dist_transformer.py 63.6 KB
Newer Older
X
Xin Pan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import time
G
gongweibao 已提交
17
import os
18
import functools
G
gongweibao 已提交
19 20 21 22 23 24
import time
from functools import partial
from os.path import expanduser
import glob
import random
import tarfile
X
Xin Pan 已提交
25 26

import paddle.fluid as fluid
G
gongweibao 已提交
27
import paddle.fluid.layers as layers
G
gongweibao 已提交
28
from test_dist_base import TestDistRunnerBase, runtime_main, RUN_STEP
G
gongweibao 已提交
29 30 31

const_para_attr = fluid.ParamAttr(initializer=fluid.initializer.Constant(0.001))
const_bias_attr = const_para_attr
X
Xin Pan 已提交
32 33 34 35 36 37

# Fix seed for test
fluid.default_startup_program().random_seed = 1
fluid.default_main_program().random_seed = 1


G
gongweibao 已提交
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
#from transformer_config import ModelHyperParams, TrainTaskConfig, merge_cfg_from_list
class TrainTaskConfig(object):
    # only support GPU currently
    use_gpu = True
    # the epoch number to train.
    pass_num = 1
    # the number of sequences contained in a mini-batch.
    # deprecated, set batch_size in args.
    batch_size = 20
    # the hyper parameters for Adam optimizer.
    # This static learning_rate will be multiplied to the LearningRateScheduler
    # derived learning rate the to get the final learning rate.
    learning_rate = 1
    beta1 = 0.9
    beta2 = 0.98
    eps = 1e-9
    # the parameters for learning rate scheduling.
    warmup_steps = 4000
    # the weight used to mix up the ground-truth distribution and the fixed
    # uniform distribution in label smoothing when training.
    # Set this as zero if label smoothing is not wanted.
    label_smooth_eps = 0.1
    # the directory for saving trained models.
    model_dir = "trained_models"
    # the directory for saving checkpoints.
    ckpt_dir = "trained_ckpts"
    # the directory for loading checkpoint.
    # If provided, continue training from the checkpoint.
    ckpt_path = None
    # the parameter to initialize the learning rate scheduler.
    # It should be provided if use checkpoints, since the checkpoint doesn't
    # include the training step counter currently.
    start_step = 0
X
Xin Pan 已提交
71

G
gongweibao 已提交
72
    check_acc = True
X
Xin Pan 已提交
73

G
gongweibao 已提交
74 75 76 77 78
    data_path = expanduser("~") + (
        "/.cache/paddle/dataset/test_dist_transformer/")
    src_vocab_fpath = data_path + "vocab.bpe.32000"
    trg_vocab_fpath = data_path + "vocab.bpe.32000"
    train_file_pattern = data_path + "train.tok.clean.bpe.32000.en-de"
W
Wu Yi 已提交
79
    val_file_pattern = data_path + "newstest2013.tok.bpe.32000.en-de.cut"
G
gongweibao 已提交
80 81 82 83 84 85 86 87
    pool_size = 2000
    sort_type = None
    local = True
    shuffle = False
    shuffle_batch = False
    special_token = ['<s>', '<e>', '<unk>']
    token_delimiter = ' '
    use_token_batch = False
X
Xin Pan 已提交
88 89


G
gongweibao 已提交
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
class InferTaskConfig(object):
    use_gpu = True
    # the number of examples in one run for sequence generation.
    batch_size = 10
    # the parameters for beam search.
    beam_size = 5
    max_out_len = 256
    # the number of decoded sentences to output.
    n_best = 1
    # the flags indicating whether to output the special tokens.
    output_bos = False
    output_eos = False
    output_unk = True
    # the directory for loading the trained model.
    model_path = "trained_models/pass_1.infer.model"
X
Xin Pan 已提交
105 106


G
gongweibao 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
class ModelHyperParams(object):
    # These following five vocabularies related configurations will be set
    # automatically according to the passed vocabulary path and special tokens.
    # size of source word dictionary.
    src_vocab_size = 10000
    # size of target word dictionay
    trg_vocab_size = 10000
    # index for <bos> token
    bos_idx = 0
    # index for <eos> token
    eos_idx = 1
    # index for <unk> token
    unk_idx = 2
    # max length of sequences deciding the size of position encoding table.
    # Start from 1 and count start and end tokens in.
    max_length = 256
X
Xin Pan 已提交
123 124 125 126 127
    # the dimension for word embeddings, which is also the last dimension of
    # the input and output of multi-head attention, position-wise feed-forward
    # networks, encoder and decoder.
    d_model = 512
    # size of the hidden layer in position-wise feed-forward networks.
G
gongweibao 已提交
128
    d_inner_hid = 2048
X
Xin Pan 已提交
129 130 131 132 133 134 135 136 137
    # the dimension that keys are projected to for dot-product attention.
    d_key = 64
    # the dimension that values are projected to for dot-product attention.
    d_value = 64
    # number of head used in multi-head attention.
    n_head = 8
    # number of sub-layers to be stacked in the encoder and decoder.
    n_layer = 6
    # dropout rate used by all dropout layers.
G
gongweibao 已提交
138 139 140 141 142 143
    dropout = 0.0  # no random
    # random seed used in dropout for CE.
    dropout_seed = None
    # the flag indicating whether to share embedding and softmax weights.
    # vocabularies in source and target should be same for weight sharing.
    weight_sharing = True
X
Xin Pan 已提交
144 145


G
gongweibao 已提交
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
def merge_cfg_from_list(cfg_list, g_cfgs):
    """
    Set the above global configurations using the cfg_list.
    """
    assert len(cfg_list) % 2 == 0
    for key, value in zip(cfg_list[0::2], cfg_list[1::2]):
        for g_cfg in g_cfgs:
            if hasattr(g_cfg, key):
                try:
                    value = eval(value)
                except Exception:  # for file path
                    pass
                setattr(g_cfg, key, value)
                break


# The placeholder for batch_size in compile time. Must be -1 currently to be
# consistent with some ops' infer-shape output in compile time, such as the
# sequence_expand op used in beamsearch decoder.
batch_size = -1
# The placeholder for squence length in compile time.
seq_len = ModelHyperParams.max_length
# Here list the data shapes and data types of all inputs.
# The shapes here act as placeholder and are set to pass the infer-shape in
# compile time.
input_descs = {
    # The actual data shape of src_word is:
    # [batch_size * max_src_len_in_batch, 1]
174
    "src_word": [(batch_size, seq_len, 1), "int64", 2],
G
gongweibao 已提交
175 176
    # The actual data shape of src_pos is:
    # [batch_size * max_src_len_in_batch, 1]
177
    "src_pos": [(batch_size, seq_len, 1), "int64"],
G
gongweibao 已提交
178 179 180 181
    # This input is used to remove attention weights on paddings in the
    # encoder.
    # The actual data shape of src_slf_attn_bias is:
    # [batch_size, n_head, max_src_len_in_batch, max_src_len_in_batch]
182 183
    "src_slf_attn_bias":
    [(batch_size, ModelHyperParams.n_head, seq_len, seq_len), "float32"],
G
gongweibao 已提交
184 185
    # The actual data shape of trg_word is:
    # [batch_size * max_trg_len_in_batch, 1]
186
    "trg_word": [(batch_size, seq_len, 1), "int64",
G
gongweibao 已提交
187 188 189
                 2],  # lod_level is only used in fast decoder.
    # The actual data shape of trg_pos is:
    # [batch_size * max_trg_len_in_batch, 1]
190
    "trg_pos": [(batch_size, seq_len, 1), "int64"],
G
gongweibao 已提交
191 192 193 194
    # This input is used to remove attention weights on paddings and
    # subsequent words in the decoder.
    # The actual data shape of trg_slf_attn_bias is:
    # [batch_size, n_head, max_trg_len_in_batch, max_trg_len_in_batch]
195 196
    "trg_slf_attn_bias":
    [(batch_size, ModelHyperParams.n_head, seq_len, seq_len), "float32"],
G
gongweibao 已提交
197 198 199 200
    # This input is used to remove attention weights on paddings of the source
    # input in the encoder-decoder attention.
    # The actual data shape of trg_src_attn_bias is:
    # [batch_size, n_head, max_trg_len_in_batch, max_src_len_in_batch]
201 202
    "trg_src_attn_bias":
    [(batch_size, ModelHyperParams.n_head, seq_len, seq_len), "float32"],
G
gongweibao 已提交
203 204 205 206 207 208
    # This input is used in independent decoder program for inference.
    # The actual data shape of enc_output is:
    # [batch_size, max_src_len_in_batch, d_model]
    "enc_output": [(batch_size, seq_len, ModelHyperParams.d_model), "float32"],
    # The actual data shape of label_word is:
    # [batch_size * max_trg_len_in_batch, 1]
209
    "lbl_word": [(batch_size * seq_len, 1), "int64"],
T
tianshuo78520a 已提交
210
    # This input is used to mask out the loss of padding tokens.
G
gongweibao 已提交
211 212
    # The actual data shape of label_weight is:
    # [batch_size * max_trg_len_in_batch, 1]
213
    "lbl_weight": [(batch_size * seq_len, 1), "float32"],
G
gongweibao 已提交
214
    # These inputs are used to change the shape tensor in beam-search decoder.
215 216 217
    "trg_slf_attn_pre_softmax_shape_delta": [(2, ), "int32"],
    "trg_slf_attn_post_softmax_shape_delta": [(4, ), "int32"],
    "init_score": [(batch_size, 1), "float32"],
G
gongweibao 已提交
218 219 220 221 222
}

