dist_transformer.py 61.9 KB
Newer Older
X
Xin Pan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import time
G
gongweibao 已提交
17
import os
18
import functools
G
gongweibao 已提交
19 20 21 22 23 24
import time
from functools import partial
from os.path import expanduser
import glob
import random
import tarfile
X
Xin Pan 已提交
25 26

import paddle.fluid as fluid
G
gongweibao 已提交
27
import paddle.fluid.layers as layers
G
gongweibao 已提交
28
from test_dist_base import TestDistRunnerBase, runtime_main, RUN_STEP
2
201716010711 已提交
29
import paddle
G
gongweibao 已提交
30 31 32

const_para_attr = fluid.ParamAttr(initializer=fluid.initializer.Constant(0.001))
const_bias_attr = const_para_attr
X
Xin Pan 已提交
33 34 35 36 37 38

# Fix seed for test
fluid.default_startup_program().random_seed = 1
fluid.default_main_program().random_seed = 1


39
# from transformer_config import ModelHyperParams, TrainTaskConfig, merge_cfg_from_list
40
class TrainTaskConfig:
G
gongweibao 已提交
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
    # only support GPU currently
    use_gpu = True
    # the epoch number to train.
    pass_num = 1
    # the number of sequences contained in a mini-batch.
    # deprecated, set batch_size in args.
    batch_size = 20
    # the hyper parameters for Adam optimizer.
    # This static learning_rate will be multiplied to the LearningRateScheduler
    # derived learning rate the to get the final learning rate.
    learning_rate = 1
    beta1 = 0.9
    beta2 = 0.98
    eps = 1e-9
    # the parameters for learning rate scheduling.
    warmup_steps = 4000
    # the weight used to mix up the ground-truth distribution and the fixed
    # uniform distribution in label smoothing when training.
    # Set this as zero if label smoothing is not wanted.
    label_smooth_eps = 0.1
    # the directory for saving trained models.
    model_dir = "trained_models"
    # the directory for saving checkpoints.
    ckpt_dir = "trained_ckpts"
    # the directory for loading checkpoint.
    # If provided, continue training from the checkpoint.
    ckpt_path = None
    # the parameter to initialize the learning rate scheduler.
    # It should be provided if use checkpoints, since the checkpoint doesn't
    # include the training step counter currently.
    start_step = 0
X
Xin Pan 已提交
72

G
gongweibao 已提交
73
    check_acc = True
X
Xin Pan 已提交
74

G
gongweibao 已提交
75
    data_path = expanduser("~") + (
76 77
        "/.cache/paddle/dataset/test_dist_transformer/"
    )
G
gongweibao 已提交
78 79 80
    src_vocab_fpath = data_path + "vocab.bpe.32000"
    trg_vocab_fpath = data_path + "vocab.bpe.32000"
    train_file_pattern = data_path + "train.tok.clean.bpe.32000.en-de"
W
Wu Yi 已提交
81
    val_file_pattern = data_path + "newstest2013.tok.bpe.32000.en-de.cut"
G
gongweibao 已提交
82 83 84 85 86 87 88 89
    pool_size = 2000
    sort_type = None
    local = True
    shuffle = False
    shuffle_batch = False
    special_token = ['<s>', '<e>', '<unk>']
    token_delimiter = ' '
    use_token_batch = False
X
Xin Pan 已提交
90 91


92
class InferTaskConfig:
G
gongweibao 已提交
93 94 95 96 97 98 99 100 101 102 103 104 105 106
    use_gpu = True
    # the number of examples in one run for sequence generation.
    batch_size = 10
    # the parameters for beam search.
    beam_size = 5
    max_out_len = 256
    # the number of decoded sentences to output.
    n_best = 1
    # the flags indicating whether to output the special tokens.
    output_bos = False
    output_eos = False
    output_unk = True
    # the directory for loading the trained model.
    model_path = "trained_models/pass_1.infer.model"
X
Xin Pan 已提交
107 108


109
class ModelHyperParams:
G
gongweibao 已提交
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
    # These following five vocabularies related configurations will be set
    # automatically according to the passed vocabulary path and special tokens.
    # size of source word dictionary.
    src_vocab_size = 10000
    # size of target word dictionay
    trg_vocab_size = 10000
    # index for <bos> token
    bos_idx = 0
    # index for <eos> token
    eos_idx = 1
    # index for <unk> token
    unk_idx = 2
    # max length of sequences deciding the size of position encoding table.
    # Start from 1 and count start and end tokens in.
    max_length = 256
X
Xin Pan 已提交
125 126 127 128 129
    # the dimension for word embeddings, which is also the last dimension of
    # the input and output of multi-head attention, position-wise feed-forward
    # networks, encoder and decoder.
    d_model = 512
    # size of the hidden layer in position-wise feed-forward networks.
G
gongweibao 已提交
130
    d_inner_hid = 2048
X
Xin Pan 已提交
131 132 133 134 135 136 137 138 139
    # the dimension that keys are projected to for dot-product attention.
    d_key = 64
    # the dimension that values are projected to for dot-product attention.
    d_value = 64
    # number of head used in multi-head attention.
    n_head = 8
    # number of sub-layers to be stacked in the encoder and decoder.
    n_layer = 6
    # dropout rate used by all dropout layers.
G
gongweibao 已提交
140 141 142 143 144 145
    dropout = 0.0  # no random
    # random seed used in dropout for CE.
    dropout_seed = None
    # the flag indicating whether to share embedding and softmax weights.
    # vocabularies in source and target should be same for weight sharing.
    weight_sharing = True
X
Xin Pan 已提交
146 147


