealGrad(scope, runtime_ctx);
  }

1154 1155 1156 1157 1158 1159 1160 1161
  if (FLAGS_enable_unused_var_check) {
    // skip op that uses mkldnn because it has different memory reuse strategy.
    // use attr here because some GradMakers (like ActivationGradOpMaker) add
    // input when use_mkldnn=true;
    if (!(HasAttr("use_mkldnn") && Attr<bool>("use_mkldnn"))) {
      CheckUnusedVar(*this, scope);
    }
  }
1162

D
dzhwinter 已提交
1163
  /*For profiling/benchmark only*/
D
dzhwinter 已提交
1164
  if (FLAGS_benchmark) {
Y
yuyang18 已提交
1165
    dev_ctx->Wait();
L
Leo Chen 已提交
1166 1167 1168 1169
#if defined(PADDLE_WITH_CUDA)
    PADDLE_ENFORCE_CUDA_SUCCESS(cudaGetLastError());
    VLOG(4) << "Operator(" << Type() << "): context wait and get last error";
#endif
D
dzhwinter 已提交
1170
  }
C
chengduoZH 已提交
1171

P
pkpk 已提交
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
  if (FLAGS_fast_check_nan_inf) {
    for (auto& vname : OutputVars(true)) {
      // only check inserted vars,
      // please see executor.py for details of fast_check_nan_inf
      if (vname.rfind("debug_var") == 0) {
        VLOG(3) << "debugging nan/inf in var " << vname;

        auto* var = exec_scope.FindVar(vname);
        if (var == nullptr) continue;
        if (var->IsType<framework::LoDTensor>()) {
          CheckTensorNANOrInf(type_, vname, var->Get<framework::LoDTensor>());
        } else if (var->IsType<framework::SelectedRows>()) {
          CheckTensorNANOrInf(type_, vname,
                              var->Get<framework::SelectedRows>().value());
        }
      }
    }
  }

C
chengduoZH 已提交
1191
  if (FLAGS_check_nan_inf) {
W
WangXi 已提交
1192
    framework::details::CheckOpHasNanOrInf(*this, exec_scope, place);
C
chengduoZH 已提交
1193
  }
1194 1195 1196 1197 1198 1199 1200

  // To solve issue #15032, have a discussion with @Luotao for cpu inference,
  // do not cache transfer scope, hence in this case delete transfer scope
  // after run to avoid memory leak
  if (transfer_scope && !run_by_executor_ && !enable_cache_transfer_scope_) {
    scope.DeleteScope(transfer_scope);
  }
Q
Qiao Longfei 已提交
1201
}
X
Xin Pan 已提交
1202

L
Liu Yiqun 已提交
1203 1204 1205 1206 1207 1208 1209 1210 1211
void OperatorWithKernel::ChooseKernel(const RuntimeContext& ctx,
                                      const Scope& scope,
                                      const platform::Place& place) const {
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
  auto* dev_ctx = pool.Get(place);

  // check if op[type] has kernel registered.
  auto& all_op_kernels = AllOpKernels();
  auto kernels_iter = all_op_kernels.find(type_);
1212 1213 1214 1215 1216
  PADDLE_ENFORCE_NE(
      kernels_iter, all_op_kernels.end(),
      platform::errors::Unavailable(
          "There are no kernels which are registered in the %s operator.",
          type_));
L
Liu Yiqun 已提交
1217 1218 1219 1220

  OpKernelMap& kernels = kernels_iter->second;

  auto expected_kernel_key = this->GetExpectedKernelType(
1221
      ExecutionContext(*this, scope, *dev_ctx, ctx));
1222 1223 1224
  if (HasAttr("op_device")) {
    if (Attr<std::string>("op_device") == "cpu") {
      expected_kernel_key.place_ = platform::CPUPlace();
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
    } else if (Attr<std::string>("op_device").find("gpu") !=
               std::string::npos) {
      auto device = Attr<std::string>("op_device");
      size_t pos = device.find(':');
      if (pos != std::string::npos) {
        device = device.substr(0, pos);
        LOG_FIRST_N(WARNING, 1)
            << "Device index is only supported under pipeline parallelism, "
            << "so it will be ignored.";
      }
1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
      // when the Op that only has CPUKernel is assigned to GPU, the CPUKernel
      // will be executed and a warning will be given at the same time.
      if (SupportGPU()) {
        expected_kernel_key.place_ = dev_ctx->GetPlace();
      } else {
        expected_kernel_key.place_ = platform::CPUPlace();
        LOG_FIRST_N(WARNING, 1)
            << "Op(" << type_
            << ") has no CUDA implementation. It will be assigned to CPUPlace.";
      }
    }
  }
L
Liu Yiqun 已提交
1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
  VLOG(3) << "expected_kernel_key:" << expected_kernel_key;