# Names of word embedding table which might be reused for weight sharing.
word_emb_param_names = (
    "src_word_emb_table",
223 224
    "trg_word_emb_table",
)
G
gongweibao 已提交
225 226 227
# Names of position encoding table which will be initialized externally.
pos_enc_param_names = (
    "src_pos_enc_table",
228 229
    "trg_pos_enc_table",
)
G
gongweibao 已提交
230 231 232 233
# separated inputs for different usages.
encoder_data_input_fields = (
    "src_word",
    "src_pos",
234 235
    "src_slf_attn_bias",
)
G
gongweibao 已提交
236 237 238 239 240
decoder_data_input_fields = (
    "trg_word",
    "trg_pos",
    "trg_slf_attn_bias",
    "trg_src_attn_bias",
241 242
    "enc_output",
)
G
gongweibao 已提交
243 244
label_data_input_fields = (
    "lbl_word",
245 246
    "lbl_weight",
)
G
gongweibao 已提交
247 248 249 250 251
# In fast decoder, trg_pos (only containing the current time step) is generated
# by ops and trg_slf_attn_bias is not needed.
fast_decoder_data_input_fields = (
    "trg_word",
    "init_score",
252 253
    "trg_src_attn_bias",
)
G
gongweibao 已提交
254 255 256 257 258 259 260 261 262 263 264

# fast_decoder_util_input_fields = (
#     "trg_slf_attn_pre_softmax_shape_delta",
#     "trg_slf_attn_post_softmax_shape_delta", )


#from optim import LearningRateScheduler
class LearningRateScheduler(object):
    """
    Wrapper for learning rate scheduling as described in the Transformer paper.
    LearningRateScheduler adapts the learning rate externally and the adapted
T
tianshuo78520a 已提交
265
    learning rate will be fed into the main_program as input data.
G
gongweibao 已提交
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
    """

    def __init__(self,
                 d_model,
                 warmup_steps,
                 learning_rate=0.001,
                 current_steps=0,
                 name="learning_rate"):
        self.current_steps = current_steps
        self.warmup_steps = warmup_steps
        self.d_model = d_model
        self.static_lr = learning_rate
        self.learning_rate = layers.create_global_var(
            name=name,
            shape=[1],
            value=float(learning_rate),
            dtype="float32",
            persistable=True)

    def update_learning_rate(self):
        self.current_steps += 1
        lr_value = np.power(self.d_model, -0.5) * np.min([
            np.power(self.current_steps, -0.5),
            np.power(self.warmup_steps, -1.5) * self.current_steps
        ]) * self.static_lr
        return np.array([lr_value], dtype="float32")


#from transformer_train import train_loop
def pad_batch_data(insts,
                   pad_idx,
                   n_head,
                   is_target=False,
                   is_label=False,
                   return_attn_bias=True,
                   return_max_len=True,
                   return_num_token=False):
X
Xin Pan 已提交
303 304
    """
    Pad the instances to the max sequence length in batch, and generate the
G
gongweibao 已提交
305
    corresponding position data and attention bias.
X
Xin Pan 已提交
306
    """
G
gongweibao 已提交
307 308
    return_list = []
    max_len = max(len(inst) for inst in insts)
309
    num_token = functools.reduce(lambda x, y: x + y,
310 311
                                 [len(inst)
                                  for inst in insts]) if return_num_token else 0
G
gongweibao 已提交
312 313 314 315 316 317
    # Any token included in dict can be used to pad, since the paddings' loss
    # will be masked out by weights and make no effect on parameter gradients.
    inst_data = np.array(
        [inst + [pad_idx] * (max_len - len(inst)) for inst in insts])
    return_list += [inst_data.astype("int64").reshape([-1, 1])]
    if is_label:  # label weight
318 319
        inst_weight = np.array([[1.] * len(inst) + [0.] * (max_len - len(inst))
                                for inst in insts])
G
gongweibao 已提交
320 321 322
        return_list += [inst_weight.astype("float32").reshape([-1, 1])]
    else:  # position data
        inst_pos = np.array([
323 324
            list(range(1,
                       len(inst) + 1)) + [0] * (max_len - len(inst))
G
gongweibao 已提交
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
            for inst in insts
        ])
        return_list += [inst_pos.astype("int64").reshape([-1, 1])]
    if return_attn_bias:
        if is_target:
            # This is used to avoid attention on paddings and subsequent
            # words.
            slf_attn_bias_data = np.ones((inst_data.shape[0], max_len, max_len))
            slf_attn_bias_data = np.triu(slf_attn_bias_data,
                                         1).reshape([-1, 1, max_len, max_len])
            slf_attn_bias_data = np.tile(slf_attn_bias_data,
                                         [1, n_head, 1, 1]) * [-1e9]
        else:
            # This is used to avoid attention on paddings.
            slf_attn_bias_data = np.array([[0] * len(inst) + [-1e9] *
                                           (max_len - len(inst))
                                           for inst in insts])
            slf_attn_bias_data = np.tile(
                slf_attn_bias_data.reshape([-1, 1, 1, max_len]),
                [1, n_head, max_len, 1])
        return_list += [slf_attn_bias_data.astype("float32")]
    if return_max_len:
        return_list += [max_len]
    if return_num_token:
        return_list += [num_token]
    return return_list if len(return_list) > 1 else return_list[0]


def prepare_batch_input(insts, data_input_names, src_pad_idx, trg_pad_idx,
                        n_head, d_model):
    """
    Put all padded data needed by training into a dict.
    """
    src_word, src_pos, src_slf_attn_bias, src_max_len = pad_batch_data(
        [inst[0] for inst in insts], src_pad_idx, n_head, is_target=False)
    src_word = src_word.reshape(-1, src_max_len, 1)
    src_pos = src_pos.reshape(-1, src_max_len, 1)
    trg_word, trg_pos, trg_slf_attn_bias, trg_max_len = pad_batch_data(
        [inst[1] for inst in insts], trg_pad_idx, n_head, is_target=True)
    trg_word = trg_word.reshape(-1, trg_max_len, 1)
    trg_pos = trg_pos.reshape(-1, trg_max_len, 1)
X
Xin Pan 已提交
366 367 368 369

    trg_src_attn_bias = np.tile(src_slf_attn_bias[:, :, ::src_max_len, :],
                                [1, 1, trg_max_len, 1]).astype("float32")

G
gongweibao 已提交
370 371 372 373 374 375 376 377 378 379 380
    lbl_word, lbl_weight, num_token = pad_batch_data(
        [inst[2] for inst in insts],
        trg_pad_idx,
        n_head,
        is_target=False,
        is_label=True,
        return_attn_bias=False,
        return_max_len=False,
        return_num_token=True)

    data_input_dict = dict(
M
minqiyang 已提交
381 382 383 384 385
        list(
            zip(data_input_names, [
                src_word, src_pos, src_slf_attn_bias, trg_word, trg_pos,
                trg_slf_attn_bias, trg_src_attn_bias, lbl_word, lbl_weight
            ])))
G
gongweibao 已提交
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
    return data_input_dict, np.asarray([num_token], dtype="float32")


def read_multiple(reader, count, clip_last=True):
    """
    Stack data from reader for multi-devices.
    """

    def __impl__():
        res = []
        for item in reader():
            res.append(item)
            if len(res) == count:
                yield res
                res = []
        if len(res) == count:
            yield res
        elif not clip_last:
            data = []
            for item in res:
                data += item
            if len(data) > count:
                inst_num_per_part = len(data) // count
                yield [
                    data[inst_num_per_part * i:inst_num_per_part * (i + 1)]
                    for i in range(count)
                ]

    return __impl__


def split_data(data, num_part):
    """
    Split data for each device.
    """
    if len(data) == num_part:
        return data
    data = data[0]
    inst_num_per_part = len(data) // num_part
X
Xin Pan 已提交
425
    return [
G
gongweibao 已提交
426 427
        data[inst_num_per_part * i:inst_num_per_part * (i + 1)]
        for i in range(num_part)
X
Xin Pan 已提交
428 429 430
    ]