G
gongweibao 已提交
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
def merge_cfg_from_list(cfg_list, g_cfgs):
    """
    Set the above global configurations using the cfg_list.
    """
    assert len(cfg_list) % 2 == 0
    for key, value in zip(cfg_list[0::2], cfg_list[1::2]):
        for g_cfg in g_cfgs:
            if hasattr(g_cfg, key):
                try:
                    value = eval(value)
                except Exception:  # for file path
                    pass
                setattr(g_cfg, key, value)
                break


# The placeholder for batch_size in compile time. Must be -1 currently to be
# consistent with some ops' infer-shape output in compile time, such as the
# sequence_expand op used in beamsearch decoder.
batch_size = -1
# The placeholder for squence length in compile time.
seq_len = ModelHyperParams.max_length
# Here list the data shapes and data types of all inputs.
# The shapes here act as placeholder and are set to pass the infer-shape in
# compile time.
input_descs = {
    # The actual data shape of src_word is:
    # [batch_size * max_src_len_in_batch, 1]
176
    "src_word": [(batch_size, seq_len, 1), "int64", 2],
G
gongweibao 已提交
177 178
    # The actual data shape of src_pos is:
    # [batch_size * max_src_len_in_batch, 1]
179
    "src_pos": [(batch_size, seq_len, 1), "int64"],
G
gongweibao 已提交
180 181 182 183
    # This input is used to remove attention weights on paddings in the
    # encoder.
    # The actual data shape of src_slf_attn_bias is:
    # [batch_size, n_head, max_src_len_in_batch, max_src_len_in_batch]
184 185 186 187
    "src_slf_attn_bias": [
        (batch_size, ModelHyperParams.n_head, seq_len, seq_len),
        "float32",
    ],
G
gongweibao 已提交
188 189
    # The actual data shape of trg_word is:
    # [batch_size * max_trg_len_in_batch, 1]
190 191 192 193 194
    "trg_word": [
        (batch_size, seq_len, 1),
        "int64",
        2,
    ],  # lod_level is only used in fast decoder.
G
gongweibao 已提交
195 196
    # The actual data shape of trg_pos is:
    # [batch_size * max_trg_len_in_batch, 1]
197
    "trg_pos": [(batch_size, seq_len, 1), "int64"],
G
gongweibao 已提交
198 199 200 201
    # This input is used to remove attention weights on paddings and
    # subsequent words in the decoder.
    # The actual data shape of trg_slf_attn_bias is:
    # [batch_size, n_head, max_trg_len_in_batch, max_trg_len_in_batch]
202 203 204 205
    "trg_slf_attn_bias": [
        (batch_size, ModelHyperParams.n_head, seq_len, seq_len),
        "float32",
    ],
G
gongweibao 已提交
206 207 208 209
    # This input is used to remove attention weights on paddings of the source
    # input in the encoder-decoder attention.
    # The actual data shape of trg_src_attn_bias is:
    # [batch_size, n_head, max_trg_len_in_batch, max_src_len_in_batch]
210 211 212 213
    "trg_src_attn_bias": [
        (batch_size, ModelHyperParams.n_head, seq_len, seq_len),
        "float32",
    ],
G
gongweibao 已提交
214 215 216 217 218 219
    # This input is used in independent decoder program for inference.
    # The actual data shape of enc_output is:
    # [batch_size, max_src_len_in_batch, d_model]
    "enc_output": [(batch_size, seq_len, ModelHyperParams.d_model), "float32"],
    # The actual data shape of label_word is:
    # [batch_size * max_trg_len_in_batch, 1]
220
    "lbl_word": [(batch_size * seq_len, 1), "int64"],
T
tianshuo78520a 已提交
221
    # This input is used to mask out the loss of padding tokens.
G
gongweibao 已提交
222 223
    # The actual data shape of label_weight is:
    # [batch_size * max_trg_len_in_batch, 1]
224
    "lbl_weight": [(batch_size * seq_len, 1), "float32"],
G
gongweibao 已提交
225
    # These inputs are used to change the shape tensor in beam-search decoder.
226 227
    "trg_slf_attn_pre_softmax_shape_delta": [(2,), "int32"],
    "trg_slf_attn_post_softmax_shape_delta": [(4,), "int32"],
228
    "init_score": [(batch_size, 1), "float32"],
G
gongweibao 已提交
229 230 231 232 233
}

# Names of word embedding table which might be reused for weight sharing.
word_emb_param_names = (
    "src_word_emb_table",
234 235
    "trg_word_emb_table",
)
G
gongweibao 已提交
236 237 238
# Names of position encoding table which will be initialized externally.
pos_enc_param_names = (
    "src_pos_enc_table",
239 240
    "trg_pos_enc_table",
)
G
gongweibao 已提交
241 242 243 244
# separated inputs for different usages.
encoder_data_input_fields = (
    "src_word",
    "src_pos",
245 246
    "src_slf_attn_bias",
)
G
gongweibao 已提交
247 248 249 250 251
decoder_data_input_fields = (
    "trg_word",
    "trg_pos",
    "trg_slf_attn_bias",
    "trg_src_attn_bias",
252 253
    "enc_output",
)
G
gongweibao 已提交
254 255
label_data_input_fields = (
    "lbl_word",
256 257
    "lbl_weight",
)
G
gongweibao 已提交
258 259 260 261 262
# In fast decoder, trg_pos (only containing the current time step) is generated
# by ops and trg_slf_attn_bias is not needed.
fast_decoder_data_input_fields = (
    "trg_word",
    "init_score",
263 264
    "trg_src_attn_bias",
)
G
gongweibao 已提交
265 266 267 268 269 270

