dist_word2vec.py 4.6 KB
Newer Older
T
typhoonzero 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
import paddle.fluid as fluid
import os
from test_dist_base import TestDistRunnerBase, runtime_main

IS_SPARSE = True
EMBED_SIZE = 32
HIDDEN_SIZE = 256
N = 5

# Fix seed for test
fluid.default_startup_program().random_seed = 1
fluid.default_main_program().random_seed = 1


class TestDistWord2vec2x2(TestDistRunnerBase):
31

T
typhoonzero 已提交
32 33 34 35 36 37 38 39 40 41
    def get_model(self, batch_size=2):
        BATCH_SIZE = batch_size

        def __network__(words):
            embed_first = fluid.layers.embedding(
                input=words[0],
                size=[dict_size, EMBED_SIZE],
                dtype='float32',
                is_sparse=IS_SPARSE,
                param_attr=fluid.ParamAttr(
W
Wu Yi 已提交
42 43
                    name='shared_w',
                    initializer=fluid.initializer.Constant(value=0.1)))
T
typhoonzero 已提交
44 45 46 47 48 49
            embed_second = fluid.layers.embedding(
                input=words[1],
                size=[dict_size, EMBED_SIZE],
                dtype='float32',
                is_sparse=IS_SPARSE,
                param_attr=fluid.ParamAttr(
W
Wu Yi 已提交
50 51
                    name='shared_w',
                    initializer=fluid.initializer.Constant(value=0.1)))
T
typhoonzero 已提交
52 53 54 55 56 57
            embed_third = fluid.layers.embedding(
                input=words[2],
                size=[dict_size, EMBED_SIZE],
                dtype='float32',
                is_sparse=IS_SPARSE,
                param_attr=fluid.ParamAttr(
W
Wu Yi 已提交
58 59
                    name='shared_w',
                    initializer=fluid.initializer.Constant(value=0.1)))
T
typhoonzero 已提交
60 61 62 63 64 65
            embed_forth = fluid.layers.embedding(
                input=words[3],
                size=[dict_size, EMBED_SIZE],
                dtype='float32',
                is_sparse=IS_SPARSE,
                param_attr=fluid.ParamAttr(
W
Wu Yi 已提交
66 67
                    name='shared_w',
                    initializer=fluid.initializer.Constant(value=0.1)))
T
typhoonzero 已提交
68 69 70 71 72 73 74 75 76

            concat_embed = fluid.layers.concat(
                input=[embed_first, embed_second, embed_third, embed_forth],
                axis=1)
            hidden1 = fluid.layers.fc(
                input=concat_embed,
                size=HIDDEN_SIZE,
                act='sigmoid',
                param_attr=fluid.ParamAttr(
W
Wu Yi 已提交
77
                    initializer=fluid.initializer.Constant(value=0.1)))
T
typhoonzero 已提交
78 79 80 81 82
            predict_word = fluid.layers.fc(
                input=hidden1,
                size=dict_size,
                act='softmax',
                param_attr=fluid.ParamAttr(
W
Wu Yi 已提交
83
                    initializer=fluid.initializer.Constant(value=0.1)))
84 85
            cost = fluid.layers.cross_entropy(input=predict_word,
                                              label=words[4])
86
            avg_cost = paddle.mean(cost)
T
typhoonzero 已提交
87 88 89 90 91 92
            return avg_cost, predict_word

        word_dict = paddle.dataset.imikolov.build_dict()
        dict_size = len(word_dict)

        first_word = fluid.layers.data(name='firstw', shape=[1], dtype='int64')
93 94 95
        second_word = fluid.layers.data(name='secondw',
                                        shape=[1],
                                        dtype='int64')
T
typhoonzero 已提交
96 97 98 99 100 101 102 103 104 105 106
        third_word = fluid.layers.data(name='thirdw', shape=[1], dtype='int64')
        forth_word = fluid.layers.data(name='forthw', shape=[1], dtype='int64')
        next_word = fluid.layers.data(name='nextw', shape=[1], dtype='int64')
        avg_cost, predict_word = __network__(
            [first_word, second_word, third_word, forth_word, next_word])

        inference_program = paddle.fluid.default_main_program().clone()

        sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
        sgd_optimizer.minimize(avg_cost)

107 108 109 110
        train_reader = paddle.batch(paddle.dataset.imikolov.train(word_dict, N),
                                    BATCH_SIZE)
        test_reader = paddle.batch(paddle.dataset.imikolov.test(word_dict, N),
                                   BATCH_SIZE)
T
typhoonzero 已提交
111 112 113 114 115

        return inference_program, avg_cost, train_reader, test_reader, None, predict_word


if __name__ == "__main__":
116 117 118
    import os
    os.environ['CPU_NUM'] = '1'
    os.environ['USE_CUDA'] = "FALSE"
T
typhoonzero 已提交
119
    runtime_main(TestDistWord2vec2x2)