431
def test_context(test_program, avg_cost, train_exe, dev_count, data_input_names,
G
gongweibao 已提交
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
                 sum_cost, token_num):
    val_data = DataReader(
        src_vocab_fpath=TrainTaskConfig.src_vocab_fpath,
        trg_vocab_fpath=TrainTaskConfig.trg_vocab_fpath,
        fpattern=TrainTaskConfig.val_file_pattern,
        token_delimiter=TrainTaskConfig.token_delimiter,
        use_token_batch=TrainTaskConfig.use_token_batch,
        batch_size=TrainTaskConfig.batch_size *
        (1 if TrainTaskConfig.use_token_batch else dev_count),
        pool_size=TrainTaskConfig.pool_size,
        sort_type=TrainTaskConfig.sort_type,
        start_mark=TrainTaskConfig.special_token[0],
        end_mark=TrainTaskConfig.special_token[1],
        unk_mark=TrainTaskConfig.special_token[2],
        # count start and end tokens out
        max_length=ModelHyperParams.max_length - 2,
        clip_last_batch=False,
        shuffle=False,
        shuffle_batch=False)

    build_strategy = fluid.BuildStrategy()

    strategy = fluid.ExecutionStrategy()
    strategy.num_threads = 1

457 458 459 460 461
    test_exe = fluid.ParallelExecutor(use_cuda=TrainTaskConfig.use_gpu,
                                      main_program=test_program,
                                      share_vars_from=train_exe,
                                      build_strategy=build_strategy,
                                      exec_strategy=strategy)
G
gongweibao 已提交
462 463 464 465 466 467 468 469 470 471

    def test(exe=test_exe):
        test_total_cost = 0
        test_total_token = 0
        test_data = read_multiple(
            reader=val_data.batch_generator,
            count=dev_count if TrainTaskConfig.use_token_batch else 1)
        for batch_id, data in enumerate(test_data()):
            feed_list = []
            for place_id, data_buffer in enumerate(
472
                    split_data(data, num_part=dev_count)):
G
gongweibao 已提交
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
                data_input_dict, _ = prepare_batch_input(
                    data_buffer, data_input_names, ModelHyperParams.eos_idx,
                    ModelHyperParams.eos_idx, ModelHyperParams.n_head,
                    ModelHyperParams.d_model)
                feed_list.append(data_input_dict)

            outs = exe.run(feed=feed_list,
                           fetch_list=[sum_cost.name, token_num.name])
            sum_cost_val, token_num_val = np.array(outs[0]), np.array(outs[1])
            test_total_cost += sum_cost_val.sum()
            test_total_token += token_num_val.sum()
        test_avg_cost = test_total_cost / test_total_token
        test_ppl = np.exp([min(test_avg_cost, 100)])
        return test_avg_cost, test_ppl

    return test


def train_loop(exe, train_progm, dev_count, sum_cost, avg_cost, lr_scheduler,
492
               token_num, predict, test_program):
G
gongweibao 已提交
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
    # Initialize the parameters.
    if TrainTaskConfig.ckpt_path:
        lr_scheduler.current_steps = TrainTaskConfig.start_step
    else:
        exe.run(fluid.framework.default_startup_program())

    train_data = DataReader(
        src_vocab_fpath=TrainTaskConfig.src_vocab_fpath,
        trg_vocab_fpath=TrainTaskConfig.trg_vocab_fpath,
        fpattern=TrainTaskConfig.train_file_pattern,
        token_delimiter=TrainTaskConfig.token_delimiter,
        use_token_batch=TrainTaskConfig.use_token_batch,
        batch_size=TrainTaskConfig.batch_size *
        (1 if TrainTaskConfig.use_token_batch else dev_count),
        pool_size=TrainTaskConfig.pool_size,
        sort_type=TrainTaskConfig.sort_type,
        shuffle=TrainTaskConfig.shuffle,
        shuffle_batch=TrainTaskConfig.shuffle_batch,
        start_mark=TrainTaskConfig.special_token[0],
        end_mark=TrainTaskConfig.special_token[1],
        unk_mark=TrainTaskConfig.special_token[2],
        # count start and end tokens out
        max_length=ModelHyperParams.max_length - 2,
        clip_last_batch=False)
    train_data = read_multiple(
        reader=train_data.batch_generator,
        count=dev_count if TrainTaskConfig.use_token_batch else 1)

    build_strategy = fluid.BuildStrategy()
    # Since the token number differs among devices, customize gradient scale to
    # use token average cost among multi-devices. and the gradient scale is
    # `1 / token_number` for average cost.
    build_strategy.gradient_scale_strategy = fluid.BuildStrategy.GradientScaleStrategy.Customized

    strategy = fluid.ExecutionStrategy()
    strategy.num_threads = 1

530 531 532 533 534
    train_exe = fluid.ParallelExecutor(use_cuda=TrainTaskConfig.use_gpu,
                                       loss_name=sum_cost.name,
                                       main_program=train_progm,
                                       build_strategy=build_strategy,
                                       exec_strategy=strategy)
G
gongweibao 已提交
535 536 537 538 539

    data_input_names = encoder_data_input_fields + decoder_data_input_fields[:
                                                                             -1] + label_data_input_fields

    if TrainTaskConfig.val_file_pattern is not None:
540
        test = test_context(test_program, avg_cost, train_exe, dev_count,
G
gongweibao 已提交
541 542 543 544
                            data_input_names, sum_cost, token_num)

    # the best cross-entropy value with label smoothing
    loss_normalizer = -((1. - TrainTaskConfig.label_smooth_eps) * np.log(
545 546 547 548
        (1. - TrainTaskConfig.label_smooth_eps)) +
                        TrainTaskConfig.label_smooth_eps *
                        np.log(TrainTaskConfig.label_smooth_eps /
                               (ModelHyperParams.trg_vocab_size - 1) + 1e-20))
G
gongweibao 已提交
549
    init = False
550
    for pass_id in range(TrainTaskConfig.pass_num):
G
gongweibao 已提交
551 552
        pass_start_time = time.time()
        for batch_id, data in enumerate(train_data()):
G
gongweibao 已提交
553
            if batch_id >= RUN_STEP:
G
gongweibao 已提交
554 555 556 557 558 559 560 561 562
                break

            feed_list = []
            total_num_token = 0

            if TrainTaskConfig.local:
                lr_rate = lr_scheduler.update_learning_rate()

            for place_id, data_buffer in enumerate(
563
                    split_data(data, num_part=dev_count)):
G
gongweibao 已提交
564 565 566 567 568
                data_input_dict, num_token = prepare_batch_input(
                    data_buffer, data_input_names, ModelHyperParams.eos_idx,
                    ModelHyperParams.eos_idx, ModelHyperParams.n_head,
                    ModelHyperParams.d_model)
                total_num_token += num_token
M
minqiyang 已提交
569
                feed_kv_pairs = list(data_input_dict.items())
G
gongweibao 已提交
570
                if TrainTaskConfig.local:
571 572
                    feed_kv_pairs += list(
                        {lr_scheduler.learning_rate.name: lr_rate}.items())
G
gongweibao 已提交
573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
                feed_list.append(dict(feed_kv_pairs))

                if not init:
                    for pos_enc_param_name in pos_enc_param_names:
                        pos_enc = position_encoding_init(
                            ModelHyperParams.max_length + 1,
                            ModelHyperParams.d_model)
                        feed_list[place_id][pos_enc_param_name] = pos_enc

            if not TrainTaskConfig.check_acc:
                for feed_dict in feed_list:
                    feed_dict[sum_cost.name + "@GRAD"] = 1. / total_num_token
            else:
                b = 100 * TrainTaskConfig.batch_size
                a = np.asarray([b], dtype="float32")
                for feed_dict in feed_list:
                    feed_dict[sum_cost.name + "@GRAD"] = 1. / a

            outs = train_exe.run(fetch_list=[sum_cost.name, token_num.name],
                                 feed=feed_list)

            sum_cost_val, token_num_val = np.array(outs[0]), np.array(outs[1])
            total_sum_cost = sum_cost_val.sum()
            total_token_num = token_num_val.sum()
            total_avg_cost = total_sum_cost / total_token_num

            init = True

            # Validate and save the model for inference.
G
gongweibao 已提交
602 603 604 605 606
            if TrainTaskConfig.val_file_pattern is not None:
                val_avg_cost, val_ppl = test()
                print("[%f]" % val_avg_cost)
            else:
                assert (False)
G
gongweibao 已提交
607 608 609 610 611 612 613 614 615 616