# fast_decoder_util_input_fields = (
#     "trg_slf_attn_pre_softmax_shape_delta",
#     "trg_slf_attn_post_softmax_shape_delta", )


271
# from optim import LearningRateScheduler
272
class LearningRateScheduler:
G
gongweibao 已提交
273 274 275
    """
    Wrapper for learning rate scheduling as described in the Transformer paper.
    LearningRateScheduler adapts the learning rate externally and the adapted
T
tianshuo78520a 已提交
276
    learning rate will be fed into the main_program as input data.
G
gongweibao 已提交
277 278
    """

279 280 281 282 283 284 285 286
    def __init__(
        self,
        d_model,
        warmup_steps,
        learning_rate=0.001,
        current_steps=0,
        name="learning_rate",
    ):
G
gongweibao 已提交
287 288 289 290 291 292 293 294 295
        self.current_steps = current_steps
        self.warmup_steps = warmup_steps
        self.d_model = d_model
        self.static_lr = learning_rate
        self.learning_rate = layers.create_global_var(
            name=name,
            shape=[1],
            value=float(learning_rate),
            dtype="float32",
296 297
            persistable=True,
        )
G
gongweibao 已提交
298 299 300

    def update_learning_rate(self):
        self.current_steps += 1
301 302 303 304 305 306 307 308 309 310
        lr_value = (
            np.power(self.d_model, -0.5)
            * np.min(
                [
                    np.power(self.current_steps, -0.5),
                    np.power(self.warmup_steps, -1.5) * self.current_steps,
                ]
            )
            * self.static_lr
        )
G
gongweibao 已提交
311 312 313
        return np.array([lr_value], dtype="float32")


314 315 316 317 318 319 320 321 322 323 324
# from transformer_train import train_loop
def pad_batch_data(
    insts,
    pad_idx,
    n_head,
    is_target=False,
    is_label=False,
    return_attn_bias=True,
    return_max_len=True,
    return_num_token=False,
):
X
Xin Pan 已提交
325 326
    """
    Pad the instances to the max sequence length in batch, and generate the
G
gongweibao 已提交
327
    corresponding position data and attention bias.
X
Xin Pan 已提交
328
    """
G
gongweibao 已提交
329 330
    return_list = []
    max_len = max(len(inst) for inst in insts)
331 332 333 334 335
    num_token = (
        functools.reduce(lambda x, y: x + y, [len(inst) for inst in insts])
        if return_num_token
        else 0
    )
G
gongweibao 已提交
336 337 338
    # Any token included in dict can be used to pad, since the paddings' loss
    # will be masked out by weights and make no effect on parameter gradients.
    inst_data = np.array(
339 340
        [inst + [pad_idx] * (max_len - len(inst)) for inst in insts]
    )
G
gongweibao 已提交
341 342
    return_list += [inst_data.astype("int64").reshape([-1, 1])]
    if is_label:  # label weight
343 344 345 346 347 348
        inst_weight = np.array(
            [
                [1.0] * len(inst) + [0.0] * (max_len - len(inst))
                for inst in insts
            ]
        )
G
gongweibao 已提交
349 350
        return_list += [inst_weight.astype("float32").reshape([-1, 1])]
    else:  # position data
351 352 353 354 355 356
        inst_pos = np.array(
            [
                list(range(1, len(inst) + 1)) + [0] * (max_len - len(inst))
                for inst in insts
            ]
        )
G
gongweibao 已提交
357 358 359 360 361 362
        return_list += [inst_pos.astype("int64").reshape([-1, 1])]
    if return_attn_bias:
        if is_target:
            # This is used to avoid attention on paddings and subsequent
            # words.
            slf_attn_bias_data = np.ones((inst_data.shape[0], max_len, max_len))
363 364 365 366 367 368
            slf_attn_bias_data = np.triu(slf_attn_bias_data, 1).reshape(
                [-1, 1, max_len, max_len]
            )
            slf_attn_bias_data = np.tile(
                slf_attn_bias_data, [1, n_head, 1, 1]
            ) * [-1e9]
G
gongweibao 已提交
369 370
        else:
            # This is used to avoid attention on paddings.
371 372 373 374 375 376
            slf_attn_bias_data = np.array(
                [
                    [0] * len(inst) + [-1e9] * (max_len - len(inst))
                    for inst in insts
                ]
            )
G
gongweibao 已提交
377 378
            slf_attn_bias_data = np.tile(
                slf_attn_bias_data.reshape([-1, 1, 1, max_len]),
379 380
                [1, n_head, max_len, 1],
            )
G
gongweibao 已提交
381 382 383 384 385 386 387 388
        return_list += [slf_attn_bias_data.astype("float32")]
    if return_max_len:
        return_list += [max_len]
    if return_num_token:
        return_list += [num_token]
    return return_list if len(return_list) > 1 else return_list[0]


389 390 391
def prepare_batch_input(
    insts, data_input_names, src_pad_idx, trg_pad_idx, n_head, d_model
):
G
gongweibao 已提交
392 393 394 395
    """
    Put all padded data needed by training into a dict.
    """
    src_word, src_pos, src_slf_attn_bias, src_max_len = pad_batch_data(
396 397
        [inst[0] for inst in insts], src_pad_idx, n_head, is_target=False
    )
G
gongweibao 已提交
398 399 400
    src_word = src_word.reshape(-1, src_max_len, 1)
    src_pos = src_pos.reshape(-1, src_max_len, 1)
    trg_word, trg_pos, trg_slf_attn_bias, trg_max_len = pad_batch_data(
401 402
        [inst[1] for inst in insts], trg_pad_idx, n_head, is_target=True
    )
G
gongweibao 已提交
403 404
    trg_word = trg_word.reshape(-1, trg_max_len, 1)
    trg_pos = trg_pos.reshape(-1, trg_max_len, 1)
X
Xin Pan 已提交
405