  auto kernel_iter = kernels.find(expected_kernel_key);
#ifdef PADDLE_WITH_MKLDNN
  // workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
  if (kernel_iter == kernels.end() &&
      expected_kernel_key.library_type_ == LibraryType::kMKLDNN) {
    VLOG(3) << "missing MKLDNN kernel: fallbacking to PLAIN one";
    expected_kernel_key.library_type_ = LibraryType::kPlain;
    expected_kernel_key.data_layout_ = DataLayout::kAnyLayout;
    kernel_iter = kernels.find(expected_kernel_key);
  }
1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
#endif
#ifdef PADDLE_WITH_XPU
  if (kernel_iter == kernels.end() &&
      is_xpu_place(expected_kernel_key.place_)) {
    VLOG(3) << "missing XPU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
L
Liu Yiqun 已提交
1269
#endif
1270 1271 1272 1273
  PADDLE_ENFORCE_NE(kernel_iter, kernels.end(),
                    platform::errors::NotFound(
                        "Operator (%s) does not have kernel for %s.", type_,
                        KernelTypeToString(expected_kernel_key)));
L
Liu Yiqun 已提交
1274

1275 1276 1277 1278 1279
  std::lock_guard<std::mutex> lock(cache_update_mutex_);
  if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
    kernel_type_.reset(new OpKernelType(expected_kernel_key));
    kernel_func_.reset(new OpKernelFunc(kernel_iter->second));
  }
L
Liu Yiqun 已提交
1280 1281
}

Y
yuyang18 已提交
1282 1283 1284 1285
void OperatorWithKernel::TransferInplaceVarsBack(
    const Scope& scope, const std::vector<std::string>& inplace_vars,
    const Scope& transfer_scope) const {
  for (auto& var_name : inplace_vars) {
M
minqiyang 已提交
1286
    VLOG(3) << "share inplace var " + var_name + " back to it's original scope";
C
chengduo 已提交
1287
    auto* origin_var = scope.FindVar(var_name);
1288 1289 1290
    PADDLE_ENFORCE_NOT_NULL(origin_var,
                            platform::errors::InvalidArgument(
                                "The variable[%s] is nullptr.", var_name));
C
chengduo 已提交
1291
    auto* original_tensor =
C
chengduo 已提交
1292
        GetMutableLoDTensorOrSelectedRowsValueFromVar(origin_var);
C
chengduo 已提交
1293
    auto* var = transfer_scope.FindVar(var_name);
1294 1295
    PADDLE_ENFORCE_NOT_NULL(var, platform::errors::InvalidArgument(
                                     "The variable[%s] is nullptr.", var_name));
C
chengduo 已提交
1296
    auto* transformed_tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
1297
    auto original_dims = original_tensor->dims();
Y
yuyang18 已提交
1298
    original_tensor->ShareDataWith(*transformed_tensor);
1299
    original_tensor->Resize(original_dims);
Y
yuyang18 已提交
1300 1301 1302
  }
}