#import transformer_reader as reader
class SortType(object):
    GLOBAL = 'global'
    POOL = 'pool'
    NONE = "none"


class Converter(object):
617

G
gongweibao 已提交
618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
    def __init__(self, vocab, beg, end, unk, delimiter):
        self._vocab = vocab
        self._beg = beg
        self._end = end
        self._unk = unk
        self._delimiter = delimiter

    def __call__(self, sentence):
        return [self._beg] + [
            self._vocab.get(w, self._unk)
            for w in sentence.split(self._delimiter)
        ] + [self._end]


class ComposedConverter(object):
633

G
gongweibao 已提交
634 635 636 637 638 639 640 641 642 643 644
    def __init__(self, converters):
        self._converters = converters

    def __call__(self, parallel_sentence):
        return [
            self._converters[i](parallel_sentence[i])
            for i in range(len(self._converters))
        ]


class SentenceBatchCreator(object):
645

G
gongweibao 已提交
646 647 648 649 650 651 652 653 654 655 656 657 658
    def __init__(self, batch_size):
        self.batch = []
        self._batch_size = batch_size

    def append(self, info):
        self.batch.append(info)
        if len(self.batch) == self._batch_size:
            tmp = self.batch
            self.batch = []
            return tmp


class TokenBatchCreator(object):
659

G
gongweibao 已提交
660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
    def __init__(self, batch_size):
        self.batch = []
        self.max_len = -1
        self._batch_size = batch_size

    def append(self, info):
        cur_len = info.max_len
        max_len = max(self.max_len, cur_len)
        if max_len * (len(self.batch) + 1) > self._batch_size:
            result = self.batch
            self.batch = [info]
            self.max_len = cur_len
            return result
        else:
            self.max_len = max_len
            self.batch.append(info)


class SampleInfo(object):
679

G
gongweibao 已提交
680 681 682 683 684 685 686
    def __init__(self, i, max_len, min_len):
        self.i = i
        self.min_len = min_len
        self.max_len = max_len


class MinMaxFilter(object):
687

G
gongweibao 已提交
688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
    def __init__(self, max_len, min_len, underlying_creator):
        self._min_len = min_len
        self._max_len = max_len
        self._creator = underlying_creator

    def append(self, info):
        if info.max_len > self._max_len or info.min_len < self._min_len:
            return
        else:
            return self._creator.append(info)

    @property
    def batch(self):
        return self._creator.batch


class DataReader(object):
    """
    The data reader loads all data from files and produces batches of data
    in the way corresponding to settings.

    An example of returning a generator producing data batches whose data
    is shuffled in each pass and sorted in each pool:

    ```
    train_data = DataReader(
        src_vocab_fpath='data/src_vocab_file',
        trg_vocab_fpath='data/trg_vocab_file',
        fpattern='data/part-*',
        use_token_batch=True,
        batch_size=2000,
        pool_size=10000,
        sort_type=SortType.POOL,
        shuffle=True,
        shuffle_batch=True,
        start_mark='<s>',
        end_mark='<e>',
        unk_mark='<unk>',
        clip_last_batch=False).batch_generator
    ```

    :param src_vocab_fpath: The path of vocabulary file of source language.
    :type src_vocab_fpath: basestring
    :param trg_vocab_fpath: The path of vocabulary file of target language.
    :type trg_vocab_fpath: basestring
    :param fpattern: The pattern to match data files.
    :type fpattern: basestring
    :param batch_size: The number of sequences contained in a mini-batch.
        or the maximum number of tokens (include paddings) contained in a
        mini-batch.
    :type batch_size: int
    :param pool_size: The size of pool buffer.
    :type pool_size: int
    :param sort_type: The grain to sort by length: 'global' for all
        instances; 'pool' for instances in pool; 'none' for no sort.
    :type sort_type: basestring
    :param clip_last_batch: Whether to clip the last uncompleted batch.
    :type clip_last_batch: bool
    :param tar_fname: The data file in tar if fpattern matches a tar file.
    :type tar_fname: basestring
    :param min_length: The minimum length used to filt sequences.
    :type min_length: int
    :param max_length: The maximum length used to filt sequences.
    :type max_length: int
    :param shuffle: Whether to shuffle all instances.
    :type shuffle: bool
    :param shuffle_batch: Whether to shuffle the generated batches.
    :type shuffle_batch: bool
    :param use_token_batch: Whether to produce batch data according to
        token number.
    :type use_token_batch: bool
    :param field_delimiter: The delimiter used to split source and target in
        each line of data file.
    :type field_delimiter: basestring
    :param token_delimiter: The delimiter used to split tokens in source or
        target sentences.
    :type token_delimiter: basestring
    :param start_mark: The token representing for the beginning of
        sentences in dictionary.
    :type start_mark: basestring
    :param end_mark: The token representing for the end of sentences
        in dictionary.
    :type end_mark: basestring
    :param unk_mark: The token representing for unknown word in dictionary.
    :type unk_mark: basestring
    :param seed: The seed for random.
    :type seed: int
    """

    def __init__(self,
                 src_vocab_fpath,
                 trg_vocab_fpath,
                 fpattern,
                 batch_size,
                 pool_size,
                 sort_type=SortType.GLOBAL,
                 clip_last_batch=True,
                 tar_fname=None,
                 min_length=0,
                 max_length=100,
                 shuffle=True,
                 shuffle_batch=False,
                 use_token_batch=False,
                 field_delimiter="\t",
                 token_delimiter=" ",
                 start_mark="<s>",
                 end_mark="<e>",
                 unk_mark="<unk>",
                 seed=0):
        self._src_vocab = self.load_dict(src_vocab_fpath)
        self._only_src = True
        if trg_vocab_fpath is not None:
            self._trg_vocab = self.load_dict(trg_vocab_fpath)
            self._only_src = False
        self._pool_size = pool_size
        self._batch_size = batch_size
        self._use_token_batch = use_token_batch
        self._sort_type = sort_type
        self._clip_last_batch = clip_last_batch
        self._shuffle = shuffle
        self._shuffle_batch = shuffle_batch
        self._min_length = min_length
        self._max_length = max_length
        self._field_delimiter = field_delimiter
        self._token_delimiter = token_delimiter
        self.load_src_trg_ids(end_mark, fpattern, start_mark, tar_fname,
                              unk_mark)
        self._random = random.Random(x=seed)

    def load_src_trg_ids(self, end_mark, fpattern, start_mark, tar_fname,
                         unk_mark):
        converters = [
820 821 822 823 824
            Converter(vocab=self._src_vocab,
                      beg=self._src_vocab[start_mark],
                      end=self._src_vocab[end_mark],
                      unk=self._src_vocab[unk_mark],
                      delimiter=self._token_delimiter)
G
gongweibao 已提交
825 826 827
        ]
        if not self._only_src:
            converters.append(
828 829 830 831 832
                Converter(vocab=self._trg_vocab,
                          beg=self._trg_vocab[start_mark],
                          end=self._trg_vocab[end_mark],
                          unk=self._trg_vocab[unk_mark],
                          delimiter=self._token_delimiter))
G
gongweibao 已提交
833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857

        converters = ComposedConverter(converters)

        self._src_seq_ids = []
        self._trg_seq_ids = None if self._only_src else []
        self._sample_infos = []

        for i, line in enumerate(self._load_lines(fpattern, tar_fname)):
            src_trg_ids = converters(line)
            self._src_seq_ids.append(src_trg_ids[0])
            lens = [len(src_trg_ids[0])]
            if not self._only_src:
                self._trg_seq_ids.append(src_trg_ids[1])
                lens.append(len(src_trg_ids[1]))
            self._sample_infos.append(SampleInfo(i, max(lens), min(lens)))

    def _load_lines(self, fpattern, tar_fname):
        fpaths = glob.glob(fpattern)

        if len(fpaths) == 1 and tarfile.is_tarfile(fpaths[0]):
            if tar_fname is None:
                raise Exception("If tar file provided, please set tar_fname.")

