dist_transformer.py 61.9 KB
Newer Older
X
Xin Pan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import time
G
gongweibao 已提交
17
import os
18
import functools
G
gongweibao 已提交
19 20 21 22 23 24
import time
from functools import partial
from os.path import expanduser
import glob
import random
import tarfile
X
Xin Pan 已提交
25

26
import paddle
X
Xin Pan 已提交
27
import paddle.fluid as fluid
G
gongweibao 已提交
28
import paddle.fluid.layers as layers
G
gongweibao 已提交
29
from test_dist_base import TestDistRunnerBase, runtime_main, RUN_STEP
30
import paddle.nn.functional as F
2
201716010711 已提交
31
import paddle
G
gongweibao 已提交
32 33 34

const_para_attr = fluid.ParamAttr(initializer=fluid.initializer.Constant(0.001))
const_bias_attr = const_para_attr
X
Xin Pan 已提交
35 36 37 38 39 40

# Fix seed for test
fluid.default_startup_program().random_seed = 1
fluid.default_main_program().random_seed = 1


41
# from transformer_config import ModelHyperParams, TrainTaskConfig, merge_cfg_from_list
42
class TrainTaskConfig:
G
gongweibao 已提交
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
    # only support GPU currently
    use_gpu = True
    # the epoch number to train.
    pass_num = 1
    # the number of sequences contained in a mini-batch.
    # deprecated, set batch_size in args.
    batch_size = 20
    # the hyper parameters for Adam optimizer.
    # This static learning_rate will be multiplied to the LearningRateScheduler
    # derived learning rate the to get the final learning rate.
    learning_rate = 1
    beta1 = 0.9
    beta2 = 0.98
    eps = 1e-9
    # the parameters for learning rate scheduling.
    warmup_steps = 4000
    # the weight used to mix up the ground-truth distribution and the fixed
    # uniform distribution in label smoothing when training.
    # Set this as zero if label smoothing is not wanted.
    label_smooth_eps = 0.1
    # the directory for saving trained models.
    model_dir = "trained_models"
    # the directory for saving checkpoints.
    ckpt_dir = "trained_ckpts"
    # the directory for loading checkpoint.
    # If provided, continue training from the checkpoint.
    ckpt_path = None
    # the parameter to initialize the learning rate scheduler.
    # It should be provided if use checkpoints, since the checkpoint doesn't
    # include the training step counter currently.
    start_step = 0
X
Xin Pan 已提交
74

G
gongweibao 已提交
75
    check_acc = True
X
Xin Pan 已提交
76

G
gongweibao 已提交
77
    data_path = expanduser("~") + (
78 79
        "/.cache/paddle/dataset/test_dist_transformer/"
    )
G
gongweibao 已提交
80 81 82
    src_vocab_fpath = data_path + "vocab.bpe.32000"
    trg_vocab_fpath = data_path + "vocab.bpe.32000"
    train_file_pattern = data_path + "train.tok.clean.bpe.32000.en-de"
W
Wu Yi 已提交
83
    val_file_pattern = data_path + "newstest2013.tok.bpe.32000.en-de.cut"
G
gongweibao 已提交
84 85 86 87 88 89 90 91
    pool_size = 2000
    sort_type = None
    local = True
    shuffle = False
    shuffle_batch = False
    special_token = ['<s>', '<e>', '<unk>']
    token_delimiter = ' '
    use_token_batch = False
X
Xin Pan 已提交
92 93


94
class InferTaskConfig:
G
gongweibao 已提交
95 96 97 98 99 100 101 102 103 104 105 106 107 108
    use_gpu = True
    # the number of examples in one run for sequence generation.
    batch_size = 10
    # the parameters for beam search.
    beam_size = 5
    max_out_len = 256
    # the number of decoded sentences to output.
    n_best = 1
    # the flags indicating whether to output the special tokens.
    output_bos = False
    output_eos = False
    output_unk = True
    # the directory for loading the trained model.
    model_path = "trained_models/pass_1.infer.model"
X
Xin Pan 已提交
109 110


111
class ModelHyperParams:
G
gongweibao 已提交
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
    # These following five vocabularies related configurations will be set
    # automatically according to the passed vocabulary path and special tokens.
    # size of source word dictionary.
    src_vocab_size = 10000
    # size of target word dictionay
    trg_vocab_size = 10000
    # index for <bos> token
    bos_idx = 0
    # index for <eos> token
    eos_idx = 1
    # index for <unk> token
    unk_idx = 2
    # max length of sequences deciding the size of position encoding table.
    # Start from 1 and count start and end tokens in.
    max_length = 256
X
Xin Pan 已提交
127 128 129 130 131
    # the dimension for word embeddings, which is also the last dimension of
    # the input and output of multi-head attention, position-wise feed-forward
    # networks, encoder and decoder.
    d_model = 512
    # size of the hidden layer in position-wise feed-forward networks.
G
gongweibao 已提交
132
    d_inner_hid = 2048
X
Xin Pan 已提交
133 134 135 136 137 138 139 140 141
    # the dimension that keys are projected to for dot-product attention.
    d_key = 64
    # the dimension that values are projected to for dot-product attention.
    d_value = 64
    # number of head used in multi-head attention.
    n_head = 8
    # number of sub-layers to be stacked in the encoder and decoder.
    n_layer = 6
    # dropout rate used by all dropout layers.
G
gongweibao 已提交
142 143 144 145 146 147
    dropout = 0.0  # no random
    # random seed used in dropout for CE.
    dropout_seed = None
    # the flag indicating whether to share embedding and softmax weights.
    # vocabularies in source and target should be same for weight sharing.
    weight_sharing = True
X
Xin Pan 已提交
148 149


G
gongweibao 已提交
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
def merge_cfg_from_list(cfg_list, g_cfgs):
    """
    Set the above global configurations using the cfg_list.
    """
    assert len(cfg_list) % 2 == 0
    for key, value in zip(cfg_list[0::2], cfg_list[1::2]):
        for g_cfg in g_cfgs:
            if hasattr(g_cfg, key):
                try:
                    value = eval(value)
                except Exception:  # for file path
                    pass
                setattr(g_cfg, key, value)
                break


# The placeholder for batch_size in compile time. Must be -1 currently to be
# consistent with some ops' infer-shape output in compile time, such as the
# sequence_expand op used in beamsearch decoder.
batch_size = -1
# The placeholder for squence length in compile time.
seq_len = ModelHyperParams.max_length
# Here list the data shapes and data types of all inputs.
# The shapes here act as placeholder and are set to pass the infer-shape in
# compile time.
input_descs = {
    # The actual data shape of src_word is:
    # [batch_size * max_src_len_in_batch, 1]
178
    "src_word": [(batch_size, seq_len, 1), "int64", 2],
G
gongweibao 已提交
179 180
    # The actual data shape of src_pos is:
    # [batch_size * max_src_len_in_batch, 1]
181
    "src_pos": [(batch_size, seq_len, 1), "int64"],
G
gongweibao 已提交
182 183 184 185
    # This input is used to remove attention weights on paddings in the
    # encoder.
    # The actual data shape of src_slf_attn_bias is:
    # [batch_size, n_head, max_src_len_in_batch, max_src_len_in_batch]
186 187 188 189
    "src_slf_attn_bias": [
        (batch_size, ModelHyperParams.n_head, seq_len, seq_len),
        "float32",
    ],
G
gongweibao 已提交
190 191
    # The actual data shape of trg_word is:
    # [batch_size * max_trg_len_in_batch, 1]
192 193 194 195 196
    "trg_word": [
        (batch_size, seq_len, 1),
        "int64",
        2,
    ],  # lod_level is only used in fast decoder.
G
gongweibao 已提交
197 198
    # The actual data shape of trg_pos is:
    # [batch_size * max_trg_len_in_batch, 1]
199
    "trg_pos": [(batch_size, seq_len, 1), "int64"],
G
gongweibao 已提交
200 201 202 203
    # This input is used to remove attention weights on paddings and
    # subsequent words in the decoder.
    # The actual data shape of trg_slf_attn_bias is:
    # [batch_size, n_head, max_trg_len_in_batch, max_trg_len_in_batch]
204 205 206 207
    "trg_slf_attn_bias": [
        (batch_size, ModelHyperParams.n_head, seq_len, seq_len),
        "float32",
    ],
G
gongweibao 已提交
208 209 210 211
    # This input is used to remove attention weights on paddings of the source
    # input in the encoder-decoder attention.
    # The actual data shape of trg_src_attn_bias is:
    # [batch_size, n_head, max_trg_len_in_batch, max_src_len_in_batch]
212 213 214 215
    "trg_src_attn_bias": [
        (batch_size, ModelHyperParams.n_head, seq_len, seq_len),
        "float32",
    ],
G
gongweibao 已提交
216 217 218 219 220 221
    # This input is used in independent decoder program for inference.
    # The actual data shape of enc_output is:
    # [batch_size, max_src_len_in_batch, d_model]
    "enc_output": [(batch_size, seq_len, ModelHyperParams.d_model), "float32"],
    # The actual data shape of label_word is:
    # [batch_size * max_trg_len_in_batch, 1]
222
    "lbl_word": [(batch_size * seq_len, 1), "int64"],
T
tianshuo78520a 已提交
223
    # This input is used to mask out the loss of padding tokens.
G
gongweibao 已提交
224 225
    # The actual data shape of label_weight is:
    # [batch_size * max_trg_len_in_batch, 1]
226
    "lbl_weight": [(batch_size * seq_len, 1), "float32"],
G
gongweibao 已提交
227
    # These inputs are used to change the shape tensor in beam-search decoder.
228 229
    "trg_slf_attn_pre_softmax_shape_delta": [(2,), "int32"],
    "trg_slf_attn_post_softmax_shape_delta": [(4,), "int32"],
230
    "init_score": [(batch_size, 1), "float32"],
G
gongweibao 已提交
231 232 233 234 235
}