1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
void OperatorWithKernel::HandleComplexGradToRealGrad(
    const Scope& scope, RuntimeContext* ctx) const {
  for (auto& var_name_item : Outputs()) {
    std::vector<Variable*>& output_vars = ctx->outputs[var_name_item.first];
    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      // 1. find grad_var & check whether is complex tensor
      auto var_name = var_name_item.second[i];
      auto orig_var_name = GradOriginalVarName(var_name);
      // only focus on gradient var
      if (var_name == orig_var_name) {
        continue;
      }
      auto* grad_var = output_vars[i];
      // skip nullptr var
      if (grad_var == nullptr) {
        continue;
      }
      // don't process LoDTensorArray temporarily,
      // add support if necessary for complex number calculations in the future
      if (!VarIsTensor(*grad_var)) {
        continue;
      }
      auto* grad_tensor =
          GetMutableLoDTensorOrSelectedRowsValueFromVar(grad_var);
      // skip nullptr tensor
      if (grad_tensor == nullptr || !grad_tensor->IsInitialized()) {
        continue;
      }
      // only focus on complex dtype now
      auto src_type = grad_tensor->type();
      if (!IsComplexType(src_type)) {
        continue;
      }

      // 2. find forward var & check whether need to cast
      auto* var = scope.FindVar(orig_var_name);
      // if forward var not exists, do nothing
      if (var == nullptr) {
        continue;
      }
      if (!VarIsTensor(*var)) {
        continue;
      }
      const auto* tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
      PADDLE_ENFORCE_NOT_NULL(
          tensor,
          platform::errors::Unavailable(
              "Forward tensor is nullptr when handle complex data to real."));
      // only need record type, the allocation may have been released
      auto dst_type = tensor->saved_type();
      // only focus on real dtype and need casting
      if (IsComplexType(dst_type)) {
        continue;
      }

      // 3. cast complex grad to real grad
      VLOG(6) << "Transform " << framework::DataTypeToString(src_type)
              << " var `" << var_name << "` to "
              << framework::DataTypeToString(dst_type)
              << " real var in static graph.";
      Tensor out;
      TransComplexToReal(dst_type, src_type, *grad_tensor, &out);
      SetTensorToVariable(*grad_var, out, grad_var);
    }
  }
}

X
Xin Pan 已提交
1370
Scope* OperatorWithKernel::PrepareData(
Y
yuyang18 已提交
1371
    const Scope& scope, const OpKernelType& expected_kernel_key,
X
Xin Pan 已提交
1372 1373
    std::vector<std::string>* transfered_inplace_vars,
    RuntimeContext* ctx) const {
Y
yuyang18 已提交
1374
  Scope* new_scope = nullptr;
S
sneaxiy 已提交
1375

1376
  const std::unordered_set<std::string>* no_buffer_ins = nullptr;
S
sneaxiy 已提交
1377 1378 1379 1380
  if (info_) {
    auto& no_buffer_inferer = info_->NoNeedBufferVarsInferer();
    // Some op may not register NoNeedBufferVarsInferer
    if (no_buffer_inferer) {
1381 1382
      no_buffer_ins = &(no_buffer_inferer(Inputs(), Outputs(), Attrs()));
      if (no_buffer_ins->empty()) no_buffer_ins = nullptr;
S
sneaxiy 已提交
1383 1384 1385
    }
  }

Y
yuyang18 已提交
1386
  for (auto& var_name_item : Inputs()) {
1387 1388
    bool should_skip_input =
        no_buffer_ins && no_buffer_ins->count(var_name_item.first) > 0;
S
sneaxiy 已提交
1389

X
Xin Pan 已提交
1390 1391 1392 1393
    std::vector<Variable*>& input_vars = ctx->inputs[var_name_item.first];

    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      auto& var_name = var_name_item.second[i];
X
Xin Pan 已提交
1394
      auto* var = input_vars[i];
X
Xin Pan 已提交
1395

Y
yuyang18 已提交
1396
      // Only tensor can be tranfer to another device.
C
chengduo 已提交
1397
      if (var == nullptr || !VarIsTensor(*var)) {
Y
yuyang18 已提交
1398 1399 1400
        continue;
      }

C
chengduo 已提交
1401
      auto* tensor_in = GetLoDTensorOrSelectedRowsValueFromVar(*var);
1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416