            f = tarfile.open(fpaths[0], "r")
            for line in f.extractfile(tar_fname):
858
                line = line.decode()
G
gongweibao 已提交
859
                fields = line.strip("\n").split(self._field_delimiter)
860 861 862
                if (not self._only_src
                        and len(fields) == 2) or (self._only_src
                                                  and len(fields) == 1):
G
gongweibao 已提交
863 864 865 866 867 868
                    yield fields
        else:
            for fpath in fpaths:
                if not os.path.isfile(fpath):
                    raise IOError("Invalid file: %s" % fpath)

M
minqiyang 已提交
869
                with open(fpath, "rb") as f:
G
gongweibao 已提交
870
                    for line in f:
871
                        line = line.decode()
G
gongweibao 已提交
872
                        fields = line.strip("\n").split(self._field_delimiter)
873 874 875
                        if (not self._only_src
                                and len(fields) == 2) or (self._only_src
                                                          and len(fields) == 1):
G
gongweibao 已提交
876 877 878 879 880
                            yield fields

    @staticmethod
    def load_dict(dict_path, reverse=False):
        word_dict = {}
M
minqiyang 已提交
881
        with open(dict_path, "rb") as fdict:
G
gongweibao 已提交
882
            for idx, line in enumerate(fdict):
883
                line = line.decode()
G
gongweibao 已提交
884 885 886 887 888 889 890 891 892
                if reverse:
                    word_dict[idx] = line.strip("\n")
                else:
                    word_dict[line.strip("\n")] = idx
        return word_dict

    def batch_generator(self):
        # global sort or global shuffle
        if self._sort_type == SortType.GLOBAL:
893 894 895
            infos = sorted(self._sample_infos,
                           key=lambda x: x.max_len,
                           reverse=True)
G
gongweibao 已提交
896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967
        else:
            if self._shuffle:
                infos = self._sample_infos
                self._random.shuffle(infos)
            else:
                infos = self._sample_infos

            if self._sort_type == SortType.POOL:
                for i in range(0, len(infos), self._pool_size):
                    infos[i:i + self._pool_size] = sorted(
                        infos[i:i + self._pool_size], key=lambda x: x.max_len)

        # concat batch
        batches = []
        batch_creator = TokenBatchCreator(
            self._batch_size
        ) if self._use_token_batch else SentenceBatchCreator(self._batch_size)
        batch_creator = MinMaxFilter(self._max_length, self._min_length,
                                     batch_creator)

        for info in infos:
            batch = batch_creator.append(info)
            if batch is not None:
                batches.append(batch)

        if not self._clip_last_batch and len(batch_creator.batch) != 0:
            batches.append(batch_creator.batch)

        if self._shuffle_batch:
            self._random.shuffle(batches)

        for batch in batches:
            batch_ids = [info.i for info in batch]

            if self._only_src:
                yield [[self._src_seq_ids[idx]] for idx in batch_ids]
            else:
                yield [(self._src_seq_ids[idx], self._trg_seq_ids[idx][:-1],
                        self._trg_seq_ids[idx][1:]) for idx in batch_ids]


#from transformer_model import transformer
def position_encoding_init(n_position, d_pos_vec):
    """
    Generate the initial values for the sinusoid position encoding table.
    """
    position_enc = np.array([[
        pos / np.power(10000, 2 * (j // 2) / d_pos_vec)
        for j in range(d_pos_vec)
    ] if pos != 0 else np.zeros(d_pos_vec) for pos in range(n_position)])
    position_enc[1:, 0::2] = np.sin(position_enc[1:, 0::2])  # dim 2i
    position_enc[1:, 1::2] = np.cos(position_enc[1:, 1::2])  # dim 2i+1
    return position_enc.astype("float32")


def multi_head_attention(queries,
                         keys,
                         values,
                         attn_bias,
                         d_key,
                         d_value,
                         d_model,
                         n_head=1,
                         dropout_rate=0.,
                         cache=None):
    """
    Multi-Head Attention. Note that attn_bias is added to the logit before
    computing softmax activiation to mask certain selected positions so that
    they will not considered in attention weights.
    """
    if not (len(queries.shape) == len(keys.shape) == len(values.shape) == 3):
        raise ValueError(
T
tianshuo78520a 已提交
968
            "Inputs: queries, keys and values should all be 3-D tensors.")
G
gongweibao 已提交
969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992

    def __compute_qkv(queries, keys, values, n_head, d_key, d_value):
        """
        Add linear projection to queries, keys, and values.
        """
        q = layers.fc(input=queries,
                      size=d_key * n_head,
                      num_flatten_dims=2,
                      param_attr=const_para_attr,
                      bias_attr=const_bias_attr)
        k = layers.fc(input=keys,
                      size=d_key * n_head,
                      num_flatten_dims=2,
                      param_attr=const_para_attr,
                      bias_attr=const_bias_attr)
        v = layers.fc(input=values,
                      size=d_value * n_head,
                      num_flatten_dims=2,
                      param_attr=const_para_attr,
                      bias_attr=const_bias_attr)
        return q, k, v

    def __split_heads(x, n_head):
        """
T
tianshuo78520a 已提交
993
        Reshape the last dimension of input tensor x so that it becomes two
G
gongweibao 已提交
994 995 996 997 998 999 1000 1001 1002 1003
        dimensions and then transpose. Specifically, input a tensor with shape
        [bs, max_sequence_length, n_head * hidden_dim] then output a tensor
        with shape [bs, n_head, max_sequence_length, hidden_dim].
        """
        if n_head == 1:
            return x

        hidden_size = x.shape[-1]
        # The value 0 in shape attr means copying the corresponding dimension
        # size of the input as the output dimension size.
1004 1005
        reshaped = layers.reshape(x=x,
                                  shape=[0, 0, n_head, hidden_size // n_head])
G
gongweibao 已提交
1006

T
tianshuo78520a 已提交
1007
        # permute the dimensions into:
G
gongweibao 已提交
1008 1009 1010 1011 1012
        # [batch_size, n_head, max_sequence_len, hidden_size_per_head]
        return layers.transpose(x=reshaped, perm=[0, 2, 1, 3])

    def __combine_heads(x):
        """
T
tianshuo78520a 已提交
1013
        Transpose and then reshape the last two dimensions of input tensor x
G
gongweibao 已提交
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
        so that it becomes one dimension, which is reverse to __split_heads.
        """
        if len(x.shape) == 3: return x
        if len(x.shape) != 4:
            raise ValueError("Input(x) should be a 4-D Tensor.")

        trans_x = layers.transpose(x, perm=[0, 2, 1, 3])
        # The value 0 in shape attr means copying the corresponding dimension
        # size of the input as the output dimension size.
        return layers.reshape(
            x=trans_x,
M
minqiyang 已提交
1025
            shape=list(map(int, [0, 0, trans_x.shape[2] * trans_x.shape[3]])))
G
gongweibao 已提交
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036

    def scaled_dot_product_attention(q, k, v, attn_bias, d_model, dropout_rate):
        """
        Scaled Dot-Product Attention
        """
        scaled_q = layers.scale(x=q, scale=d_model**-0.5)
        product = layers.matmul(x=scaled_q, y=k, transpose_y=True)
        if attn_bias:
            product += attn_bias
        weights = layers.softmax(product)
        if dropout_rate:
1037 1038 1039 1040
            weights = layers.dropout(weights,
                                     dropout_prob=dropout_rate,
                                     seed=ModelHyperParams.dropout_seed,
                                     is_test=False)
G
gongweibao 已提交
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
        out = layers.matmul(weights, v)
        return out

    q, k, v = __compute_qkv(queries, keys, values, n_head, d_key, d_value)

    if cache is not None:  # use cache and concat time steps
        k = cache["k"] = layers.concat([cache["k"], k], axis=1)
        v = cache["v"] = layers.concat([cache["v"], v], axis=1)

    q = __split_heads(q, n_head)
    k = __split_heads(k, n_head)
    v = __split_heads(v, n_head)

    ctx_multiheads = scaled_dot_product_attention(q, k, v, attn_bias, d_model,
                                                  dropout_rate)

    out = __combine_heads(ctx_multiheads)