406 407 408
    trg_src_attn_bias = np.tile(
        src_slf_attn_bias[:, :, ::src_max_len, :], [1, 1, trg_max_len, 1]
    ).astype("float32")
X
Xin Pan 已提交
409

G
gongweibao 已提交
410 411 412 413 414 415 416 417
    lbl_word, lbl_weight, num_token = pad_batch_data(
        [inst[2] for inst in insts],
        trg_pad_idx,
        n_head,
        is_target=False,
        is_label=True,
        return_attn_bias=False,
        return_max_len=False,
418 419
        return_num_token=True,
    )
G
gongweibao 已提交
420 421

    data_input_dict = dict(
M
minqiyang 已提交
422
        list(
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
            zip(
                data_input_names,
                [
                    src_word,
                    src_pos,
                    src_slf_attn_bias,
                    trg_word,
                    trg_pos,
                    trg_slf_attn_bias,
                    trg_src_attn_bias,
                    lbl_word,
                    lbl_weight,
                ],
            )
        )
    )
G
gongweibao 已提交
439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
    return data_input_dict, np.asarray([num_token], dtype="float32")


def read_multiple(reader, count, clip_last=True):
    """
    Stack data from reader for multi-devices.
    """

    def __impl__():
        res = []
        for item in reader():
            res.append(item)
            if len(res) == count:
                yield res
                res = []
        if len(res) == count:
            yield res
        elif not clip_last:
            data = []
            for item in res:
                data += item
            if len(data) > count:
                inst_num_per_part = len(data) // count
                yield [
463
                    data[inst_num_per_part * i : inst_num_per_part * (i + 1)]
G
gongweibao 已提交
464 465 466 467 468 469 470 471 472 473 474 475 476 477
                    for i in range(count)
                ]

    return __impl__


def split_data(data, num_part):
    """
    Split data for each device.
    """
    if len(data) == num_part:
        return data
    data = data[0]
    inst_num_per_part = len(data) // num_part
X
Xin Pan 已提交
478
    return [
479
        data[inst_num_per_part * i : inst_num_per_part * (i + 1)]
G
gongweibao 已提交
480
        for i in range(num_part)
X
Xin Pan 已提交
481 482 483
    ]


484 485 486 487 488 489 490 491 492
def test_context(
    test_program,
    avg_cost,
    train_exe,
    dev_count,
    data_input_names,
    sum_cost,
    token_num,
):
G
gongweibao 已提交
493 494 495 496 497 498
    val_data = DataReader(
        src_vocab_fpath=TrainTaskConfig.src_vocab_fpath,
        trg_vocab_fpath=TrainTaskConfig.trg_vocab_fpath,
        fpattern=TrainTaskConfig.val_file_pattern,
        token_delimiter=TrainTaskConfig.token_delimiter,
        use_token_batch=TrainTaskConfig.use_token_batch,
499 500
        batch_size=TrainTaskConfig.batch_size
        * (1 if TrainTaskConfig.use_token_batch else dev_count),
G
gongweibao 已提交
501 502 503 504 505 506 507 508 509
        pool_size=TrainTaskConfig.pool_size,
        sort_type=TrainTaskConfig.sort_type,
        start_mark=TrainTaskConfig.special_token[0],
        end_mark=TrainTaskConfig.special_token[1],
        unk_mark=TrainTaskConfig.special_token[2],
        # count start and end tokens out
        max_length=ModelHyperParams.max_length - 2,
        clip_last_batch=False,
        shuffle=False,
510 511
        shuffle_batch=False,
    )
G
gongweibao 已提交
512 513 514 515 516 517

    build_strategy = fluid.BuildStrategy()

    strategy = fluid.ExecutionStrategy()
    strategy.num_threads = 1

518 519 520 521 522 523 524
    test_exe = fluid.ParallelExecutor(
        use_cuda=TrainTaskConfig.use_gpu,
        main_program=test_program,
        share_vars_from=train_exe,
        build_strategy=build_strategy,
        exec_strategy=strategy,
    )
G
gongweibao 已提交
525 526 527 528 529 530

    def test(exe=test_exe):
        test_total_cost = 0
        test_total_token = 0
        test_data = read_multiple(
            reader=val_data.batch_generator,
531 532
            count=dev_count if TrainTaskConfig.use_token_batch else 1,
        )
G
gongweibao 已提交
533 534 535
        for batch_id, data in enumerate(test_data()):
            feed_list = []
            for place_id, data_buffer in enumerate(
536 537
                split_data(data, num_part=dev_count)
            ):
G
gongweibao 已提交
538
                data_input_dict, _ = prepare_batch_input(
539 540 541 542 543 544 545
                    data_buffer,
                    data_input_names,
                    ModelHyperParams.eos_idx,
                    ModelHyperParams.eos_idx,
                    ModelHyperParams.n_head,
                    ModelHyperParams.d_model,
                )
G
gongweibao 已提交
546 547
                feed_list.append(data_input_dict)