# Names of word embedding table which might be reused for weight sharing.
word_emb_param_names = (
    "src_word_emb_table",
236 237
    "trg_word_emb_table",
)
G
gongweibao 已提交
238 239 240
# Names of position encoding table which will be initialized externally.
pos_enc_param_names = (
    "src_pos_enc_table",
241 242
    "trg_pos_enc_table",
)
G
gongweibao 已提交
243 244 245 246
# separated inputs for different usages.
encoder_data_input_fields = (
    "src_word",
    "src_pos",
247 248
    "src_slf_attn_bias",
)
G
gongweibao 已提交
249 250 251 252 253
decoder_data_input_fields = (
    "trg_word",
    "trg_pos",
    "trg_slf_attn_bias",
    "trg_src_attn_bias",
254 255
    "enc_output",
)
G
gongweibao 已提交
256 257
label_data_input_fields = (
    "lbl_word",
258 259
    "lbl_weight",
)
G
gongweibao 已提交
260 261 262 263 264
# In fast decoder, trg_pos (only containing the current time step) is generated
# by ops and trg_slf_attn_bias is not needed.
fast_decoder_data_input_fields = (
    "trg_word",
    "init_score",
265 266
    "trg_src_attn_bias",
)
G
gongweibao 已提交
267 268 269 270 271 272

# fast_decoder_util_input_fields = (
#     "trg_slf_attn_pre_softmax_shape_delta",
#     "trg_slf_attn_post_softmax_shape_delta", )


273
# from optim import LearningRateScheduler
274
class LearningRateScheduler:
G
gongweibao 已提交
275 276 277
    """
    Wrapper for learning rate scheduling as described in the Transformer paper.
    LearningRateScheduler adapts the learning rate externally and the adapted
T
tianshuo78520a 已提交
278
    learning rate will be fed into the main_program as input data.
G
gongweibao 已提交
279 280
    """

281 282 283 284 285 286 287 288
    def __init__(
        self,
        d_model,
        warmup_steps,
        learning_rate=0.001,
        current_steps=0,
        name="learning_rate",
    ):
G
gongweibao 已提交
289 290 291 292 293 294 295 296 297
        self.current_steps = current_steps
        self.warmup_steps = warmup_steps
        self.d_model = d_model
        self.static_lr = learning_rate
        self.learning_rate = layers.create_global_var(
            name=name,
            shape=[1],
            value=float(learning_rate),
            dtype="float32",
298 299
            persistable=True,
        )
G
gongweibao 已提交
300 301 302

    def update_learning_rate(self):
        self.current_steps += 1
303 304 305 306 307 308 309 310 311 312
        lr_value = (
            np.power(self.d_model, -0.5)
            * np.min(
                [
                    np.power(self.current_steps, -0.5),
                    np.power(self.warmup_steps, -1.5) * self.current_steps,
                ]
            )
            * self.static_lr
        )
G
gongweibao 已提交
313 314 315
        return np.array([lr_value], dtype="float32")


316 317 318 319 320 321 322 323 324 325 326
# from transformer_train import train_loop
def pad_batch_data(
    insts,
    pad_idx,
    n_head,
    is_target=False,
    is_label=False,
    return_attn_bias=True,
    return_max_len=True,
    return_num_token=False,
):
X
Xin Pan 已提交
327 328
    """
    Pad the instances to the max sequence length in batch, and generate the
G
gongweibao 已提交
329
    corresponding position data and attention bias.
X
Xin Pan 已提交
330
    """
G
gongweibao 已提交
331 332
    return_list = []
    max_len = max(len(inst) for inst in insts)
333 334 335 336 337
    num_token = (
        functools.reduce(lambda x, y: x + y, [len(inst) for inst in insts])
        if return_num_token
        else 0
    )
G
gongweibao 已提交
338 339 340
    # Any token included in dict can be used to pad, since the paddings' loss
    # will be masked out by weights and make no effect on parameter gradients.
    inst_data = np.array(
341 342
        [inst + [pad_idx] * (max_len - len(inst)) for inst in insts]
    )
G
gongweibao 已提交
343 344
    return_list += [inst_data.astype("int64").reshape([-1, 1])]
    if is_label:  # label weight
345 346 347 348 349 350
        inst_weight = np.array(
            [
                [1.0] * len(inst) + [0.0] * (max_len - len(inst))
                for inst in insts
            ]
        )
G
gongweibao 已提交
351 352
        return_list += [inst_weight.astype("float32").reshape([-1, 1])]
    else:  # position data
353 354 355 356 357 358
        inst_pos = np.array(
            [
                list(range(1, len(inst) + 1)) + [0] * (max_len - len(inst))
                for inst in insts
            ]
        )
G
gongweibao 已提交
359 360 361 362 363 364
        return_list += [inst_pos.astype("int64").reshape([-1, 1])]
    if return_attn_bias:
        if is_target:
            # This is used to avoid attention on paddings and subsequent
            # words.
            slf_attn_bias_data = np.ones((inst_data.shape[0], max_len, max_len))
365 366 367 368 369 370
            slf_attn_bias_data = np.triu(slf_attn_bias_data, 1).reshape(
                [-1, 1, max_len, max_len]
            )
            slf_attn_bias_data = np.tile(
                slf_attn_bias_data, [1, n_head, 1, 1]
            ) * [-1e9]
G
gongweibao 已提交
371 372
        else:
            # This is used to avoid attention on paddings.
373 374 375 376 377 378
            slf_attn_bias_data = np.array(
                [
                    [0] * len(inst) + [-1e9] * (max_len - len(inst))
                    for inst in insts
                ]
            )
G
gongweibao 已提交
379 380
            slf_attn_bias_data = np.tile(
                slf_attn_bias_data.reshape([-1, 1, 1, max_len]),
381 382
                [1, n_head, max_len, 1],
            )
G
gongweibao 已提交
383 384 385 386 387 388 389 390
        return_list += [slf_attn_bias_data.astype("float32")]
    if return_max_len:
        return_list += [max_len]
    if return_num_token:
        return_list += [num_token]
    return return_list if len(return_list) > 1 else return_list[0]


391 392 393
def prepare_batch_input(
    insts, data_input_names, src_pad_idx, trg_pad_idx, n_head, d_model
):
G
gongweibao 已提交
394 395 396 397
    """
    Put all padded data needed by training into a dict.
    """
    src_word, src_pos, src_slf_attn_bias, src_max_len = pad_batch_data(
398 399
        [inst[0] for inst in insts], src_pad_idx, n_head, is_target=False
    )
G
gongweibao 已提交
400 401 402
    src_word = src_word.reshape(-1, src_max_len, 1)
    src_pos = src_pos.reshape(-1, src_max_len, 1)
    trg_word, trg_pos, trg_slf_attn_bias, trg_max_len = pad_batch_data(
403 404
        [inst[1] for inst in insts], trg_pad_idx, n_head, is_target=True
    )
G
gongweibao 已提交
405 406
    trg_word = trg_word.reshape(-1, trg_max_len, 1)
    trg_pos = trg_pos.reshape(-1, trg_max_len, 1)
X
Xin Pan 已提交
407

408 409 410
    trg_src_attn_bias = np.tile(
        src_slf_attn_bias[:, :, ::src_max_len, :], [1, 1, trg_max_len, 1]
    ).astype("float32")
X
Xin Pan 已提交
411

G
gongweibao 已提交
412 413 414 415 416 417 418 419
    lbl_word, lbl_weight, num_token = pad_batch_data(
        [inst[2] for inst in insts],
        trg_pad_idx,
        n_head,
        is_target=False,
        is_label=True,
        return_attn_bias=False,
        return_max_len=False,
420 421
        return_num_token=True,
    )
G
gongweibao 已提交
422 423

    data_input_dict = dict(
M
minqiyang 已提交
424
        list(
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
            zip(
                data_input_names,
                [
                    src_word,
                    src_pos,
                    src_slf_attn_bias,
                    trg_word,
                    trg_pos,
                    trg_slf_attn_bias,
                    trg_src_attn_bias,
                    lbl_word,
                    lbl_weight,
                ],
            )
        )
    )
G
gongweibao 已提交
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
    return data_input_dict, np.asarray([num_token], dtype="float32")


def read_multiple(reader, count, clip_last=True):
    """
    Stack data from reader for multi-devices.
    """

    def __impl__():
        res = []
        for item in reader():
            res.append(item)
            if len(res) == count:
                yield res
                res = []
        if len(res) == count:
            yield res
        elif not clip_last:
            data = []
            for item in res:
                data += item
            if len(data) > count:
                inst_num_per_part = len(data) // count
                yield [
465
                    data[inst_num_per_part * i : inst_num_per_part * (i + 1)]
G
gongweibao 已提交
466 467 468 469 470 471 472 473 474 475 476 477 478 479
                    for i in range(count)
                ]

    return __impl__


def split_data(data, num_part):
    """
    Split data for each device.
    """
    if len(data) == num_part:
        return data
    data = data[0]
    inst_num_per_part = len(data) // num_part
X
Xin Pan 已提交
480
    return [
481
        data[inst_num_per_part * i : inst_num_per_part * (i + 1)]
G
gongweibao 已提交
482
        for i in range(num_part)
X
Xin Pan 已提交
483 484 485
    ]