    # Project back to the model size.
    proj_out = layers.fc(input=out,
                         size=d_model,
                         num_flatten_dims=2,
                         param_attr=const_para_attr,
                         bias_attr=const_bias_attr)
    return proj_out


def positionwise_feed_forward(x, d_inner_hid, d_hid):
    """
    Position-wise Feed-Forward Networks.
    This module consists of two linear transformations with a ReLU activation
    in between, which is applied to each position separately and identically.
    """
    hidden = layers.fc(input=x,
                       size=d_inner_hid,
                       num_flatten_dims=2,
                       act="relu",
                       param_attr=const_para_attr,
                       bias_attr=const_bias_attr)
    out = layers.fc(input=hidden,
                    size=d_hid,
                    num_flatten_dims=2,
                    param_attr=const_para_attr,
                    bias_attr=const_bias_attr)
    return out


def pre_post_process_layer(prev_out, out, process_cmd, dropout_rate=0.):
    """
    Add residual connection, layer normalization and droput to the out tensor
    optionally according to the value of process_cmd.
    This will be used before or after multi-head attention and position-wise
    feed-forward networks.
    """
    for cmd in process_cmd:
        if cmd == "a":  # add residual connection
            out = out + prev_out if prev_out else out
        elif cmd == "n":  # add layer normalization
1099 1100 1101 1102
            out = layers.layer_norm(out,
                                    begin_norm_axis=len(out.shape) - 1,
                                    param_attr=fluid.initializer.Constant(1.),
                                    bias_attr=fluid.initializer.Constant(0.))
G
gongweibao 已提交
1103 1104
        elif cmd == "d":  # add dropout
            if dropout_rate:
1105 1106 1107 1108
                out = layers.dropout(out,
                                     dropout_prob=dropout_rate,
                                     seed=ModelHyperParams.dropout_seed,
                                     is_test=False)
G
gongweibao 已提交
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
    return out


pre_process_layer = partial(pre_post_process_layer, None)
post_process_layer = pre_post_process_layer


def prepare_encoder(src_word,
                    src_pos,
                    src_vocab_size,
                    src_emb_dim,
                    src_max_len,
                    dropout_rate=0.,
                    word_emb_param_name=None,
                    pos_enc_param_name=None):
    """Add word embeddings and position encodings.
    The output tensor has a shape of:
    [batch_size, max_src_length_in_batch, d_model].
    This module is used at the bottom of the encoder stacks.
    """
    if TrainTaskConfig.check_acc:
        src_word_emb = layers.embedding(
            src_word,
            size=[src_vocab_size, src_emb_dim],
            param_attr=fluid.ParamAttr(
                name=word_emb_param_name,
                initializer=fluid.initializer.ConstantInitializer(0.001)))
    else:
        src_word_emb = layers.embedding(
            src_word,
            size=[src_vocab_size, src_emb_dim],
1140 1141 1142
            param_attr=fluid.ParamAttr(name=word_emb_param_name,
                                       initializer=fluid.initializer.Normal(
                                           0., src_emb_dim**-0.5)))
G
gongweibao 已提交
1143 1144 1145 1146 1147 1148 1149 1150 1151

    src_word_emb = layers.scale(x=src_word_emb, scale=src_emb_dim**0.5)
    src_pos_enc = layers.embedding(
        src_pos,
        size=[src_max_len, src_emb_dim],
        param_attr=fluid.ParamAttr(
            name=pos_enc_param_name,
            trainable=False,
            initializer=fluid.initializer.ConstantInitializer(0.001)))
M
minqiyang 已提交
1152
    src_pos_enc.stop_gradient = True
G
gongweibao 已提交
1153
    enc_input = src_word_emb + src_pos_enc
1154 1155 1156 1157
    return layers.dropout(enc_input,
                          dropout_prob=dropout_rate,
                          seed=ModelHyperParams.dropout_seed,
                          is_test=False) if dropout_rate else enc_input
G
gongweibao 已提交
1158 1159


1160 1161 1162 1163
prepare_encoder = partial(prepare_encoder,
                          pos_enc_param_name=pos_enc_param_names[0])
prepare_decoder = partial(prepare_encoder,
                          pos_enc_param_name=pos_enc_param_names[1])
G
gongweibao 已提交
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233


def encoder_layer(enc_input,
                  attn_bias,
                  n_head,
                  d_key,
                  d_value,
                  d_model,
                  d_inner_hid,
                  dropout_rate=0.):
    """The encoder layers that can be stacked to form a deep encoder.
    This module consits of a multi-head (self) attention followed by
    position-wise feed-forward networks and both the two components companied
    with the post_process_layer to add residual connection, layer normalization
    and droput.
    """
    attn_output = multi_head_attention(enc_input, enc_input, enc_input,
                                       attn_bias, d_key, d_value, d_model,
                                       n_head, dropout_rate)
    attn_output = post_process_layer(enc_input, attn_output, "dan",
                                     dropout_rate)
    ffd_output = positionwise_feed_forward(attn_output, d_inner_hid, d_model)
    return post_process_layer(attn_output, ffd_output, "dan", dropout_rate)


def encoder(enc_input,
            attn_bias,
            n_layer,
            n_head,
            d_key,
            d_value,
            d_model,
            d_inner_hid,
            dropout_rate=0.):
    """
    The encoder is composed of a stack of identical layers returned by calling
    encoder_layer.
    """
    for i in range(n_layer):
        enc_output = encoder_layer(enc_input, attn_bias, n_head, d_key, d_value,
                                   d_model, d_inner_hid, dropout_rate)
        enc_input = enc_output
    return enc_output


def decoder_layer(dec_input,
                  enc_output,
                  slf_attn_bias,
                  dec_enc_attn_bias,
                  n_head,
                  d_key,
                  d_value,
                  d_model,
                  d_inner_hid,
                  dropout_rate=0.,
                  cache=None):
    """ The layer to be stacked in decoder part.
    The structure of this module is similar to that in the encoder part except
    a multi-head attention is added to implement encoder-decoder attention.
    """
    slf_attn_output = multi_head_attention(
        dec_input,
        dec_input,
        dec_input,
        slf_attn_bias,
        d_key,
        d_value,
        d_model,
        n_head,
        dropout_rate,
1234 1235
        cache,
    )
G
gongweibao 已提交
1236 1237 1238 1239
    slf_attn_output = post_process_layer(
        dec_input,
        slf_attn_output,
        "dan",  # residual connection + dropout + layer normalization
1240 1241
        dropout_rate,
    )
G
gongweibao 已提交
1242 1243 1244 1245 1246 1247 1248 1249 1250
    enc_attn_output = multi_head_attention(
        slf_attn_output,
        enc_output,
        enc_output,
        dec_enc_attn_bias,
        d_key,
        d_value,
        d_model,
        n_head,
1251 1252
        dropout_rate,
    )
G
gongweibao 已提交
1253 1254 1255 1256
    enc_attn_output = post_process_layer(
        slf_attn_output,
        enc_attn_output,
        "dan",  # residual connection + dropout + layer normalization
1257 1258
        dropout_rate,
    )
G
gongweibao 已提交
1259 1260 1261
    ffd_output = positionwise_feed_forward(
        enc_attn_output,
        d_inner_hid,
1262 1263
        d_model,
    )
G
gongweibao 已提交
1264 1265 1266 1267
    dec_output = post_process_layer(
        enc_attn_output,
        ffd_output,
        "dan",  # residual connection + dropout + layer normalization
1268 1269
        dropout_rate,
    )
G
gongweibao 已提交
1270
    return dec_output
X
Xin Pan 已提交
1271 1272


G
gongweibao 已提交
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
def decoder(dec_input,
            enc_output,
            dec_slf_attn_bias,
            dec_enc_attn_bias,
            n_layer,
            n_head,
            d_key,
            d_value,
            d_model,
            d_inner_hid,
            dropout_rate=0.,
            caches=None):
    """
    The decoder is composed of a stack of identical decoder_layer layers.
    """
    for i in range(n_layer):
        cache = None
        if caches is not None:
            cache = caches[i]