548 549 550
            outs = exe.run(
                feed=feed_list, fetch_list=[sum_cost.name, token_num.name]
            )
G
gongweibao 已提交
551 552 553 554 555 556 557 558 559 560
            sum_cost_val, token_num_val = np.array(outs[0]), np.array(outs[1])
            test_total_cost += sum_cost_val.sum()
            test_total_token += token_num_val.sum()
        test_avg_cost = test_total_cost / test_total_token
        test_ppl = np.exp([min(test_avg_cost, 100)])
        return test_avg_cost, test_ppl

    return test


561 562 563 564 565 566 567 568 569 570 571
def train_loop(
    exe,
    train_progm,
    dev_count,
    sum_cost,
    avg_cost,
    lr_scheduler,
    token_num,
    predict,
    test_program,
):
G
gongweibao 已提交
572 573 574 575 576 577 578 579 580 581 582 583
    # Initialize the parameters.
    if TrainTaskConfig.ckpt_path:
        lr_scheduler.current_steps = TrainTaskConfig.start_step
    else:
        exe.run(fluid.framework.default_startup_program())

    train_data = DataReader(
        src_vocab_fpath=TrainTaskConfig.src_vocab_fpath,
        trg_vocab_fpath=TrainTaskConfig.trg_vocab_fpath,
        fpattern=TrainTaskConfig.train_file_pattern,
        token_delimiter=TrainTaskConfig.token_delimiter,
        use_token_batch=TrainTaskConfig.use_token_batch,
584 585
        batch_size=TrainTaskConfig.batch_size
        * (1 if TrainTaskConfig.use_token_batch else dev_count),
G
gongweibao 已提交
586 587 588 589 590 591 592 593 594
        pool_size=TrainTaskConfig.pool_size,
        sort_type=TrainTaskConfig.sort_type,
        shuffle=TrainTaskConfig.shuffle,
        shuffle_batch=TrainTaskConfig.shuffle_batch,
        start_mark=TrainTaskConfig.special_token[0],
        end_mark=TrainTaskConfig.special_token[1],
        unk_mark=TrainTaskConfig.special_token[2],
        # count start and end tokens out
        max_length=ModelHyperParams.max_length - 2,
595 596
        clip_last_batch=False,
    )
G
gongweibao 已提交
597 598
    train_data = read_multiple(
        reader=train_data.batch_generator,
599 600
        count=dev_count if TrainTaskConfig.use_token_batch else 1,
    )
G
gongweibao 已提交
601 602 603 604 605

    build_strategy = fluid.BuildStrategy()
    # Since the token number differs among devices, customize gradient scale to
    # use token average cost among multi-devices. and the gradient scale is
    # `1 / token_number` for average cost.
606 607 608
    build_strategy.gradient_scale_strategy = (
        fluid.BuildStrategy.GradientScaleStrategy.Customized
    )
G
gongweibao 已提交
609 610 611 612

    strategy = fluid.ExecutionStrategy()
    strategy.num_threads = 1

613 614 615 616 617 618 619
    train_exe = fluid.ParallelExecutor(
        use_cuda=TrainTaskConfig.use_gpu,
        loss_name=sum_cost.name,
        main_program=train_progm,
        build_strategy=build_strategy,
        exec_strategy=strategy,
    )
G
gongweibao 已提交
620

621 622 623 624 625
    data_input_names = (
        encoder_data_input_fields
        + decoder_data_input_fields[:-1]
        + label_data_input_fields
    )
G
gongweibao 已提交
626 627

    if TrainTaskConfig.val_file_pattern is not None:
628 629 630 631 632 633 634 635 636
        test = test_context(
            test_program,
            avg_cost,
            train_exe,
            dev_count,
            data_input_names,
            sum_cost,
            token_num,
        )
G
gongweibao 已提交
637 638

    # the best cross-entropy value with label smoothing
639 640 641 642 643 644 645 646 647 648
    loss_normalizer = -(
        (1.0 - TrainTaskConfig.label_smooth_eps)
        * np.log((1.0 - TrainTaskConfig.label_smooth_eps))
        + TrainTaskConfig.label_smooth_eps
        * np.log(
            TrainTaskConfig.label_smooth_eps
            / (ModelHyperParams.trg_vocab_size - 1)
            + 1e-20
        )
    )
G
gongweibao 已提交
649
    init = False
650
    for pass_id in range(TrainTaskConfig.pass_num):
G
gongweibao 已提交
651 652
        pass_start_time = time.time()
        for batch_id, data in enumerate(train_data()):
G
gongweibao 已提交
653
            if batch_id >= RUN_STEP:
G
gongweibao 已提交
654 655 656 657 658 659 660 661 662
                break

            feed_list = []
            total_num_token = 0

            if TrainTaskConfig.local:
                lr_rate = lr_scheduler.update_learning_rate()

            for place_id, data_buffer in enumerate(
663 664
                split_data(data, num_part=dev_count)
            ):
G
gongweibao 已提交
665
                data_input_dict, num_token = prepare_batch_input(
666 667 668 669 670 671 672
                    data_buffer,
                    data_input_names,
                    ModelHyperParams.eos_idx,
                    ModelHyperParams.eos_idx,
                    ModelHyperParams.n_head,
                    ModelHyperParams.d_model,
                )
G
gongweibao 已提交
673
                total_num_token += num_token
M
minqiyang 已提交
674
                feed_kv_pairs = list(data_input_dict.items())
G
gongweibao 已提交
675
                if TrainTaskConfig.local:
676
                    feed_kv_pairs += list(
677 678
                        {lr_scheduler.learning_rate.name: lr_rate}.items()
                    )
G
gongweibao 已提交
679 680 681 682 683 684
                feed_list.append(dict(feed_kv_pairs))

                if not init:
                    for pos_enc_param_name in pos_enc_param_names:
                        pos_enc = position_encoding_init(
                            ModelHyperParams.max_length + 1,
685 686
                            ModelHyperParams.d_model,
                        )
G
gongweibao 已提交
687 688 689 690
                        feed_list[place_id][pos_enc_param_name] = pos_enc

            if not TrainTaskConfig.check_acc:
                for feed_dict in feed_list:
691
                    feed_dict[sum_cost.name + "@GRAD"] = 1.0 / total_num_token
G
gongweibao 已提交
692 693 694 695
            else:
                b = 100 * TrainTaskConfig.batch_size
                a = np.asarray([b], dtype="float32")
                for feed_dict in feed_list:
696
                    feed_dict[sum_cost.name + "@GRAD"] = 1.0 / a
G
gongweibao 已提交
697