486 487 488 489 490 491 492 493 494
def test_context(
    test_program,
    avg_cost,
    train_exe,
    dev_count,
    data_input_names,
    sum_cost,
    token_num,
):
G
gongweibao 已提交
495 496 497 498 499 500
    val_data = DataReader(
        src_vocab_fpath=TrainTaskConfig.src_vocab_fpath,
        trg_vocab_fpath=TrainTaskConfig.trg_vocab_fpath,
        fpattern=TrainTaskConfig.val_file_pattern,
        token_delimiter=TrainTaskConfig.token_delimiter,
        use_token_batch=TrainTaskConfig.use_token_batch,
501 502
        batch_size=TrainTaskConfig.batch_size
        * (1 if TrainTaskConfig.use_token_batch else dev_count),
G
gongweibao 已提交
503 504 505 506 507 508 509 510 511
        pool_size=TrainTaskConfig.pool_size,
        sort_type=TrainTaskConfig.sort_type,
        start_mark=TrainTaskConfig.special_token[0],
        end_mark=TrainTaskConfig.special_token[1],
        unk_mark=TrainTaskConfig.special_token[2],
        # count start and end tokens out
        max_length=ModelHyperParams.max_length - 2,
        clip_last_batch=False,
        shuffle=False,
512 513
        shuffle_batch=False,
    )
G
gongweibao 已提交
514 515 516 517 518 519

    build_strategy = fluid.BuildStrategy()

    strategy = fluid.ExecutionStrategy()
    strategy.num_threads = 1

520 521 522 523 524 525 526
    test_exe = fluid.ParallelExecutor(
        use_cuda=TrainTaskConfig.use_gpu,
        main_program=test_program,
        share_vars_from=train_exe,
        build_strategy=build_strategy,
        exec_strategy=strategy,
    )
G
gongweibao 已提交
527 528 529 530 531 532

    def test(exe=test_exe):
        test_total_cost = 0
        test_total_token = 0
        test_data = read_multiple(
            reader=val_data.batch_generator,
533 534
            count=dev_count if TrainTaskConfig.use_token_batch else 1,
        )
G
gongweibao 已提交
535 536 537
        for batch_id, data in enumerate(test_data()):
            feed_list = []
            for place_id, data_buffer in enumerate(
538 539
                split_data(data, num_part=dev_count)
            ):
G
gongweibao 已提交
540
                data_input_dict, _ = prepare_batch_input(
541 542 543 544 545 546 547
                    data_buffer,
                    data_input_names,
                    ModelHyperParams.eos_idx,
                    ModelHyperParams.eos_idx,
                    ModelHyperParams.n_head,
                    ModelHyperParams.d_model,
                )
G
gongweibao 已提交
548 549
                feed_list.append(data_input_dict)

550 551 552
            outs = exe.run(
                feed=feed_list, fetch_list=[sum_cost.name, token_num.name]
            )
G
gongweibao 已提交
553 554 555 556 557 558 559 560 561 562
            sum_cost_val, token_num_val = np.array(outs[0]), np.array(outs[1])
            test_total_cost += sum_cost_val.sum()
            test_total_token += token_num_val.sum()
        test_avg_cost = test_total_cost / test_total_token
        test_ppl = np.exp([min(test_avg_cost, 100)])
        return test_avg_cost, test_ppl

    return test


563 564 565 566 567 568 569 570 571 572 573
def train_loop(
    exe,
    train_progm,
    dev_count,
    sum_cost,
    avg_cost,
    lr_scheduler,
    token_num,
    predict,
    test_program,
):
G
gongweibao 已提交
574 575 576 577 578 579 580 581 582 583 584 585
    # Initialize the parameters.
    if TrainTaskConfig.ckpt_path:
        lr_scheduler.current_steps = TrainTaskConfig.start_step
    else:
        exe.run(fluid.framework.default_startup_program())

    train_data = DataReader(
        src_vocab_fpath=TrainTaskConfig.src_vocab_fpath,
        trg_vocab_fpath=TrainTaskConfig.trg_vocab_fpath,
        fpattern=TrainTaskConfig.train_file_pattern,
        token_delimiter=TrainTaskConfig.token_delimiter,
        use_token_batch=TrainTaskConfig.use_token_batch,
586 587
        batch_size=TrainTaskConfig.batch_size
        * (1 if TrainTaskConfig.use_token_batch else dev_count),
G
gongweibao 已提交
588 589 590 591 592 593 594 595 596
        pool_size=TrainTaskConfig.pool_size,
        sort_type=TrainTaskConfig.sort_type,
        shuffle=TrainTaskConfig.shuffle,
        shuffle_batch=TrainTaskConfig.shuffle_batch,
        start_mark=TrainTaskConfig.special_token[0],
        end_mark=TrainTaskConfig.special_token[1],
        unk_mark=TrainTaskConfig.special_token[2],
        # count start and end tokens out
        max_length=ModelHyperParams.max_length - 2,
597 598
        clip_last_batch=False,
    )
G
gongweibao 已提交
599 600
    train_data = read_multiple(
        reader=train_data.batch_generator,
601 602
        count=dev_count if TrainTaskConfig.use_token_batch else 1,
    )
G
gongweibao 已提交
603 604 605 606 607

    build_strategy = fluid.BuildStrategy()
    # Since the token number differs among devices, customize gradient scale to
    # use token average cost among multi-devices. and the gradient scale is
    # `1 / token_number` for average cost.
608 609 610
    build_strategy.gradient_scale_strategy = (
        fluid.BuildStrategy.GradientScaleStrategy.Customized
    )
G
gongweibao 已提交
611 612 613 614

    strategy = fluid.ExecutionStrategy()
    strategy.num_threads = 1

615 616 617 618 619 620 621
    train_exe = fluid.ParallelExecutor(
        use_cuda=TrainTaskConfig.use_gpu,
        loss_name=sum_cost.name,
        main_program=train_progm,
        build_strategy=build_strategy,
        exec_strategy=strategy,
    )
G
gongweibao 已提交
622

623 624 625 626 627
    data_input_names = (
        encoder_data_input_fields
        + decoder_data_input_fields[:-1]
        + label_data_input_fields
    )
G
gongweibao 已提交
628 629

    if TrainTaskConfig.val_file_pattern is not None:
630 631 632 633 634 635 636 637 638
        test = test_context(
            test_program,
            avg_cost,
            train_exe,
            dev_count,
            data_input_names,
            sum_cost,
            token_num,
        )
G
gongweibao 已提交
639 640

    # the best cross-entropy value with label smoothing
641 642 643 644 645 646 647 648 649 650
    loss_normalizer = -(
        (1.0 - TrainTaskConfig.label_smooth_eps)
        * np.log((1.0 - TrainTaskConfig.label_smooth_eps))
        + TrainTaskConfig.label_smooth_eps
        * np.log(
            TrainTaskConfig.label_smooth_eps
            / (ModelHyperParams.trg_vocab_size - 1)
            + 1e-20
        )
    )
G
gongweibao 已提交
651
    init = False
652
    for pass_id in range(TrainTaskConfig.pass_num):
G
gongweibao 已提交
653 654
        pass_start_time = time.time()
        for batch_id, data in enumerate(train_data()):
G
gongweibao 已提交
655
            if batch_id >= RUN_STEP:
G
gongweibao 已提交
656 657 658 659 660 661 662 663 664
                break

            feed_list = []
            total_num_token = 0

            if TrainTaskConfig.local:
                lr_rate = lr_scheduler.update_learning_rate()

            for place_id, data_buffer in enumerate(
665 666
                split_data(data, num_part=dev_count)
            ):
G
gongweibao 已提交
667
                data_input_dict, num_token = prepare_batch_input(
668 669 670 671 672 673 674
                    data_buffer,
                    data_input_names,
                    ModelHyperParams.eos_idx,
                    ModelHyperParams.eos_idx,
                    ModelHyperParams.n_head,
                    ModelHyperParams.d_model,
                )
G
gongweibao 已提交
675
                total_num_token += num_token
M
minqiyang 已提交
676
                feed_kv_pairs = list(data_input_dict.items())
G
gongweibao 已提交
677
                if TrainTaskConfig.local:
678
                    feed_kv_pairs += list(
679 680
                        {lr_scheduler.learning_rate.name: lr_rate}.items()
                    )
G
gongweibao 已提交
681 682 683 684 685 686
                feed_list.append(dict(feed_kv_pairs))

                if not init:
                    for pos_enc_param_name in pos_enc_param_names:
                        pos_enc = position_encoding_init(
                            ModelHyperParams.max_length + 1,
687 688
                            ModelHyperParams.d_model,
                        )
G
gongweibao 已提交
689 690 691 692
                        feed_list[place_id][pos_enc_param_name] = pos_enc

            if not TrainTaskConfig.check_acc:
                for feed_dict in feed_list:
693
                    feed_dict[sum_cost.name + "@GRAD"] = 1.0 / total_num_token
G
gongweibao 已提交
694 695 696 697
            else:
                b = 100 * TrainTaskConfig.batch_size
                a = np.asarray([b], dtype="float32")
                for feed_dict in feed_list:
698
                    feed_dict[sum_cost.name + "@GRAD"] = 1.0 / a
G
gongweibao 已提交
699