1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
        dec_output = decoder_layer(dec_input,
                                   enc_output,
                                   dec_slf_attn_bias,
                                   dec_enc_attn_bias,
                                   n_head,
                                   d_key,
                                   d_value,
                                   d_model,
                                   d_inner_hid,
                                   dropout_rate,
                                   cache=cache)
G
gongweibao 已提交
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
        dec_input = dec_output
    return dec_output


def make_all_inputs(input_fields):
    """
    Define the input data layers for the transformer model.
    """
    inputs = []
    for input_field in input_fields:
1314 1315 1316 1317 1318 1319
        input_var = layers.data(name=input_field,
                                shape=input_descs[input_field][0],
                                dtype=input_descs[input_field][1],
                                lod_level=input_descs[input_field][2]
                                if len(input_descs[input_field]) == 3 else 0,
                                append_batch_size=False)
G
gongweibao 已提交
1320 1321 1322 1323 1324
        inputs.append(input_var)
    return inputs


def transformer(
1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
    src_vocab_size,
    trg_vocab_size,
    max_length,
    n_layer,
    n_head,
    d_key,
    d_value,
    d_model,
    d_inner_hid,
    dropout_rate,
    weight_sharing,
    label_smooth_eps,
):
G
gongweibao 已提交
1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
    if weight_sharing:
        assert src_vocab_size == src_vocab_size, (
            "Vocabularies in source and target should be same for weight sharing."
        )
    enc_inputs = make_all_inputs(encoder_data_input_fields)

    enc_output = wrap_encoder(
        src_vocab_size,
        max_length,
        n_layer,
        n_head,
        d_key,
        d_value,
        d_model,
        d_inner_hid,
        dropout_rate,
        weight_sharing,
1355 1356
        enc_inputs,
    )
G
gongweibao 已提交
1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371

    dec_inputs = make_all_inputs(decoder_data_input_fields[:-1])

    predict = wrap_decoder(
        trg_vocab_size,
        max_length,
        n_layer,
        n_head,
        d_key,
        d_value,
        d_model,
        d_inner_hid,
        dropout_rate,
        weight_sharing,
        dec_inputs,
1372 1373
        enc_output,
    )
G
gongweibao 已提交
1374 1375 1376 1377 1378

    # Padding index do not contribute to the total loss. The weights is used to
    # cancel padding index in calculating the loss.
    label, weights = make_all_inputs(label_data_input_fields)
    if label_smooth_eps:
1379 1380 1381
        label = layers.label_smooth(label=layers.one_hot(input=label,
                                                         depth=trg_vocab_size),
                                    epsilon=label_smooth_eps)
G
gongweibao 已提交
1382 1383

    cost = layers.softmax_with_cross_entropy(
1384
        logits=layers.reshape(predict, shape=[-1, trg_vocab_size]),
G
gongweibao 已提交
1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
        label=label,
        soft_label=True if label_smooth_eps else False)
    weighted_cost = cost * weights
    sum_cost = layers.reduce_sum(weighted_cost)
    token_num = layers.reduce_sum(weights)
    avg_cost = sum_cost / token_num
    avg_cost.stop_gradient = True
    return sum_cost, avg_cost, predict, token_num


def wrap_encoder(src_vocab_size,
                 max_length,
                 n_layer,
                 n_head,
                 d_key,
                 d_value,
                 d_model,
                 d_inner_hid,
                 dropout_rate,
                 weight_sharing,
                 enc_inputs=None):
    """
    The wrapper assembles together all needed layers for the encoder.
    """
    if enc_inputs is None:
        # This is used to implement independent encoder program in inference.
        src_word, src_pos, src_slf_attn_bias = \
            make_all_inputs(encoder_data_input_fields)
    else:
        src_word, src_pos, src_slf_attn_bias = \
            enc_inputs
1416 1417 1418 1419 1420 1421 1422
    enc_input = prepare_encoder(src_word,
                                src_pos,
                                src_vocab_size,
                                d_model,
                                max_length,
                                dropout_rate,
                                word_emb_param_name=word_emb_param_names[0])
G
gongweibao 已提交
1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
    enc_output = encoder(enc_input, src_slf_attn_bias, n_layer, n_head, d_key,
                         d_value, d_model, d_inner_hid, dropout_rate)
    return enc_output


def wrap_decoder(trg_vocab_size,
                 max_length,
                 n_layer,
                 n_head,
                 d_key,
                 d_value,
                 d_model,
                 d_inner_hid,
                 dropout_rate,
                 weight_sharing,
                 dec_inputs=None,
                 enc_output=None,
                 caches=None):
    """
    The wrapper assembles together all needed layers for the decoder.
    """
    if dec_inputs is None:
        # This is used to implement independent decoder program in inference.
        trg_word, trg_pos, trg_slf_attn_bias, trg_src_attn_bias, \
        enc_output = make_all_inputs(
1448
            decoder_data_input_fields)
G
gongweibao 已提交
1449 1450 1451
    else:
        trg_word, trg_pos, trg_slf_attn_bias, trg_src_attn_bias = dec_inputs

1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
    dec_input = prepare_decoder(trg_word,
                                trg_pos,
                                trg_vocab_size,
                                d_model,
                                max_length,
                                dropout_rate,
                                word_emb_param_name=word_emb_param_names[0]
                                if weight_sharing else word_emb_param_names[1])
    dec_output = decoder(dec_input,
                         enc_output,
                         trg_slf_attn_bias,
                         trg_src_attn_bias,
                         n_layer,
                         n_head,
                         d_key,
                         d_value,
                         d_model,
                         d_inner_hid,
                         dropout_rate,
                         caches=caches)
G
gongweibao 已提交
1472 1473
    # Return logits for training and probs for inference.
    if weight_sharing:
1474 1475 1476 1477
        predict = layers.matmul(x=dec_output,
                                y=fluid.framework._get_var(
                                    word_emb_param_names[0]),
                                transpose_y=True)
G
gongweibao 已提交
1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
    else:
        predict = layers.fc(input=dec_output,
                            size=trg_vocab_size,
                            num_flatten_dims=2,
                            param_attr=const_para_attr,
                            bias_attr=const_bias_attr)
    if dec_inputs is None:
        predict = layers.softmax(predict)
    return predict


def fast_decode(
1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
    src_vocab_size,
    trg_vocab_size,
    max_in_len,
    n_layer,
    n_head,
    d_key,
    d_value,
    d_model,
    d_inner_hid,
    dropout_rate,
    weight_sharing,
    beam_size,
    max_out_len,
    eos_idx,
):
G
gongweibao 已提交
1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
    """
    Use beam search to decode. Caches will be used to store states of history
    steps which can make the decoding faster.
    """
    enc_output = wrap_encoder(src_vocab_size, max_in_len, n_layer, n_head,
                              d_key, d_value, d_model, d_inner_hid,
                              dropout_rate, weight_sharing)
    start_tokens, init_scores, trg_src_attn_bias = \
        make_all_inputs(fast_decoder_data_input_fields )

    def beam_search():
1516 1517 1518 1519 1520 1521
        max_len = layers.fill_constant(shape=[1],
                                       dtype=start_tokens.dtype,
                                       value=max_out_len)
        step_idx = layers.fill_constant(shape=[1],
                                        dtype=start_tokens.dtype,
                                        value=0)
G
gongweibao 已提交
1522 1523 1524
        cond = layers.less_than(x=step_idx, y=max_len)
        while_op = layers.While(cond)
        # array states will be stored for each step.
1525 1526
        ids = layers.array_write(layers.reshape(start_tokens, (-1, 1)),
                                 step_idx)
G
gongweibao 已提交
1527 1528 1529 1530 1531
        scores = layers.array_write(init_scores, step_idx)
        # cell states will be overwrited at each step.
        # caches contains states of history steps to reduce redundant
        # computation in decoder.
        caches = [{
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
            "k":
            layers.fill_constant_batch_size_like(input=start_tokens,
                                                 shape=[-1, 0, d_model],
                                                 dtype=enc_output.dtype,
                                                 value=0),
            "v":
            layers.fill_constant_batch_size_like(input=start_tokens,
                                                 shape=[-1, 0, d_model],
                                                 dtype=enc_output.dtype,
                                                 value=0)
G
gongweibao 已提交
1542 1543 1544 1545 1546 1547 1548
        } for i in range(n_layer)]
        with while_op.block():
            pre_ids = layers.array_read(array=ids, i=step_idx)
            pre_ids = layers.reshape(pre_ids, (-1, 1, 1))
            pre_scores = layers.array_read(array=scores, i=step_idx)
            # sequence_expand can gather sequences according to lod thus can be
            # used in beam search to sift states corresponding to selected ids.
1549 1550
            pre_src_attn_bias = layers.sequence_expand(x=trg_src_attn_bias,
                                                       y=pre_scores)
G
gongweibao 已提交
1551 1552
            pre_enc_output = layers.sequence_expand(x=enc_output, y=pre_scores)
            pre_caches = [{
1553 1554 1555 1556
                "k":
                layers.sequence_expand(x=cache["k"], y=pre_scores),
                "v":
                layers.sequence_expand(x=cache["v"], y=pre_scores),
G
gongweibao 已提交
1557 1558 1559
            } for cache in caches]
            pre_pos = layers.elementwise_mul(
                x=layers.fill_constant_batch_size_like(
1560 1561
                    input=
                    pre_enc_output,  # can't use pre_ids here since it has lod
G
gongweibao 已提交
1562 1563 1564
                    value=1,
                    shape=[-1, 1, 1],
                    dtype=pre_ids.dtype),
1565
                y=layers.increment(x=step_idx, value=1.0, in_place=False),
G
gongweibao 已提交
1566
                axis=0)
1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
            logits = wrap_decoder(trg_vocab_size,
                                  max_in_len,
                                  n_layer,
                                  n_head,
                                  d_key,
                                  d_value,
                                  d_model,
                                  d_inner_hid,
                                  dropout_rate,
                                  weight_sharing,
                                  dec_inputs=(pre_ids, pre_pos, None,
                                              pre_src_attn_bias),
                                  enc_output=pre_enc_output,
                                  caches=pre_caches)
G
gongweibao 已提交
1581 1582 1583 1584
            logits = layers.reshape(logits, (-1, trg_vocab_size))