      // When no_buffer_ins then checking of Tensor::holder_ is
      // not a thread safe. And for infershape scenario checks
      // to be omitted are not really needed
      if (should_skip_input == true) {
#ifdef PADDLE_WITH_MKLDNN
        // Var without buffer may be needed
        // for some situation like InferShape().
        // In this situation We cannot skip Var analysis, as
        // MKL-DNN shape of Var may differ from kNHWC Var
        // In such situation corressponding resized Var
        // has to be created and registered
        if ((tensor_in->layout() == DataLayout::kMKLDNN) &&
            (var->IsType<LoDTensor>() == true) &&
            (expected_kernel_key.data_layout_ != DataLayout::kMKLDNN) &&
1417 1418
            (paddle::platform::MKLDNNDeviceContext::tls()
                 .get_cur_paddle_data_layout() == DataLayout::kNHWC)) {
1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
          // Mixed execution : MKL-DNN and GPU is not supported!
          if (!new_scope) {
            new_scope = &scope.NewScope();
          }
          auto* trans_var = new_scope->Var(var_name);
          input_vars[i] = trans_var;
          auto out = trans_var->GetMutable<LoDTensor>();
          out->Resize(tensor_in->dims());
          platform::MatchShapeToLayout(out, tensor_in->layout(),
                                       DataLayout::kNHWC);
          VLOG(7) << "Created reshaped dummy input based on MKL-DNN Tensor , "
                     "but kNHWC layout"
                  << var_name_item.first << " in Operator " << type_;
        } else {
          VLOG(7) << "Skip scanning input " << var_name_item.first
                  << " in Operator " << type_;
        }
#endif
        continue;
      }

Y
yuyang18 已提交
1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
      if (!tensor_in->IsInitialized()) {
        continue;
      }

      auto kernel_type_for_var = GetKernelTypeForVar(
          var_name_item.first, *tensor_in, expected_kernel_key);

      if (!NeedTransform(kernel_type_for_var, expected_kernel_key)) {
        continue;
      }

M
minqiyang 已提交
1451 1452
      VLOG(3) << "Transform Variable " << var_name << " from "
              << kernel_type_for_var << " to " << expected_kernel_key;
Y
yuyang18 已提交
1453

1454 1455 1456
      // In the inference scenerio, the scopes will be reused across the
      // batches, so the `new_scope` here will result in GPU memroy explosion
      // over the  running of operators.
1457
      // We use a thread_local cache to fix that issue, the key in the cache is
1458 1459 1460 1461 1462
      // the combination of the `scope` argument, from_kernel_type,
      // target_kernel_type.
      // Have a discussion with @Superjomn or the inference developers if some
      // changes on this logic for this macro might not tested on the other
      // scenerios.
1463 1464
      // If this op is not called by an Executor or ParallelExecutor, it should
      // called by a NaiveExecutor, the NaiveExecutor will cache the scopes and
1465
      // variables, that behavior a lot different.
1466 1467 1468 1469 1470 1471 1472 1473 1474
      //
      // To solve issue #15032, have a discussion with @Luotao for cpu
      // inference, for all cpu kernels cases without GPU participation, here
      // not do transfer scope caching, and cpu inference performance is not
      // impacted by test.
      enable_cache_transfer_scope_ = false;
      if (!run_by_executor_ &&
          (platform::is_gpu_place(kernel_type_for_var.place_) ||
           platform::is_gpu_place(expected_kernel_key.place_))) {
1475 1476
        new_scope = TryCreateTransferScope(kernel_type_for_var,
                                           expected_kernel_key, &scope);
1477
        enable_cache_transfer_scope_ = true;
1478
      }
1479
      if (!new_scope) {
Y
yuyang18 已提交
1480 1481
        new_scope = &scope.NewScope();
      }
1482 1483 1484 1485
      // For inference, if a gpu model has an op which could only run on CPU,
      // each result of different input will be the same with the first one.
      // The reason is that if a gpu tensor is the input of a cpu kernel,
      // we will create a new cpu tensor in new scope.
1486
      // However, if enable_cache_runtime_context_, we get the cpu tensor each
1487 1488
      // time, not the gpu tensor. Thus, we set pre_scope_ = nullptr
      // to trigger `new RuntimeContext()` in RunImpl().
1489
      if (enable_cache_runtime_context_) {
1490 1491
        pre_scope_ = nullptr;
      }
L
Leo Chen 已提交
1492 1493

