dist_word2vec.py 4.8 KB
Newer Older
T
typhoonzero 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
import paddle.fluid as fluid
import os
from test_dist_base import TestDistRunnerBase, runtime_main

IS_SPARSE = True
EMBED_SIZE = 32
HIDDEN_SIZE = 256
N = 5

# Fix seed for test
fluid.default_startup_program().random_seed = 1
fluid.default_main_program().random_seed = 1


class TestDistWord2vec2x2(TestDistRunnerBase):
    def get_model(self, batch_size=2):
        BATCH_SIZE = batch_size

        def __network__(words):
            embed_first = fluid.layers.embedding(
                input=words[0],
                size=[dict_size, EMBED_SIZE],
                dtype='float32',
                is_sparse=IS_SPARSE,
                param_attr=fluid.ParamAttr(
W
Wu Yi 已提交
41
                    name='shared_w',
42 43 44
                    initializer=fluid.initializer.Constant(value=0.1),
                ),
            )
T
typhoonzero 已提交
45 46 47 48 49 50
            embed_second = fluid.layers.embedding(
                input=words[1],
                size=[dict_size, EMBED_SIZE],
                dtype='float32',
                is_sparse=IS_SPARSE,
                param_attr=fluid.ParamAttr(
W
Wu Yi 已提交
51
                    name='shared_w',
52 53 54
                    initializer=fluid.initializer.Constant(value=0.1),
                ),
            )
T
typhoonzero 已提交
55 56 57 58 59 60
            embed_third = fluid.layers.embedding(
                input=words[2],
                size=[dict_size, EMBED_SIZE],
                dtype='float32',
                is_sparse=IS_SPARSE,
                param_attr=fluid.ParamAttr(
W
Wu Yi 已提交
61
                    name='shared_w',
62 63 64
                    initializer=fluid.initializer.Constant(value=0.1),
                ),
            )
T
typhoonzero 已提交
65 66 67 68 69 70
            embed_forth = fluid.layers.embedding(
                input=words[3],
                size=[dict_size, EMBED_SIZE],
                dtype='float32',
                is_sparse=IS_SPARSE,
                param_attr=fluid.ParamAttr(
W
Wu Yi 已提交
71
                    name='shared_w',
72 73 74
                    initializer=fluid.initializer.Constant(value=0.1),
                ),
            )
T
typhoonzero 已提交
75 76 77

            concat_embed = fluid.layers.concat(
                input=[embed_first, embed_second, embed_third, embed_forth],
78 79
                axis=1,
            )
T
typhoonzero 已提交
80 81 82 83 84
            hidden1 = fluid.layers.fc(
                input=concat_embed,
                size=HIDDEN_SIZE,
                act='sigmoid',
                param_attr=fluid.ParamAttr(
85 86 87
                    initializer=fluid.initializer.Constant(value=0.1)
                ),
            )
T
typhoonzero 已提交
88 89 90 91 92
            predict_word = fluid.layers.fc(
                input=hidden1,
                size=dict_size,
                act='softmax',
                param_attr=fluid.ParamAttr(
93 94 95 96 97 98
                    initializer=fluid.initializer.Constant(value=0.1)
                ),
            )
            cost = fluid.layers.cross_entropy(
                input=predict_word, label=words[4]
            )
99
            avg_cost = paddle.mean(cost)
T
typhoonzero 已提交
100 101 102 103 104 105
            return avg_cost, predict_word

        word_dict = paddle.dataset.imikolov.build_dict()
        dict_size = len(word_dict)

        first_word = fluid.layers.data(name='firstw', shape=[1], dtype='int64')
106 107 108
        second_word = fluid.layers.data(
            name='secondw', shape=[1], dtype='int64'
        )
T
typhoonzero 已提交
109 110 111 112
        third_word = fluid.layers.data(name='thirdw', shape=[1], dtype='int64')
        forth_word = fluid.layers.data(name='forthw', shape=[1], dtype='int64')
        next_word = fluid.layers.data(name='nextw', shape=[1], dtype='int64')
        avg_cost, predict_word = __network__(
113 114
            [first_word, second_word, third_word, forth_word, next_word]
        )
T
typhoonzero 已提交
115 116 117 118 119 120

        inference_program = paddle.fluid.default_main_program().clone()

        sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
        sgd_optimizer.minimize(avg_cost)

121 122 123 124 125 126
        train_reader = paddle.batch(
            paddle.dataset.imikolov.train(word_dict, N), BATCH_SIZE
        )
        test_reader = paddle.batch(
            paddle.dataset.imikolov.test(word_dict, N), BATCH_SIZE
        )
T
typhoonzero 已提交
127

128 129 130 131 132 133 134 135
        return (
            inference_program,
            avg_cost,
            train_reader,
            test_reader,
            None,
            predict_word,
        )
T
typhoonzero 已提交
136 137 138


if __name__ == "__main__":
139
    import os
140

141 142
    os.environ['CPU_NUM'] = '1'
    os.environ['USE_CUDA'] = "FALSE"
T
typhoonzero 已提交
143
    runtime_main(TestDistWord2vec2x2)