            topk_scores, topk_indices = layers.topk(
                input=layers.softmax(logits), k=beam_size)
1585 1586 1587 1588
            accu_scores = layers.elementwise_add(x=layers.log(topk_scores),
                                                 y=layers.reshape(pre_scores,
                                                                  shape=[-1]),
                                                 axis=0)
G
gongweibao 已提交
1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
            # beam_search op uses lod to distinguish branches.
            topk_indices = layers.lod_reset(topk_indices, pre_ids)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=eos_idx)

            layers.increment(x=step_idx, value=1.0, in_place=True)
            # update states
            layers.array_write(selected_ids, i=step_idx, array=ids)
            layers.array_write(selected_scores, i=step_idx, array=scores)
            layers.assign(pre_src_attn_bias, trg_src_attn_bias)
            layers.assign(pre_enc_output, enc_output)
            for i in range(n_layer):
                layers.assign(pre_caches[i]["k"], caches[i]["k"])
                layers.assign(pre_caches[i]["v"], caches[i]["v"])
            length_cond = layers.less_than(x=step_idx, y=max_len)
            finish_cond = layers.logical_not(layers.is_empty(x=selected_ids))
            layers.logical_and(x=length_cond, y=finish_cond, out=cond)

        finished_ids, finished_scores = layers.beam_search_decode(
            ids, scores, beam_size=beam_size, end_id=eos_idx)
        return finished_ids, finished_scores

    finished_ids, finished_scores = beam_search()
    return finished_ids, finished_scores


def get_model(is_dist, is_async):
    sum_cost, avg_cost, predict, token_num = transformer(
        ModelHyperParams.src_vocab_size, ModelHyperParams.trg_vocab_size,
        ModelHyperParams.max_length + 1, ModelHyperParams.n_layer,
        ModelHyperParams.n_head, ModelHyperParams.d_key,
        ModelHyperParams.d_value, ModelHyperParams.d_model,
        ModelHyperParams.d_inner_hid, ModelHyperParams.dropout,
        ModelHyperParams.weight_sharing, TrainTaskConfig.label_smooth_eps)

    local_lr_scheduler = LearningRateScheduler(ModelHyperParams.d_model,
                                               TrainTaskConfig.warmup_steps,
                                               TrainTaskConfig.learning_rate)
1632 1633
    # Context to do validation.
    test_program = fluid.default_main_program().clone(for_test=True)
G
gongweibao 已提交
1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650

    if not is_dist:
        optimizer = fluid.optimizer.Adam(
            learning_rate=local_lr_scheduler.learning_rate,
            beta1=TrainTaskConfig.beta1,
            beta2=TrainTaskConfig.beta2,
            epsilon=TrainTaskConfig.eps)
        optimizer.minimize(sum_cost)
    elif is_async:
        optimizer = fluid.optimizer.SGD(0.003)
        optimizer.minimize(sum_cost)
    else:
        lr_decay = fluid.layers\
         .learning_rate_scheduler\
         .noam_decay(ModelHyperParams.d_model,
            TrainTaskConfig.warmup_steps)

1651 1652 1653 1654
        optimizer = fluid.optimizer.Adam(learning_rate=lr_decay,
                                         beta1=TrainTaskConfig.beta1,
                                         beta2=TrainTaskConfig.beta2,
                                         epsilon=TrainTaskConfig.eps)
G
gongweibao 已提交
1655 1656
        optimizer.minimize(sum_cost)

1657
    return sum_cost, avg_cost, predict, token_num, local_lr_scheduler, test_program
X
Xin Pan 已提交
1658 1659


G
gongweibao 已提交
1660 1661 1662 1663
def update_args():
    src_dict = DataReader.load_dict(TrainTaskConfig.src_vocab_fpath)
    trg_dict = DataReader.load_dict(TrainTaskConfig.trg_vocab_fpath)
    dict_args = [
1664 1665
        "src_vocab_size",
        str(len(src_dict)), "trg_vocab_size",
G
gongweibao 已提交
1666 1667 1668 1669 1670 1671 1672 1673 1674
        str(len(trg_dict)), "bos_idx",
        str(src_dict[TrainTaskConfig.special_token[0]]), "eos_idx",
        str(src_dict[TrainTaskConfig.special_token[1]]), "unk_idx",
        str(src_dict[TrainTaskConfig.special_token[2]])
    ]
    merge_cfg_from_list(dict_args, [TrainTaskConfig, ModelHyperParams])


class DistTransformer2x2(TestDistRunnerBase):
1675

W
Wu Yi 已提交
1676 1677
    def run_pserver(self, args):
        get_model(True, not args.sync_mode)
1678 1679
        t = self.get_transpiler(args.trainer_id, fluid.default_main_program(),
                                args.endpoints, args.trainers, args.sync_mode)
W
Wu Yi 已提交
1680 1681 1682
        pserver_prog = t.get_pserver_program(args.current_endpoint)
        startup_prog = t.get_startup_program(args.current_endpoint,
                                             pserver_prog)
X
Xin Pan 已提交
1683 1684 1685 1686 1687 1688

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(startup_prog)
        exe.run(pserver_prog)

1689 1690
    def run_trainer(self, args):
        TrainTaskConfig.use_gpu = args.use_cuda
G
gongweibao 已提交
1691
        sum_cost, avg_cost, predict, token_num, local_lr_scheduler, test_program = get_model(
W
Wu Yi 已提交
1692
            args.is_dist, not args.sync_mode)
G
gongweibao 已提交
1693

W
Wu Yi 已提交
1694 1695 1696 1697 1698
        if args.is_dist:
            t = self.get_transpiler(args.trainer_id,
                                    fluid.default_main_program(),
                                    args.endpoints, args.trainers,
                                    args.sync_mode)
X
Xin Pan 已提交
1699
            trainer_prog = t.get_trainer_program()
G
gongweibao 已提交
1700 1701
            TrainTaskConfig.batch_size = 10
            TrainTaskConfig.train_file_pattern = TrainTaskConfig.data_path + "train.tok.clean.bpe.32000.en-de.train_{}".format(
W
Wu Yi 已提交
1702
                args.trainer_id)
X
Xin Pan 已提交
1703
        else:
G
gongweibao 已提交
1704
            TrainTaskConfig.batch_size = 20
X
Xin Pan 已提交
1705 1706
            trainer_prog = fluid.default_main_program()

1707 1708 1709 1710 1711
        if args.use_cuda:
            place = fluid.CUDAPlace(0)
        else:
            place = fluid.CPUPlace()

X
Xin Pan 已提交
1712
        startup_exe = fluid.Executor(place)
G
gongweibao 已提交
1713

W
Wu Yi 已提交
1714
        TrainTaskConfig.local = not args.is_dist
G
gongweibao 已提交
1715 1716

        train_loop(startup_exe, trainer_prog, 1, sum_cost, avg_cost,
1717
                   local_lr_scheduler, token_num, predict, test_program)
X
Xin Pan 已提交
1718 1719 1720


if __name__ == "__main__":
G
gongweibao 已提交
1721 1722
    update_args()
    runtime_main(DistTransformer2x2)