      // Create new var with the same name in transfer scopes
Y
yuyang18 已提交
1494
      auto* trans_var = new_scope->Var(var_name);
X
fix  
Xin Pan 已提交
1495
      input_vars[i] = trans_var;
L
Leo Chen 已提交
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512

      // Find if inplace exists between input and output
      // If inplace exists, set the new created var to inplaced output, and
      // record its name in transfered_inplace_vars.
      for (auto& pair : Outputs()) {
        for (size_t j = 0; j < pair.second.size(); ++j) {
          if (pair.second[j] == var_name) {
            VLOG(4) << "Found inplace between input(" << var_name_item.first
                    << ") and output(" << pair.first
                    << "), the variable name is " << var_name;
            ctx->outputs[pair.first][j] = trans_var;
            transfered_inplace_vars->emplace_back(var_name);
          }
        }
      }

      // Do transfer
Y
yuyang18 已提交
1513
      Tensor out;
Y
yuyang18 已提交
1514
      TransformData(expected_kernel_key, kernel_type_for_var, *tensor_in, &out);
Y
yuyang18 已提交
1515 1516 1517
      SetTensorToVariable(*var, out, trans_var);
    }
  }
L
Leo Chen 已提交
1518

1519 1520 1521 1522 1523 1524 1525 1526 1527
  // If pre_scope = &scope, it means that scope is cached and the op is not in
  // while block. If new_scope = nullptr, it means that for each input of this
  // Op, there is no need to do PrepareData. So PrepareData could be skipped at
  // the rest iterations to save the elapsed time.
  // We do not support skipping PrepareData in while block, because the Op's
  // input may be changed by subsequent Ops, which may cause an error.
  if (pre_scope_ == &scope && new_scope == nullptr) {
    need_prepare_data_ = false;
  }
Y
yuyang18 已提交
1528 1529 1530

  return new_scope;
}
Q
Qiao Longfei 已提交
1531

1532 1533 1534
void OperatorWithKernel::ParseInputDataType(
    const ExecutionContext& ctx, const std::string& name,
    proto::VarType::Type* data_type) const {
1535
  proto::VarType::Type default_data_type =
1536
      static_cast<proto::VarType::Type>(-1);
H
hong 已提交
1537
  const std::vector<Variable*> vars = ctx.MultiInputVar(name);
1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
  for (size_t i = 0; i < vars.size(); ++i) {
    const Variable* var = vars[i];
    if (var != nullptr) {
      const Tensor* t = nullptr;
      if (var->IsType<Tensor>()) {
        t = &var->Get<Tensor>();
      } else if (var->IsType<LoDTensor>()) {
        t = &var->Get<LoDTensor>();
      } else if (var->IsType<SelectedRows>()) {
        t = &(var->Get<SelectedRows>().value());
1548 1549 1550 1551 1552 1553 1554
      } else if (var->IsType<LoDTensorArray>()) {
        auto t_arr = var->Get<LoDTensorArray>();
        for (size_t j = 0; j < t_arr.size(); j++) {
          if (t_arr[j].IsInitialized()) {
            t = &(t_arr[j]);
          }
        }
1555 1556
      }
      if (t != nullptr) {
1557 1558 1559 1560 1561
        PADDLE_ENFORCE_EQ(
            t->IsInitialized(), true,
            platform::errors::InvalidArgument(
                "The Tensor in the %s Op's Input Variable %s(%s) is "
                "not initialized.",
H
hong 已提交
1562
                Type(), name, ctx.InputNames(name).at(i)));
1563
        proto::VarType::Type tmp = t->type();
1564
        PADDLE_ENFORCE(
1565
            tmp == *data_type || *data_type == default_data_type,
1566 1567 1568 1569 1570 1571
            platform::errors::InvalidArgument(
                "The DataType of %s Op's duplicable Variable %s must be "
                "consistent. The current variable type is (%s), but the "
                "previous variable type is (%s).",
                Type(), name, DataTypeToString(tmp),
                DataTypeToString(*data_type)));
1572 1573 1574 1575 1576 1577
        *data_type = tmp;
      }
    }
  }
}