700 701 702
            outs = train_exe.run(
                fetch_list=[sum_cost.name, token_num.name], feed=feed_list
            )
G
gongweibao 已提交
703 704 705 706 707 708 709 710 711

            sum_cost_val, token_num_val = np.array(outs[0]), np.array(outs[1])
            total_sum_cost = sum_cost_val.sum()
            total_token_num = token_num_val.sum()
            total_avg_cost = total_sum_cost / total_token_num

            init = True

            # Validate and save the model for inference.
G
gongweibao 已提交
712 713 714 715
            if TrainTaskConfig.val_file_pattern is not None:
                val_avg_cost, val_ppl = test()
                print("[%f]" % val_avg_cost)
            else:
716
                assert False
G
gongweibao 已提交
717 718


719
# import transformer_reader as reader
720
class SortType:
G
gongweibao 已提交
721 722 723 724 725
    GLOBAL = 'global'
    POOL = 'pool'
    NONE = "none"


726
class Converter:
G
gongweibao 已提交
727 728 729 730 731 732 733 734
    def __init__(self, vocab, beg, end, unk, delimiter):
        self._vocab = vocab
        self._beg = beg
        self._end = end
        self._unk = unk
        self._delimiter = delimiter

    def __call__(self, sentence):
735 736 737 738 739 740 741 742
        return (
            [self._beg]
            + [
                self._vocab.get(w, self._unk)
                for w in sentence.split(self._delimiter)
            ]
            + [self._end]
        )
G
gongweibao 已提交
743 744


745
class ComposedConverter:
G
gongweibao 已提交
746 747 748 749 750 751 752 753 754 755
    def __init__(self, converters):
        self._converters = converters

    def __call__(self, parallel_sentence):
        return [
            self._converters[i](parallel_sentence[i])
            for i in range(len(self._converters))
        ]


756
class SentenceBatchCreator:
G
gongweibao 已提交
757 758 759 760 761 762 763 764 765 766 767 768
    def __init__(self, batch_size):
        self.batch = []
        self._batch_size = batch_size

    def append(self, info):
        self.batch.append(info)
        if len(self.batch) == self._batch_size:
            tmp = self.batch
            self.batch = []
            return tmp


769
class TokenBatchCreator:
G
gongweibao 已提交
770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
    def __init__(self, batch_size):
        self.batch = []
        self.max_len = -1
        self._batch_size = batch_size

    def append(self, info):
        cur_len = info.max_len
        max_len = max(self.max_len, cur_len)
        if max_len * (len(self.batch) + 1) > self._batch_size:
            result = self.batch
            self.batch = [info]
            self.max_len = cur_len
            return result
        else:
            self.max_len = max_len
            self.batch.append(info)


788
class SampleInfo:
G
gongweibao 已提交
789 790 791 792 793 794
    def __init__(self, i, max_len, min_len):
        self.i = i
        self.min_len = min_len
        self.max_len = max_len


795
class MinMaxFilter:
G
gongweibao 已提交
796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811
    def __init__(self, max_len, min_len, underlying_creator):
        self._min_len = min_len
        self._max_len = max_len
        self._creator = underlying_creator

    def append(self, info):
        if info.max_len > self._max_len or info.min_len < self._min_len:
            return
        else:
            return self._creator.append(info)

    @property
    def batch(self):
        return self._creator.batch


812
class DataReader:
G
gongweibao 已提交
813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
    """
    The data reader loads all data from files and produces batches of data
    in the way corresponding to settings.

    An example of returning a generator producing data batches whose data
    is shuffled in each pass and sorted in each pool:

    ```
    train_data = DataReader(
        src_vocab_fpath='data/src_vocab_file',
        trg_vocab_fpath='data/trg_vocab_file',
        fpattern='data/part-*',
        use_token_batch=True,
        batch_size=2000,
        pool_size=10000,
        sort_type=SortType.POOL,
        shuffle=True,
        shuffle_batch=True,
        start_mark='<s>',
        end_mark='<e>',
        unk_mark='<unk>',
        clip_last_batch=False).batch_generator
    ```

    :param src_vocab_fpath: The path of vocabulary file of source language.
    :type src_vocab_fpath: basestring
    :param trg_vocab_fpath: The path of vocabulary file of target language.
    :type trg_vocab_fpath: basestring
    :param fpattern: The pattern to match data files.
    :type fpattern: basestring
    :param batch_size: The number of sequences contained in a mini-batch.
        or the maximum number of tokens (include paddings) contained in a
        mini-batch.
    :type batch_size: int
    :param pool_size: The size of pool buffer.
    :type pool_size: int
    :param sort_type: The grain to sort by length: 'global' for all
        instances; 'pool' for instances in pool; 'none' for no sort.
    :type sort_type: basestring
    :param clip_last_batch: Whether to clip the last uncompleted batch.
    :type clip_last_batch: bool
    :param tar_fname: The data file in tar if fpattern matches a tar file.
    :type tar_fname: basestring
    :param min_length: The minimum length used to filt sequences.
    :type min_length: int
    :param max_length: The maximum length used to filt sequences.
    :type max_length: int
    :param shuffle: Whether to shuffle all instances.
    :type shuffle: bool
    :param shuffle_batch: Whether to shuffle the generated batches.
    :type shuffle_batch: bool
    :param use_token_batch: Whether to produce batch data according to
        token number.
    :type use_token_batch: bool
    :param field_delimiter: The delimiter used to split source and target in
        each line of data file.
    :type field_delimiter: basestring
    :param token_delimiter: The delimiter used to split tokens in source or
        target sentences.
    :type token_delimiter: basestring
    :param start_mark: The token representing for the beginning of
        sentences in dictionary.
    :type start_mark: basestring
    :param end_mark: The token representing for the end of sentences
        in dictionary.
    :type end_mark: basestring
    :param unk_mark: The token representing for unknown word in dictionary.
    :type unk_mark: basestring
    :param seed: The seed for random.
    :type seed: int
    """

885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906
    def __init__(
        self,
        src_vocab_fpath,
        trg_vocab_fpath,
        fpattern,
        batch_size,
        pool_size,
        sort_type=SortType.GLOBAL,
        clip_last_batch=True,
        tar_fname=None,
        min_length=0,
        max_length=100,
        shuffle=True,
        shuffle_batch=False,
        use_token_batch=False,
        field_delimiter="\t",
        token_delimiter=" ",
        start_mark="<s>",
        end_mark="<e>",
        unk_mark="<unk>",
        seed=0,
    ):
G
gongweibao 已提交
907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
        self._src_vocab = self.load_dict(src_vocab_fpath)
        self._only_src = True
        if trg_vocab_fpath is not None:
            self._trg_vocab = self.load_dict(trg_vocab_fpath)
            self._only_src = False
        self._pool_size = pool_size
        self._batch_size = batch_size
        self._use_token_batch = use_token_batch
        self._sort_type = sort_type
        self._clip_last_batch = clip_last_batch
        self._shuffle = shuffle
        self._shuffle_batch = shuffle_batch
        self._min_length = min_length
        self._max_length = max_length
        self._field_delimiter = field_delimiter
        self._token_delimiter = token_delimiter
923 924 925
        self.load_src_trg_ids(
            end_mark, fpattern, start_mark, tar_fname, unk_mark
        )
G
gongweibao 已提交
926 927
        self._random = random.Random(x=seed)

928 929 930
    def load_src_trg_ids(
        self, end_mark, fpattern, start_mark, tar_fname, unk_mark
    ):
G
gongweibao 已提交
931
        converters = [
932 933 934 935 936 937 938
            Converter(
                vocab=self._src_vocab,
                beg=self._src_vocab[start_mark],
                end=self._src_vocab[end_mark],
                unk=self._src_vocab[unk_mark],
                delimiter=self._token_delimiter,
            )
G
gongweibao 已提交
939 940 941
        ]
        if not self._only_src:
            converters.append(
942 943 944 945 946 947 948 949
                Converter(
                    vocab=self._trg_vocab,
                    beg=self._trg_vocab[start_mark],
                    end=self._trg_vocab[end_mark],
                    unk=self._trg_vocab[unk_mark],
                    delimiter=self._token_delimiter,
                )
            )
G
gongweibao 已提交
950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974

        converters = ComposedConverter(converters)

        self._src_seq_ids = []
        self._trg_seq_ids = None if self._only_src else []
        self._sample_infos = []

        for i, line in enumerate(self._load_lines(fpattern, tar_fname)):
            src_trg_ids = converters(line)
            self._src_seq_ids.append(src_trg_ids[0])
            lens = [len(src_trg_ids[0])]
            if not self._only_src:
                self._trg_seq_ids.append(src_trg_ids[1])
                lens.append(len(src_trg_ids[1]))
            self._sample_infos.append(SampleInfo(i, max(lens), min(lens)))

    def _load_lines(self, fpattern, tar_fname):
        fpaths = glob.glob(fpattern)

        if len(fpaths) == 1 and tarfile.is_tarfile(fpaths[0]):
            if tar_fname is None:
                raise Exception("If tar file provided, please set tar_fname.")