698 699 700
            outs = train_exe.run(
                fetch_list=[sum_cost.name, token_num.name], feed=feed_list
            )
G
gongweibao 已提交
701 702 703 704 705 706 707 708 709

            sum_cost_val, token_num_val = np.array(outs[0]), np.array(outs[1])
            total_sum_cost = sum_cost_val.sum()
            total_token_num = token_num_val.sum()
            total_avg_cost = total_sum_cost / total_token_num

            init = True

            # Validate and save the model for inference.
G
gongweibao 已提交
710 711 712 713
            if TrainTaskConfig.val_file_pattern is not None:
                val_avg_cost, val_ppl = test()
                print("[%f]" % val_avg_cost)
            else:
714
                assert False
G
gongweibao 已提交
715 716


717
# import transformer_reader as reader
718
class SortType:
G
gongweibao 已提交
719 720 721 722 723
    GLOBAL = 'global'
    POOL = 'pool'
    NONE = "none"


724
class Converter:
G
gongweibao 已提交
725 726 727 728 729 730 731 732
    def __init__(self, vocab, beg, end, unk, delimiter):
        self._vocab = vocab
        self._beg = beg
        self._end = end
        self._unk = unk
        self._delimiter = delimiter

    def __call__(self, sentence):
733 734 735 736 737 738 739 740
        return (
            [self._beg]
            + [
                self._vocab.get(w, self._unk)
                for w in sentence.split(self._delimiter)
            ]
            + [self._end]
        )
G
gongweibao 已提交
741 742


743
class ComposedConverter:
G
gongweibao 已提交
744 745 746 747 748 749 750 751 752 753
    def __init__(self, converters):
        self._converters = converters

    def __call__(self, parallel_sentence):
        return [
            self._converters[i](parallel_sentence[i])
            for i in range(len(self._converters))
        ]


754
class SentenceBatchCreator:
G
gongweibao 已提交
755 756 757 758 759 760 761 762 763 764 765 766
    def __init__(self, batch_size):
        self.batch = []
        self._batch_size = batch_size

    def append(self, info):
        self.batch.append(info)
        if len(self.batch) == self._batch_size:
            tmp = self.batch
            self.batch = []
            return tmp


767
class TokenBatchCreator:
G
gongweibao 已提交
768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785
    def __init__(self, batch_size):
        self.batch = []
        self.max_len = -1
        self._batch_size = batch_size

    def append(self, info):
        cur_len = info.max_len
        max_len = max(self.max_len, cur_len)
        if max_len * (len(self.batch) + 1) > self._batch_size:
            result = self.batch
            self.batch = [info]
            self.max_len = cur_len
            return result
        else:
            self.max_len = max_len
            self.batch.append(info)


786
class SampleInfo:
G
gongweibao 已提交
787 788 789 790 791 792
    def __init__(self, i, max_len, min_len):
        self.i = i
        self.min_len = min_len
        self.max_len = max_len


793
class MinMaxFilter:
G
gongweibao 已提交
794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
    def __init__(self, max_len, min_len, underlying_creator):
        self._min_len = min_len
        self._max_len = max_len
        self._creator = underlying_creator

    def append(self, info):
        if info.max_len > self._max_len or info.min_len < self._min_len:
            return
        else:
            return self._creator.append(info)

    @property
    def batch(self):
        return self._creator.batch


810
class DataReader:
G
gongweibao 已提交
811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
    """
    The data reader loads all data from files and produces batches of data
    in the way corresponding to settings.

    An example of returning a generator producing data batches whose data
    is shuffled in each pass and sorted in each pool:

    ```
    train_data = DataReader(
        src_vocab_fpath='data/src_vocab_file',
        trg_vocab_fpath='data/trg_vocab_file',
        fpattern='data/part-*',
        use_token_batch=True,
        batch_size=2000,
        pool_size=10000,
        sort_type=SortType.POOL,
        shuffle=True,
        shuffle_batch=True,
        start_mark='<s>',
        end_mark='<e>',
        unk_mark='<unk>',
        clip_last_batch=False).batch_generator
    ```

    :param src_vocab_fpath: The path of vocabulary file of source language.
    :type src_vocab_fpath: basestring
    :param trg_vocab_fpath: The path of vocabulary file of target language.
    :type trg_vocab_fpath: basestring
    :param fpattern: The pattern to match data files.
    :type fpattern: basestring
    :param batch_size: The number of sequences contained in a mini-batch.
        or the maximum number of tokens (include paddings) contained in a
        mini-batch.
    :type batch_size: int
    :param pool_size: The size of pool buffer.
    :type pool_size: int
    :param sort_type: The grain to sort by length: 'global' for all
        instances; 'pool' for instances in pool; 'none' for no sort.
    :type sort_type: basestring
    :param clip_last_batch: Whether to clip the last uncompleted batch.
    :type clip_last_batch: bool
    :param tar_fname: The data file in tar if fpattern matches a tar file.
    :type tar_fname: basestring
    :param min_length: The minimum length used to filt sequences.
    :type min_length: int
    :param max_length: The maximum length used to filt sequences.
    :type max_length: int
    :param shuffle: Whether to shuffle all instances.
    :type shuffle: bool
    :param shuffle_batch: Whether to shuffle the generated batches.
    :type shuffle_batch: bool
    :param use_token_batch: Whether to produce batch data according to
        token number.
    :type use_token_batch: bool
    :param field_delimiter: The delimiter used to split source and target in
        each line of data file.
    :type field_delimiter: basestring
    :param token_delimiter: The delimiter used to split tokens in source or
        target sentences.
    :type token_delimiter: basestring
    :param start_mark: The token representing for the beginning of
        sentences in dictionary.
    :type start_mark: basestring
    :param end_mark: The token representing for the end of sentences
        in dictionary.
    :type end_mark: basestring
    :param unk_mark: The token representing for unknown word in dictionary.
    :type unk_mark: basestring
    :param seed: The seed for random.
    :type seed: int
    """