1578
proto::VarType::Type OperatorWithKernel::IndicateDataType(
Y
Yu Yang 已提交
1579
    const ExecutionContext& ctx) const {
1580 1581 1582
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
H
hong 已提交
1583 1584
  for (auto& input : ctx.InNameList()) {
    ParseInputDataType(ctx, input, &data_type);
Y
Yu Yang 已提交
1585
  }
1586 1587 1588 1589
  PADDLE_ENFORCE_NE(
      data_type, dafault_data_type,
      platform::errors::NotFound(
          "DataType should be indicated by input Variable at %s.", Type()));
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
  return data_type;
}

proto::VarType::Type OperatorWithKernel::IndicateVarDataType(
    const ExecutionContext& ctx, const std::string& name) const {
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
  ParseInputDataType(ctx, name, &data_type);
  PADDLE_ENFORCE_NE(
      data_type, dafault_data_type,
1601 1602 1603 1604 1605
      platform::errors::InvalidArgument(
          "The Input Variable(%s) of (%s) Operator used to determine kernel "
          "data type is empty or not LoDTensor or SelectedRows or "
          "LoDTensorArray.",
          name, Type()));
1606
  return data_type;
Y
Yu Yang 已提交
1607
}
1608

1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
Tensor* OperatorWithKernel::GetTensorFormInputSafely(
    const ExecutionContext& ctx, const std::string& name) const {
  // 1. get variable and check
  // NOTE: only supports signal input var now
  // NOTE: using const_cast is because we don't have method
  // can get single mutable var, and here will not change
  // the var's data, only use some attribute
  Variable* var = const_cast<Variable*>(ctx.InputVar(name));
  PADDLE_ENFORCE_NOT_NULL(
      var,
      platform::errors::NotFound(
          "The variable %s is not found when promote complex types.", name));
  // 2. get tensor and check
  Tensor* t = nullptr;
  if (var->IsType<Tensor>()) {
    t = var->GetMutable<Tensor>();
  } else if (var->IsType<LoDTensor>()) {
    t = var->GetMutable<LoDTensor>();
  } else if (var->IsType<SelectedRows>()) {
    t = var->GetMutable<SelectedRows>()->mutable_value();
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Unsupported input variable type in complex type promotion."));
  }
  PADDLE_ENFORCE_NOT_NULL(
      t,
      platform::errors::InvalidArgument(
          "The Tensor of variable %s is nullptr when promote complex types."));
  PADDLE_ENFORCE_EQ(t->IsInitialized(), true,
                    platform::errors::InvalidArgument(
                        "The Tensor in the %s Op's Input Variable %s(%s) is "
                        "not initialized.",
                        Type(), name, ctx.InputName(name)));
  return t;
}

/** NOTE(chenweihang): For safety reasons, we now only
 * perform type promotes for binary operations with
 * complex type inputs, which is used to support the
 * paddle quantum function.
 * In other cases, the first input data type is used as
 * the kernel data type.
 */
proto::VarType::Type OperatorWithKernel::IndicateOrPromoteVarDataTypes(
    const ExecutionContext& ctx, const std::string& name1,
    const std::string& name2) const {
  // 1. Get tensor
  auto* tensor_a = GetTensorFormInputSafely(ctx, name1);
  auto* tensor_b = GetTensorFormInputSafely(ctx, name2);

  // 2. Get two input types
  auto type_a = tensor_a->type();
  auto type_b = tensor_b->type();

  // 3. Get first input type or promote complex types
  auto target_type = PromoteTypesIfComplexExists(type_a, type_b);

  return target_type;
}

1669 1670 1671 1672 1673 1674 1675 1676
OpKernelType OperatorWithKernel::GetExpectedKernelType(
    const ExecutionContext& ctx) const {
  return OpKernelType(IndicateDataType(ctx), ctx.GetPlace());
}

OpKernelType OperatorWithKernel::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const OpKernelType& expected_kernel_type) const {
M
mozga-intel 已提交
1677 1678
  return OpKernelType(expected_kernel_type.data_type_, tensor.place(),
                      tensor.layout());
1679 1680
}

Q
Qiao Longfei 已提交
1681
}  // namespace framework
L
liaogang 已提交
1682
}  // namespace paddle