            f = tarfile.open(fpaths[0], "r")
            for line in f.extractfile(tar_fname):
975
                line = line.decode()
G
gongweibao 已提交
976
                fields = line.strip("\n").split(self._field_delimiter)
977 978 979
                if (not self._only_src and len(fields) == 2) or (
                    self._only_src and len(fields) == 1
                ):
G
gongweibao 已提交
980 981 982 983 984 985
                    yield fields
        else:
            for fpath in fpaths:
                if not os.path.isfile(fpath):
                    raise IOError("Invalid file: %s" % fpath)

M
minqiyang 已提交
986
                with open(fpath, "rb") as f:
G
gongweibao 已提交
987
                    for line in f:
988
                        line = line.decode()
G
gongweibao 已提交
989
                        fields = line.strip("\n").split(self._field_delimiter)
990 991 992
                        if (not self._only_src and len(fields) == 2) or (
                            self._only_src and len(fields) == 1
                        ):
G
gongweibao 已提交
993 994 995 996 997
                            yield fields

    @staticmethod
    def load_dict(dict_path, reverse=False):
        word_dict = {}
M
minqiyang 已提交
998
        with open(dict_path, "rb") as fdict:
G
gongweibao 已提交
999
            for idx, line in enumerate(fdict):
1000
                line = line.decode()
G
gongweibao 已提交
1001 1002 1003 1004 1005 1006 1007 1008 1009
                if reverse:
                    word_dict[idx] = line.strip("\n")
                else:
                    word_dict[line.strip("\n")] = idx
        return word_dict

    def batch_generator(self):
        # global sort or global shuffle
        if self._sort_type == SortType.GLOBAL:
1010 1011 1012
            infos = sorted(
                self._sample_infos, key=lambda x: x.max_len, reverse=True
            )
G
gongweibao 已提交
1013 1014 1015 1016 1017 1018 1019 1020 1021
        else:
            if self._shuffle:
                infos = self._sample_infos
                self._random.shuffle(infos)
            else:
                infos = self._sample_infos

            if self._sort_type == SortType.POOL:
                for i in range(0, len(infos), self._pool_size):
1022 1023 1024
                    infos[i : i + self._pool_size] = sorted(
                        infos[i : i + self._pool_size], key=lambda x: x.max_len
                    )
G
gongweibao 已提交
1025 1026 1027

        # concat batch
        batches = []
1028 1029 1030 1031 1032 1033 1034 1035
        batch_creator = (
            TokenBatchCreator(self._batch_size)
            if self._use_token_batch
            else SentenceBatchCreator(self._batch_size)
        )
        batch_creator = MinMaxFilter(
            self._max_length, self._min_length, batch_creator
        )
G
gongweibao 已提交
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053

        for info in infos:
            batch = batch_creator.append(info)
            if batch is not None:
                batches.append(batch)

        if not self._clip_last_batch and len(batch_creator.batch) != 0:
            batches.append(batch_creator.batch)

        if self._shuffle_batch:
            self._random.shuffle(batches)

        for batch in batches:
            batch_ids = [info.i for info in batch]

            if self._only_src:
                yield [[self._src_seq_ids[idx]] for idx in batch_ids]
            else:
1054 1055 1056 1057 1058 1059 1060 1061
                yield [
                    (
                        self._src_seq_ids[idx],
                        self._trg_seq_ids[idx][:-1],
                        self._trg_seq_ids[idx][1:],
                    )
                    for idx in batch_ids
                ]
G
gongweibao 已提交
1062 1063


1064
# from transformer_model import transformer
G
gongweibao 已提交
1065 1066 1067 1068
def position_encoding_init(n_position, d_pos_vec):
    """
    Generate the initial values for the sinusoid position encoding table.
    """
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
    position_enc = np.array(
        [
            [
                pos / np.power(10000, 2 * (j // 2) / d_pos_vec)
                for j in range(d_pos_vec)
            ]
            if pos != 0
            else np.zeros(d_pos_vec)
            for pos in range(n_position)
        ]
    )
G
gongweibao 已提交
1080 1081 1082 1083 1084
    position_enc[1:, 0::2] = np.sin(position_enc[1:, 0::2])  # dim 2i
    position_enc[1:, 1::2] = np.cos(position_enc[1:, 1::2])  # dim 2i+1
    return position_enc.astype("float32")


1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
def multi_head_attention(
    queries,
    keys,
    values,
    attn_bias,
    d_key,
    d_value,
    d_model,
    n_head=1,
    dropout_rate=0.0,
    cache=None,
):
G
gongweibao 已提交
1097 1098 1099 1100 1101 1102 1103
    """
    Multi-Head Attention. Note that attn_bias is added to the logit before
    computing softmax activiation to mask certain selected positions so that
    they will not considered in attention weights.
    """
    if not (len(queries.shape) == len(keys.shape) == len(values.shape) == 3):
        raise ValueError(
1104 1105
            "Inputs: queries, keys and values should all be 3-D tensors."
        )
G
gongweibao 已提交
1106 1107 1108 1109 1110

    def __compute_qkv(queries, keys, values, n_head, d_key, d_value):
        """
        Add linear projection to queries, keys, and values.
        """
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
        q = layers.fc(
            input=queries,
            size=d_key * n_head,
            num_flatten_dims=2,
            param_attr=const_para_attr,
            bias_attr=const_bias_attr,
        )
        k = layers.fc(
            input=keys,
            size=d_key * n_head,
            num_flatten_dims=2,
            param_attr=const_para_attr,
            bias_attr=const_bias_attr,
        )
        v = layers.fc(
            input=values,
            size=d_value * n_head,
            num_flatten_dims=2,
            param_attr=const_para_attr,
            bias_attr=const_bias_attr,
        )
G
gongweibao 已提交
1132 1133 1134 1135
        return q, k, v

    def __split_heads(x, n_head):
        """
T
tianshuo78520a 已提交
1136
        Reshape the last dimension of input tensor x so that it becomes two
G
gongweibao 已提交
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
        dimensions and then transpose. Specifically, input a tensor with shape
        [bs, max_sequence_length, n_head * hidden_dim] then output a tensor
        with shape [bs, n_head, max_sequence_length, hidden_dim].
        """
        if n_head == 1:
            return x

        hidden_size = x.shape[-1]
        # The value 0 in shape attr means copying the corresponding dimension
        # size of the input as the output dimension size.
1147
        reshaped = paddle.reshape(
1148 1149
            x=x, shape=[0, 0, n_head, hidden_size // n_head]
        )
G
gongweibao 已提交
1150

T
tianshuo78520a 已提交
1151
        # permute the dimensions into:
G
gongweibao 已提交
1152
        # [batch_size, n_head, max_sequence_len, hidden_size_per_head]
1153
        return paddle.transpose(x=reshaped, perm=[0, 2, 1, 3])
G
gongweibao 已提交
1154 1155 1156

    def __combine_heads(x):
        """
T
tianshuo78520a 已提交
1157
        Transpose and then reshape the last two dimensions of input tensor x
G
gongweibao 已提交
1158 1159
        so that it becomes one dimension, which is reverse to __split_heads.
        """
1160 1161
        if len(x.shape) == 3:
            return x
G
gongweibao 已提交
1162 1163 1164
        if len(x.shape) != 4:
            raise ValueError("Input(x) should be a 4-D Tensor.")

1165
        trans_x = paddle.transpose(x, perm=[0, 2, 1, 3])
G
gongweibao 已提交
1166 1167
        # The value 0 in shape attr means copying the corresponding dimension
        # size of the input as the output dimension size.
1168
        return paddle.reshape(
G
gongweibao 已提交
1169
            x=trans_x,
1170 1171
            shape=list(map(int, [0, 0, trans_x.shape[2] * trans_x.shape[3]])),
        )
G
gongweibao 已提交
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182

    def scaled_dot_product_attention(q, k, v, attn_bias, d_model, dropout_rate):
        """
        Scaled Dot-Product Attention
        """
        scaled_q = layers.scale(x=q, scale=d_model**-0.5)
        product = layers.matmul(x=scaled_q, y=k, transpose_y=True)
        if attn_bias:
            product += attn_bias
        weights = layers.softmax(product)
        if dropout_rate:
1183 1184 1185 1186 1187 1188
            weights = layers.dropout(
                weights,
                dropout_prob=dropout_rate,
                seed=ModelHyperParams.dropout_seed,
                is_test=False,
            )
G
gongweibao 已提交
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
        out = layers.matmul(weights, v)
        return out

    q, k, v = __compute_qkv(queries, keys, values, n_head, d_key, d_value)

    if cache is not None:  # use cache and concat time steps
        k = cache["k"] = layers.concat([cache["k"], k], axis=1)
        v = cache["v"] = layers.concat([cache["v"], v], axis=1)

    q = __split_heads(q, n_head)
    k = __split_heads(k, n_head)
    v = __split_heads(v, n_head)

1202 1203 1204
    ctx_multiheads = scaled_dot_product_attention(
        q, k, v, attn_bias, d_model, dropout_rate
    )
G
gongweibao 已提交
1205 1206 1207 1208

    out = __combine_heads(ctx_multiheads)