883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
    def __init__(
        self,
        src_vocab_fpath,
        trg_vocab_fpath,
        fpattern,
        batch_size,
        pool_size,
        sort_type=SortType.GLOBAL,
        clip_last_batch=True,
        tar_fname=None,
        min_length=0,
        max_length=100,
        shuffle=True,
        shuffle_batch=False,
        use_token_batch=False,
        field_delimiter="\t",
        token_delimiter=" ",
        start_mark="<s>",
        end_mark="<e>",
        unk_mark="<unk>",
        seed=0,
    ):
G
gongweibao 已提交
905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920
        self._src_vocab = self.load_dict(src_vocab_fpath)
        self._only_src = True
        if trg_vocab_fpath is not None:
            self._trg_vocab = self.load_dict(trg_vocab_fpath)
            self._only_src = False
        self._pool_size = pool_size
        self._batch_size = batch_size
        self._use_token_batch = use_token_batch
        self._sort_type = sort_type
        self._clip_last_batch = clip_last_batch
        self._shuffle = shuffle
        self._shuffle_batch = shuffle_batch
        self._min_length = min_length
        self._max_length = max_length
        self._field_delimiter = field_delimiter
        self._token_delimiter = token_delimiter
921 922 923
        self.load_src_trg_ids(
            end_mark, fpattern, start_mark, tar_fname, unk_mark
        )
G
gongweibao 已提交
924 925
        self._random = random.Random(x=seed)

926 927 928
    def load_src_trg_ids(
        self, end_mark, fpattern, start_mark, tar_fname, unk_mark
    ):
G
gongweibao 已提交
929
        converters = [
930 931 932 933 934 935 936
            Converter(
                vocab=self._src_vocab,
                beg=self._src_vocab[start_mark],
                end=self._src_vocab[end_mark],
                unk=self._src_vocab[unk_mark],
                delimiter=self._token_delimiter,
            )
G
gongweibao 已提交
937 938 939
        ]
        if not self._only_src:
            converters.append(
940 941 942 943 944 945 946 947
                Converter(
                    vocab=self._trg_vocab,
                    beg=self._trg_vocab[start_mark],
                    end=self._trg_vocab[end_mark],
                    unk=self._trg_vocab[unk_mark],
                    delimiter=self._token_delimiter,
                )
            )
G
gongweibao 已提交
948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972

        converters = ComposedConverter(converters)

        self._src_seq_ids = []
        self._trg_seq_ids = None if self._only_src else []
        self._sample_infos = []

        for i, line in enumerate(self._load_lines(fpattern, tar_fname)):
            src_trg_ids = converters(line)
            self._src_seq_ids.append(src_trg_ids[0])
            lens = [len(src_trg_ids[0])]
            if not self._only_src:
                self._trg_seq_ids.append(src_trg_ids[1])
                lens.append(len(src_trg_ids[1]))
            self._sample_infos.append(SampleInfo(i, max(lens), min(lens)))

    def _load_lines(self, fpattern, tar_fname):
        fpaths = glob.glob(fpattern)

        if len(fpaths) == 1 and tarfile.is_tarfile(fpaths[0]):
            if tar_fname is None:
                raise Exception("If tar file provided, please set tar_fname.")

            f = tarfile.open(fpaths[0], "r")
            for line in f.extractfile(tar_fname):
973
                line = line.decode()
G
gongweibao 已提交
974
                fields = line.strip("\n").split(self._field_delimiter)
975 976 977
                if (not self._only_src and len(fields) == 2) or (
                    self._only_src and len(fields) == 1
                ):
G
gongweibao 已提交
978 979 980 981 982 983
                    yield fields
        else:
            for fpath in fpaths:
                if not os.path.isfile(fpath):
                    raise IOError("Invalid file: %s" % fpath)

M
minqiyang 已提交
984
                with open(fpath, "rb") as f:
G
gongweibao 已提交
985
                    for line in f:
986
                        line = line.decode()
G
gongweibao 已提交
987
                        fields = line.strip("\n").split(self._field_delimiter)
988 989 990
                        if (not self._only_src and len(fields) == 2) or (
                            self._only_src and len(fields) == 1
                        ):
G
gongweibao 已提交
991 992 993 994 995
                            yield fields

    @staticmethod
    def load_dict(dict_path, reverse=False):
        word_dict = {}
M
minqiyang 已提交
996
        with open(dict_path, "rb") as fdict:
G
gongweibao 已提交
997
            for idx, line in enumerate(fdict):
998
                line = line.decode()
G
gongweibao 已提交
999 1000 1001 1002 1003 1004 1005 1006 1007
                if reverse:
                    word_dict[idx] = line.strip("\n")
                else:
                    word_dict[line.strip("\n")] = idx
        return word_dict

    def batch_generator(self):
        # global sort or global shuffle
        if self._sort_type == SortType.GLOBAL:
1008 1009 1010
            infos = sorted(
                self._sample_infos, key=lambda x: x.max_len, reverse=True
            )
G
gongweibao 已提交
1011 1012 1013 1014 1015 1016 1017 1018 1019
        else:
            if self._shuffle:
                infos = self._sample_infos
                self._random.shuffle(infos)
            else:
                infos = self._sample_infos

            if self._sort_type == SortType.POOL:
                for i in range(0, len(infos), self._pool_size):
1020 1021 1022
                    infos[i : i + self._pool_size] = sorted(
                        infos[i : i + self._pool_size], key=lambda x: x.max_len
                    )
G
gongweibao 已提交
1023 1024 1025

