dist_word2vec.py 4.8 KB
Newer Older
T
typhoonzero 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

T
typhoonzero 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
import numpy as np
import argparse
import time
import math
import paddle
import paddle.fluid as fluid
import paddle.fluid.profiler as profiler
from paddle.fluid import core
import unittest
from multiprocessing import Process
import os
import signal
from test_dist_base import TestDistRunnerBase, runtime_main

IS_SPARSE = True
EMBED_SIZE = 32
HIDDEN_SIZE = 256
N = 5

# Fix seed for test
fluid.default_startup_program().random_seed = 1
fluid.default_main_program().random_seed = 1


class TestDistWord2vec2x2(TestDistRunnerBase):
42

T
typhoonzero 已提交
43 44 45 46 47 48 49 50 51 52
    def get_model(self, batch_size=2):
        BATCH_SIZE = batch_size

        def __network__(words):
            embed_first = fluid.layers.embedding(
                input=words[0],
                size=[dict_size, EMBED_SIZE],
                dtype='float32',
                is_sparse=IS_SPARSE,
                param_attr=fluid.ParamAttr(
W
Wu Yi 已提交
53 54
                    name='shared_w',
                    initializer=fluid.initializer.Constant(value=0.1)))
T
typhoonzero 已提交
55 56 57 58 59 60
            embed_second = fluid.layers.embedding(
                input=words[1],
                size=[dict_size, EMBED_SIZE],
                dtype='float32',
                is_sparse=IS_SPARSE,
                param_attr=fluid.ParamAttr(
W
Wu Yi 已提交
61 62
                    name='shared_w',
                    initializer=fluid.initializer.Constant(value=0.1)))
T
typhoonzero 已提交
63 64 65 66 67 68
            embed_third = fluid.layers.embedding(
                input=words[2],
                size=[dict_size, EMBED_SIZE],
                dtype='float32',
                is_sparse=IS_SPARSE,
                param_attr=fluid.ParamAttr(
W
Wu Yi 已提交
69 70
                    name='shared_w',
                    initializer=fluid.initializer.Constant(value=0.1)))
T
typhoonzero 已提交
71 72 73 74 75 76
            embed_forth = fluid.layers.embedding(
                input=words[3],
                size=[dict_size, EMBED_SIZE],
                dtype='float32',
                is_sparse=IS_SPARSE,
                param_attr=fluid.ParamAttr(
W
Wu Yi 已提交
77 78
                    name='shared_w',
                    initializer=fluid.initializer.Constant(value=0.1)))
T
typhoonzero 已提交
79 80 81 82 83 84 85 86 87

            concat_embed = fluid.layers.concat(
                input=[embed_first, embed_second, embed_third, embed_forth],
                axis=1)
            hidden1 = fluid.layers.fc(
                input=concat_embed,
                size=HIDDEN_SIZE,
                act='sigmoid',
                param_attr=fluid.ParamAttr(
W
Wu Yi 已提交
88
                    initializer=fluid.initializer.Constant(value=0.1)))
T
typhoonzero 已提交
89 90 91 92 93
            predict_word = fluid.layers.fc(
                input=hidden1,
                size=dict_size,
                act='softmax',
                param_attr=fluid.ParamAttr(
W
Wu Yi 已提交
94
                    initializer=fluid.initializer.Constant(value=0.1)))
95 96
            cost = fluid.layers.cross_entropy(input=predict_word,
                                              label=words[4])
T
typhoonzero 已提交
97 98 99 100 101 102 103
            avg_cost = fluid.layers.mean(cost)
            return avg_cost, predict_word

        word_dict = paddle.dataset.imikolov.build_dict()
        dict_size = len(word_dict)

        first_word = fluid.layers.data(name='firstw', shape=[1], dtype='int64')
104 105 106
        second_word = fluid.layers.data(name='secondw',
                                        shape=[1],
                                        dtype='int64')
T
typhoonzero 已提交
107 108 109 110 111 112 113 114 115 116 117
        third_word = fluid.layers.data(name='thirdw', shape=[1], dtype='int64')
        forth_word = fluid.layers.data(name='forthw', shape=[1], dtype='int64')
        next_word = fluid.layers.data(name='nextw', shape=[1], dtype='int64')
        avg_cost, predict_word = __network__(
            [first_word, second_word, third_word, forth_word, next_word])

        inference_program = paddle.fluid.default_main_program().clone()

        sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
        sgd_optimizer.minimize(avg_cost)

118 119 120 121
        train_reader = paddle.batch(paddle.dataset.imikolov.train(word_dict, N),
                                    BATCH_SIZE)
        test_reader = paddle.batch(paddle.dataset.imikolov.test(word_dict, N),
                                   BATCH_SIZE)
T
typhoonzero 已提交
122 123 124 125 126

        return inference_program, avg_cost, train_reader, test_reader, None, predict_word


if __name__ == "__main__":
127 128 129
    import os
    os.environ['CPU_NUM'] = '1'
    os.environ['USE_CUDA'] = "FALSE"
T
typhoonzero 已提交
130
    runtime_main(TestDistWord2vec2x2)