    # Project back to the model size.
1209 1210 1211 1212 1213 1214 1215
    proj_out = layers.fc(
        input=out,
        size=d_model,
        num_flatten_dims=2,
        param_attr=const_para_attr,
        bias_attr=const_bias_attr,
    )
G
gongweibao 已提交
1216 1217 1218 1219 1220 1221 1222 1223 1224
    return proj_out


def positionwise_feed_forward(x, d_inner_hid, d_hid):
    """
    Position-wise Feed-Forward Networks.
    This module consists of two linear transformations with a ReLU activation
    in between, which is applied to each position separately and identically.
    """
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
    hidden = layers.fc(
        input=x,
        size=d_inner_hid,
        num_flatten_dims=2,
        act="relu",
        param_attr=const_para_attr,
        bias_attr=const_bias_attr,
    )
    out = layers.fc(
        input=hidden,
        size=d_hid,
        num_flatten_dims=2,
        param_attr=const_para_attr,
        bias_attr=const_bias_attr,
    )
G
gongweibao 已提交
1240 1241 1242
    return out


1243
def pre_post_process_layer(prev_out, out, process_cmd, dropout_rate=0.0):
G
gongweibao 已提交
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
    """
    Add residual connection, layer normalization and droput to the out tensor
    optionally according to the value of process_cmd.
    This will be used before or after multi-head attention and position-wise
    feed-forward networks.
    """
    for cmd in process_cmd:
        if cmd == "a":  # add residual connection
            out = out + prev_out if prev_out else out
        elif cmd == "n":  # add layer normalization
1254 1255 1256 1257 1258 1259
            out = layers.layer_norm(
                out,
                begin_norm_axis=len(out.shape) - 1,
                param_attr=fluid.initializer.Constant(1.0),
                bias_attr=fluid.initializer.Constant(0.0),
            )
G
gongweibao 已提交
1260 1261
        elif cmd == "d":  # add dropout
            if dropout_rate:
1262 1263 1264 1265 1266 1267
                out = layers.dropout(
                    out,
                    dropout_prob=dropout_rate,
                    seed=ModelHyperParams.dropout_seed,
                    is_test=False,
                )
G
gongweibao 已提交
1268 1269 1270 1271 1272 1273 1274
    return out


pre_process_layer = partial(pre_post_process_layer, None)
post_process_layer = pre_post_process_layer


1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
def prepare_encoder(
    src_word,
    src_pos,
    src_vocab_size,
    src_emb_dim,
    src_max_len,
    dropout_rate=0.0,
    word_emb_param_name=None,
    pos_enc_param_name=None,
):
G
gongweibao 已提交
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
    """Add word embeddings and position encodings.
    The output tensor has a shape of:
    [batch_size, max_src_length_in_batch, d_model].
    This module is used at the bottom of the encoder stacks.
    """
    if TrainTaskConfig.check_acc:
        src_word_emb = layers.embedding(
            src_word,
            size=[src_vocab_size, src_emb_dim],
            param_attr=fluid.ParamAttr(
                name=word_emb_param_name,
1296 1297 1298
                initializer=fluid.initializer.ConstantInitializer(0.001),
            ),
        )
G
gongweibao 已提交
1299 1300 1301 1302
    else:
        src_word_emb = layers.embedding(
            src_word,
            size=[src_vocab_size, src_emb_dim],
1303 1304 1305 1306 1307
            param_attr=fluid.ParamAttr(
                name=word_emb_param_name,
                initializer=fluid.initializer.Normal(0.0, src_emb_dim**-0.5),
            ),
        )
G
gongweibao 已提交
1308 1309 1310 1311 1312 1313 1314 1315

    src_word_emb = layers.scale(x=src_word_emb, scale=src_emb_dim**0.5)
    src_pos_enc = layers.embedding(
        src_pos,
        size=[src_max_len, src_emb_dim],
        param_attr=fluid.ParamAttr(
            name=pos_enc_param_name,
            trainable=False,
1316 1317 1318
            initializer=fluid.initializer.ConstantInitializer(0.001),
        ),
    )
M
minqiyang 已提交
1319
    src_pos_enc.stop_gradient = True
G
gongweibao 已提交
1320
    enc_input = src_word_emb + src_pos_enc
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
    return (
        layers.dropout(
            enc_input,
            dropout_prob=dropout_rate,
            seed=ModelHyperParams.dropout_seed,
            is_test=False,
        )
        if dropout_rate
        else enc_input
    )


prepare_encoder = partial(
    prepare_encoder, pos_enc_param_name=pos_enc_param_names[0]
)
prepare_decoder = partial(
    prepare_encoder, pos_enc_param_name=pos_enc_param_names[1]
)


def encoder_layer(
    enc_input,
    attn_bias,
    n_head,
    d_key,
    d_value,
    d_model,
    d_inner_hid,
    dropout_rate=0.0,
):
G
gongweibao 已提交
1351 1352 1353 1354 1355 1356
    """The encoder layers that can be stacked to form a deep encoder.
    This module consits of a multi-head (self) attention followed by
    position-wise feed-forward networks and both the two components companied
    with the post_process_layer to add residual connection, layer normalization
    and droput.
    """
1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
    attn_output = multi_head_attention(
        enc_input,
        enc_input,
        enc_input,
        attn_bias,
        d_key,
        d_value,
        d_model,
        n_head,
        dropout_rate,
    )
    attn_output = post_process_layer(
        enc_input, attn_output, "dan", dropout_rate
    )
G
gongweibao 已提交
1371 1372 1373 1374
    ffd_output = positionwise_feed_forward(attn_output, d_inner_hid, d_model)
    return post_process_layer(attn_output, ffd_output, "dan", dropout_rate)


1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
def encoder(
    enc_input,
    attn_bias,
    n_layer,
    n_head,
    d_key,
    d_value,
    d_model,
    d_inner_hid,
    dropout_rate=0.0,
):
    """
    The encoder is composed of a stack of identical layers returned by calling
    encoder_layer.
    """
    for i in range(n_layer):
        enc_output = encoder_layer(
            enc_input,
G
gongweibao 已提交
1393 1394 1395 1396 1397 1398
            attn_bias,
            n_head,
            d_key,
            d_value,
            d_model,
            d_inner_hid,
1399 1400
            dropout_rate,
        )
G
gongweibao 已提交
1401 1402 1403 1404
        enc_input = enc_output
    return enc_output


1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
def decoder_layer(
    dec_input,
    enc_output,
    slf_attn_bias,
    dec_enc_attn_bias,
    n_head,
    d_key,
    d_value,
    d_model,
    d_inner_hid,
    dropout_rate=0.0,
    cache=None,
):
    """The layer to be stacked in decoder part.
G
gongweibao 已提交
1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
    The structure of this module is similar to that in the encoder part except
    a multi-head attention is added to implement encoder-decoder attention.
    """
    slf_attn_output = multi_head_attention(
        dec_input,
        dec_input,
        dec_input,
        slf_attn_bias,
        d_key,
        d_value,
        d_model,
        n_head,
        dropout_rate,
1432 1433
        cache,
    )
G
gongweibao 已提交
1434 1435 1436 1437
    slf_attn_output = post_process_layer(
        dec_input,
        slf_attn_output,
        "dan",  # residual connection + dropout + layer normalization
1438 1439
        dropout_rate,
    )
G
gongweibao 已提交
1440 1441 1442 1443 1444 1445 1446 1447 1448
    enc_attn_output = multi_head_attention(
        slf_attn_output,
        enc_output,
        enc_output,
        dec_enc_attn_bias,
        d_key,
        d_value,
        d_model,
        n_head,
1449 1450
        dropout_rate,
    )
G
gongweibao 已提交
1451 1452 1453 1454
    enc_attn_output = post_process_layer(
        slf_attn_output,
        enc_attn_output,
        "dan",  # residual connection + dropout + layer normalization
1455 1456
        dropout_rate,
    )
G
gongweibao 已提交
1457 1458 1459
    ffd_output = positionwise_feed_forward(
        enc_attn_output,
        d_inner_hid,
1460 1461
        d_model,
    )
G
gongweibao 已提交
1462 1463 1464 1465
    dec_output = post_process_layer(
        enc_attn_output,
        ffd_output,
        "dan",  # residual connection + dropout + layer normalization
1466 1467
        dropout_rate,
    )
G
gongweibao 已提交
1468
    return dec_output
X
Xin Pan 已提交
1469 1470


1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
def decoder(
    dec_input,
    enc_output,
    dec_slf_attn_bias,
    dec_enc_attn_bias,
    n_layer,
    n_head,
    d_key,
    d_value,
    d_model,
    d_inner_hid,
    dropout_rate=0.0,
    caches=None,
):
G
gongweibao 已提交
1485 1486 1487 1488 1489 1490 1491 1492
    """
    The decoder is composed of a stack of identical decoder_layer layers.
    """
    for i in range(n_layer):
        cache = None
        if caches is not None:
            cache = caches[i]

1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
        dec_output = decoder_layer(
            dec_input,
            enc_output,
            dec_slf_attn_bias,
            dec_enc_attn_bias,
            n_head,
            d_key,
            d_value,
            d_model,
            d_inner_hid,
            dropout_rate,
            cache=cache,
        )
G
gongweibao 已提交
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
        dec_input = dec_output
    return dec_output


def make_all_inputs(input_fields):
    """
    Define the input data layers for the transformer model.
    """
    inputs = []
    for input_field in input_fields:
1516 1517 1518 1519 1520 1521 1522 1523 1524
        input_var = layers.data(
            name=input_field,
            shape=input_descs[input_field][0],
            dtype=input_descs[input_field][1],
            lod_level=input_descs[input_field][2]
            if len(input_descs[input_field]) == 3
            else 0,
            append_batch_size=False,
        )
G
gongweibao 已提交
1525 1526 1527 1528 1529
        inputs.append(input_var)
    return inputs


def transformer(
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
    src_vocab_size,
    trg_vocab_size,
    max_length,
    n_layer,
    n_head,
    d_key,
    d_value,
    d_model,
    d_inner_hid,
    dropout_rate,
    weight_sharing,
    label_smooth_eps,
):
G
gongweibao 已提交
1543
    if weight_sharing:
1544 1545 1546
        assert (
            src_vocab_size == src_vocab_size
        ), "Vocabularies in source and target should be same for weight sharing."
G
gongweibao 已提交
1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
    enc_inputs = make_all_inputs(encoder_data_input_fields)

    enc_output = wrap_encoder(
        src_vocab_size,
        max_length,
        n_layer,
        n_head,
        d_key,
        d_value,
        d_model,
        d_inner_hid,
        dropout_rate,
        weight_sharing,
1560 1561
        enc_inputs,
    )
G
gongweibao 已提交
1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576

    dec_inputs = make_all_inputs(decoder_data_input_fields[:-1])

    predict = wrap_decoder(
        trg_vocab_size,
        max_length,
        n_layer,
        n_head,
        d_key,
        d_value,
        d_model,
        d_inner_hid,
        dropout_rate,
        weight_sharing,
        dec_inputs,
1577 1578
        enc_output,
    )
G
gongweibao 已提交
1579 1580 1581 1582 1583

    # Padding index do not contribute to the total loss. The weights is used to
    # cancel padding index in calculating the loss.
    label, weights = make_all_inputs(label_data_input_fields)
    if label_smooth_eps:
1584
        label = F.label_smooth(
1585 1586 1587
            label=layers.one_hot(input=label, depth=trg_vocab_size),
            epsilon=label_smooth_eps,
        )
G
gongweibao 已提交
1588 1589

    cost = layers.softmax_with_cross_entropy(
1590
        logits=paddle.reshape(predict, shape=[-1, trg_vocab_size]),
G
gongweibao 已提交
1591
        label=label,
1592 1593
        soft_label=True if label_smooth_eps else False,
    )
G
gongweibao 已提交
1594 1595 1596 1597 1598 1599 1600 1601
    weighted_cost = cost * weights
    sum_cost = layers.reduce_sum(weighted_cost)
    token_num = layers.reduce_sum(weights)
    avg_cost = sum_cost / token_num
    avg_cost.stop_gradient = True
    return sum_cost, avg_cost, predict, token_num


1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
def wrap_encoder(
    src_vocab_size,
    max_length,
    n_layer,
    n_head,
    d_key,
    d_value,
    d_model,
    d_inner_hid,
    dropout_rate,
    weight_sharing,
    enc_inputs=None,
):
G
gongweibao 已提交
1615 1616 1617 1618 1619
    """
    The wrapper assembles together all needed layers for the encoder.
    """
    if enc_inputs is None:
        # This is used to implement independent encoder program in inference.
1620 1621 1622
        src_word, src_pos, src_slf_attn_bias = make_all_inputs(
            encoder_data_input_fields
        )
G
gongweibao 已提交
1623
    else:
1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
        src_word, src_pos, src_slf_attn_bias = enc_inputs
    enc_input = prepare_encoder(
        src_word,
        src_pos,
        src_vocab_size,
        d_model,
        max_length,
        dropout_rate,
        word_emb_param_name=word_emb_param_names[0],
    )
    enc_output = encoder(
        enc_input,
        src_slf_attn_bias,
        n_layer,
        n_head,
        d_key,
        d_value,
        d_model,
        d_inner_hid,
        dropout_rate,
    )
G
gongweibao 已提交
1645 1646 1647
    return enc_output


1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662
def wrap_decoder(
    trg_vocab_size,
    max_length,
    n_layer,
    n_head,
    d_key,
    d_value,
    d_model,
    d_inner_hid,
    dropout_rate,
    weight_sharing,
    dec_inputs=None,
    enc_output=None,
    caches=None,
):
G
gongweibao 已提交
1663 1664 1665 1666 1667
    """
    The wrapper assembles together all needed layers for the decoder.
    """
    if dec_inputs is None:
        # This is used to implement independent decoder program in inference.
1668 1669 1670 1671 1672 1673 1674
        (
            trg_word,
            trg_pos,
            trg_slf_attn_bias,
            trg_src_attn_bias,
            enc_output,
        ) = make_all_inputs(decoder_data_input_fields)
G
gongweibao 已提交
1675 1676 1677
    else:
        trg_word, trg_pos, trg_slf_attn_bias, trg_src_attn_bias = dec_inputs

1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
    dec_input = prepare_decoder(
        trg_word,
        trg_pos,
        trg_vocab_size,
        d_model,
        max_length,
        dropout_rate,
        word_emb_param_name=word_emb_param_names[0]
        if weight_sharing
        else word_emb_param_names[1],
    )
    dec_output = decoder(
        dec_input,
        enc_output,
        trg_slf_attn_bias,
        trg_src_attn_bias,
        n_layer,
        n_head,
        d_key,
        d_value,
        d_model,
        d_inner_hid,
        dropout_rate,
        caches=caches,
    )
G
gongweibao 已提交
1703 1704
    # Return logits for training and probs for inference.
    if weight_sharing:
1705 1706 1707 1708 1709
        predict = layers.matmul(
            x=dec_output,
            y=fluid.framework._get_var(word_emb_param_names[0]),
            transpose_y=True,
        )
G
gongweibao 已提交
1710
    else:
1711 1712 1713 1714 1715 1716 1717
        predict = layers.fc(
            input=dec_output,
            size=trg_vocab_size,
            num_flatten_dims=2,
            param_attr=const_para_attr,
            bias_attr=const_bias_attr,
        )
G
gongweibao 已提交
1718 1719 1720 1721 1722 1723
    if dec_inputs is None:
        predict = layers.softmax(predict)
    return predict


def fast_decode(
1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738
    src_vocab_size,
    trg_vocab_size,
    max_in_len,
    n_layer,
    n_head,
    d_key,
    d_value,
    d_model,
    d_inner_hid,
    dropout_rate,
    weight_sharing,
    beam_size,
    max_out_len,
    eos_idx,
):
G
gongweibao 已提交
1739 1740 1741 1742
    """
    Use beam search to decode. Caches will be used to store states of history
    steps which can make the decoding faster.
    """
1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757
    enc_output = wrap_encoder(
        src_vocab_size,
        max_in_len,
        n_layer,
        n_head,
        d_key,
        d_value,
        d_model,
        d_inner_hid,
        dropout_rate,
        weight_sharing,
    )
    start_tokens, init_scores, trg_src_attn_bias = make_all_inputs(
        fast_decoder_data_input_fields
    )
G
gongweibao 已提交
1758 1759

    def beam_search():
1760 1761 1762 1763 1764 1765
        max_len = layers.fill_constant(
            shape=[1], dtype=start_tokens.dtype, value=max_out_len
        )
        step_idx = layers.fill_constant(
            shape=[1], dtype=start_tokens.dtype, value=0
        )
G
gongweibao 已提交
1766 1767 1768
        cond = layers.less_than(x=step_idx, y=max_len)
        while_op = layers.While(cond)
        # array states will be stored for each step.
1769
        ids = layers.array_write(
1770
            paddle.reshape(start_tokens, (-1, 1)), step_idx
1771
        )
G
gongweibao 已提交
1772 1773 1774 1775
        scores = layers.array_write(init_scores, step_idx)
        # cell states will be overwrited at each step.
        # caches contains states of history steps to reduce redundant
        # computation in decoder.
1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792
        caches = [
            {
                "k": layers.fill_constant_batch_size_like(
                    input=start_tokens,
                    shape=[-1, 0, d_model],
                    dtype=enc_output.dtype,
                    value=0,
                ),
                "v": layers.fill_constant_batch_size_like(
                    input=start_tokens,
                    shape=[-1, 0, d_model],
                    dtype=enc_output.dtype,
                    value=0,
                ),
            }
            for i in range(n_layer)
        ]
G
gongweibao 已提交
1793 1794
        with while_op.block():
            pre_ids = layers.array_read(array=ids, i=step_idx)
1795
            pre_ids = paddle.reshape(pre_ids, (-1, 1, 1))
G
gongweibao 已提交
1796 1797 1798
            pre_scores = layers.array_read(array=scores, i=step_idx)
            # sequence_expand can gather sequences according to lod thus can be
            # used in beam search to sift states corresponding to selected ids.
1799 1800 1801
            pre_src_attn_bias = layers.sequence_expand(
                x=trg_src_attn_bias, y=pre_scores
            )
G
gongweibao 已提交
1802
            pre_enc_output = layers.sequence_expand(x=enc_output, y=pre_scores)
1803 1804 1805 1806 1807 1808 1809
            pre_caches = [
                {
                    "k": layers.sequence_expand(x=cache["k"], y=pre_scores),
                    "v": layers.sequence_expand(x=cache["v"], y=pre_scores),
                }
                for cache in caches
            ]
G
gongweibao 已提交
1810 1811
            pre_pos = layers.elementwise_mul(
                x=layers.fill_constant_batch_size_like(
1812
                    input=pre_enc_output,  # can't use pre_ids here since it has lod
G
gongweibao 已提交
1813 1814
                    value=1,
                    shape=[-1, 1, 1],
1815 1816
                    dtype=pre_ids.dtype,
                ),
1817
                y=layers.increment(x=step_idx, value=1.0, in_place=False),
1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834
                axis=0,
            )
            logits = wrap_decoder(
                trg_vocab_size,
                max_in_len,
                n_layer,
                n_head,
                d_key,
                d_value,
                d_model,
                d_inner_hid,
                dropout_rate,
                weight_sharing,
                dec_inputs=(pre_ids, pre_pos, None, pre_src_attn_bias),
                enc_output=pre_enc_output,
                caches=pre_caches,
            )
1835
            logits = paddle.reshape(logits, (-1, trg_vocab_size))
G
gongweibao 已提交
1836 1837

            topk_scores, topk_indices = layers.topk(
1838 1839 1840 1841
                input=layers.softmax(logits), k=beam_size
            )
            accu_scores = layers.elementwise_add(
                x=layers.log(topk_scores),
1842
                y=paddle.reshape(pre_scores, shape=[-1]),
1843 1844
                axis=0,
            )
G
gongweibao 已提交
1845 1846 1847 1848 1849 1850 1851 1852
            # beam_search op uses lod to distinguish branches.
            topk_indices = layers.lod_reset(topk_indices, pre_ids)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
1853 1854
                end_id=eos_idx,
            )
G
gongweibao 已提交
1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865

            layers.increment(x=step_idx, value=1.0, in_place=True)
            # update states
            layers.array_write(selected_ids, i=step_idx, array=ids)
            layers.array_write(selected_scores, i=step_idx, array=scores)
            layers.assign(pre_src_attn_bias, trg_src_attn_bias)
            layers.assign(pre_enc_output, enc_output)
            for i in range(n_layer):
                layers.assign(pre_caches[i]["k"], caches[i]["k"])
                layers.assign(pre_caches[i]["v"], caches[i]["v"])
            length_cond = layers.less_than(x=step_idx, y=max_len)
2
201716010711 已提交
1866
            finish_cond = paddle.logical_not(layers.is_empty(x=selected_ids))
G
gongweibao 已提交
1867 1868 1869
            layers.logical_and(x=length_cond, y=finish_cond, out=cond)

        finished_ids, finished_scores = layers.beam_search_decode(
1870 1871
            ids, scores, beam_size=beam_size, end_id=eos_idx
        )
G
gongweibao 已提交
1872 1873 1874 1875 1876 1877 1878 1879
        return finished_ids, finished_scores

    finished_ids, finished_scores = beam_search()
    return finished_ids, finished_scores


def get_model(is_dist, is_async):
    sum_cost, avg_cost, predict, token_num = transformer(
1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898
        ModelHyperParams.src_vocab_size,
        ModelHyperParams.trg_vocab_size,
        ModelHyperParams.max_length + 1,
        ModelHyperParams.n_layer,
        ModelHyperParams.n_head,
        ModelHyperParams.d_key,
        ModelHyperParams.d_value,
        ModelHyperParams.d_model,
        ModelHyperParams.d_inner_hid,
        ModelHyperParams.dropout,
        ModelHyperParams.weight_sharing,
        TrainTaskConfig.label_smooth_eps,
    )

    local_lr_scheduler = LearningRateScheduler(
        ModelHyperParams.d_model,
        TrainTaskConfig.warmup_steps,
        TrainTaskConfig.learning_rate,
    )
1899 1900
    # Context to do validation.
    test_program = fluid.default_main_program().clone(for_test=True)
G
gongweibao 已提交
1901 1902 1903 1904 1905 1906

    if not is_dist:
        optimizer = fluid.optimizer.Adam(
            learning_rate=local_lr_scheduler.learning_rate,
            beta1=TrainTaskConfig.beta1,
            beta2=TrainTaskConfig.beta2,
1907 1908
            epsilon=TrainTaskConfig.eps,
        )
G
gongweibao 已提交
1909 1910 1911 1912 1913
        optimizer.minimize(sum_cost)
    elif is_async:
        optimizer = fluid.optimizer.SGD(0.003)
        optimizer.minimize(sum_cost)
    else:
1914 1915 1916 1917 1918 1919 1920 1921 1922 1923
        lr_decay = fluid.layers.learning_rate_scheduler.noam_decay(
            ModelHyperParams.d_model, TrainTaskConfig.warmup_steps
        )

        optimizer = fluid.optimizer.Adam(
            learning_rate=lr_decay,
            beta1=TrainTaskConfig.beta1,
            beta2=TrainTaskConfig.beta2,
            epsilon=TrainTaskConfig.eps,
        )
G
gongweibao 已提交
1924 1925
        optimizer.minimize(sum_cost)

1926 1927 1928 1929 1930 1931 1932 1933
    return (
        sum_cost,
        avg_cost,
        predict,
        token_num,
        local_lr_scheduler,
        test_program,
    )
X
Xin Pan 已提交
1934 1935


G
gongweibao 已提交
1936 1937 1938 1939
def update_args():
    src_dict = DataReader.load_dict(TrainTaskConfig.src_vocab_fpath)
    trg_dict = DataReader.load_dict(TrainTaskConfig.trg_vocab_fpath)
    dict_args = [
1940
        "src_vocab_size",
1941 1942 1943 1944 1945 1946 1947 1948 1949
        str(len(src_dict)),
        "trg_vocab_size",
        str(len(trg_dict)),
        "bos_idx",
        str(src_dict[TrainTaskConfig.special_token[0]]),
        "eos_idx",
        str(src_dict[TrainTaskConfig.special_token[1]]),
        "unk_idx",
        str(src_dict[TrainTaskConfig.special_token[2]]),
G
gongweibao 已提交
1950 1951 1952 1953 1954
    ]
    merge_cfg_from_list(dict_args, [TrainTaskConfig, ModelHyperParams])


class DistTransformer2x2(TestDistRunnerBase):
W
Wu Yi 已提交
1955 1956
    def run_pserver(self, args):
        get_model(True, not args.sync_mode)
1957 1958 1959 1960 1961 1962 1963
        t = self.get_transpiler(
            args.trainer_id,
            fluid.default_main_program(),
            args.endpoints,
            args.trainers,
            args.sync_mode,
        )
W
Wu Yi 已提交
1964
        pserver_prog = t.get_pserver_program(args.current_endpoint)
1965 1966 1967
        startup_prog = t.get_startup_program(
            args.current_endpoint, pserver_prog
        )
X
Xin Pan 已提交
1968 1969 1970 1971 1972 1973

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(startup_prog)
        exe.run(pserver_prog)

1974 1975
    def run_trainer(self, args):
        TrainTaskConfig.use_gpu = args.use_cuda
1976 1977 1978 1979 1980 1981 1982 1983
        (
            sum_cost,
            avg_cost,
            predict,
            token_num,
            local_lr_scheduler,
            test_program,
        ) = get_model(args.is_dist, not args.sync_mode)
G
gongweibao 已提交
1984

W
Wu Yi 已提交
1985
        if args.is_dist:
1986 1987 1988 1989 1990 1991 1992
            t = self.get_transpiler(
                args.trainer_id,
                fluid.default_main_program(),
                args.endpoints,
                args.trainers,
                args.sync_mode,
            )
X
Xin Pan 已提交
1993
            trainer_prog = t.get_trainer_program()
G
gongweibao 已提交
1994
            TrainTaskConfig.batch_size = 10
1995 1996 1997 1998 1999 2000
            TrainTaskConfig.train_file_pattern = (
                TrainTaskConfig.data_path
                + "train.tok.clean.bpe.32000.en-de.train_{}".format(
                    args.trainer_id
                )
            )
X
Xin Pan 已提交
2001
        else:
G
gongweibao 已提交
2002
            TrainTaskConfig.batch_size = 20
X
Xin Pan 已提交
2003 2004
            trainer_prog = fluid.default_main_program()

2005 2006 2007 2008 2009
        if args.use_cuda:
            place = fluid.CUDAPlace(0)
        else:
            place = fluid.CPUPlace()

X
Xin Pan 已提交
2010
        startup_exe = fluid.Executor(place)
G
gongweibao 已提交
2011

W
Wu Yi 已提交
2012
        TrainTaskConfig.local = not args.is_dist
G
gongweibao 已提交
2013

2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
        train_loop(
            startup_exe,
            trainer_prog,
            1,
            sum_cost,
            avg_cost,
            local_lr_scheduler,
            token_num,
            predict,
            test_program,
        )
X
Xin Pan 已提交
2025 2026 2027


if __name__ == "__main__":
G
gongweibao 已提交
2028 2029
    update_args()
    runtime_main(DistTransformer2x2)