        # concat batch
        batches = []
1026 1027 1028 1029 1030 1031 1032 1033
        batch_creator = (
            TokenBatchCreator(self._batch_size)
            if self._use_token_batch
            else SentenceBatchCreator(self._batch_size)
        )
        batch_creator = MinMaxFilter(
            self._max_length, self._min_length, batch_creator
        )
G
gongweibao 已提交
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051

        for info in infos:
            batch = batch_creator.append(info)
            if batch is not None:
                batches.append(batch)

        if not self._clip_last_batch and len(batch_creator.batch) != 0:
            batches.append(batch_creator.batch)

        if self._shuffle_batch:
            self._random.shuffle(batches)

        for batch in batches:
            batch_ids = [info.i for info in batch]

            if self._only_src:
                yield [[self._src_seq_ids[idx]] for idx in batch_ids]
            else:
1052 1053 1054 1055 1056 1057 1058 1059
                yield [
                    (
                        self._src_seq_ids[idx],
                        self._trg_seq_ids[idx][:-1],
                        self._trg_seq_ids[idx][1:],
                    )
                    for idx in batch_ids
                ]
G
gongweibao 已提交
1060 1061


1062
# from transformer_model import transformer
G
gongweibao 已提交
1063 1064 1065 1066
def position_encoding_init(n_position, d_pos_vec):
    """
    Generate the initial values for the sinusoid position encoding table.
    """
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
    position_enc = np.array(
        [
            [
                pos / np.power(10000, 2 * (j // 2) / d_pos_vec)
                for j in range(d_pos_vec)
            ]
            if pos != 0
            else np.zeros(d_pos_vec)
            for pos in range(n_position)
        ]
    )
G
gongweibao 已提交
1078 1079 1080 1081 1082
    position_enc[1:, 0::2] = np.sin(position_enc[1:, 0::2])  # dim 2i
    position_enc[1:, 1::2] = np.cos(position_enc[1:, 1::2])  # dim 2i+1
    return position_enc.astype("float32")


1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
def multi_head_attention(
    queries,
    keys,
    values,
    attn_bias,
    d_key,
    d_value,
    d_model,
    n_head=1,
    dropout_rate=0.0,
    cache=None,
):
G
gongweibao 已提交
1095 1096 1097 1098 1099 1100 1101
    """
    Multi-Head Attention. Note that attn_bias is added to the logit before
    computing softmax activiation to mask certain selected positions so that
    they will not considered in attention weights.
    """
    if not (len(queries.shape) == len(keys.shape) == len(values.shape) == 3):
        raise ValueError(
1102 1103
            "Inputs: queries, keys and values should all be 3-D tensors."
        )
G
gongweibao 已提交
1104 1105 1106 1107 1108

    def __compute_qkv(queries, keys, values, n_head, d_key, d_value):
        """
        Add linear projection to queries, keys, and values.
        """
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
        q = layers.fc(
            input=queries,
            size=d_key * n_head,
            num_flatten_dims=2,
            param_attr=const_para_attr,
            bias_attr=const_bias_attr,
        )
        k = layers.fc(
            input=keys,
            size=d_key * n_head,
            num_flatten_dims=2,
            param_attr=const_para_attr,
            bias_attr=const_bias_attr,
        )
        v = layers.fc(
            input=values,
            size=d_value * n_head,
            num_flatten_dims=2,
            param_attr=const_para_attr,
            bias_attr=const_bias_attr,
        )
G
gongweibao 已提交
1130 1131 1132 1133
        return q, k, v

    def __split_heads(x, n_head):
        """
T
tianshuo78520a 已提交
1134
        Reshape the last dimension of input tensor x so that it becomes two
G
gongweibao 已提交
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
        dimensions and then transpose. Specifically, input a tensor with shape
        [bs, max_sequence_length, n_head * hidden_dim] then output a tensor
        with shape [bs, n_head, max_sequence_length, hidden_dim].
        """
        if n_head == 1:
            return x

        hidden_size = x.shape[-1]
        # The value 0 in shape attr means copying the corresponding dimension
        # size of the input as the output dimension size.
1145 1146 1147
        reshaped = layers.reshape(
            x=x, shape=[0, 0, n_head, hidden_size // n_head]
        )
G
gongweibao 已提交
1148

T
tianshuo78520a 已提交
1149
        # permute the dimensions into:
G
gongweibao 已提交
1150 1151 1152 1153 1154
        # [batch_size, n_head, max_sequence_len, hidden_size_per_head]
        return layers.transpose(x=reshaped, perm=[0, 2, 1, 3])

    def __combine_heads(x):
        """
T
tianshuo78520a 已提交
1155
        Transpose and then reshape the last two dimensions of input tensor x
G
gongweibao 已提交
1156 1157
        so that it becomes one dimension, which is reverse to __split_heads.
        """
1158 1159
        if len(x.shape) == 3:
            return x
G
gongweibao 已提交
1160 1161 1162 1163 1164 1165 1166 1167
        if len(x.shape) != 4:
            raise ValueError("Input(x) should be a 4-D Tensor.")

        trans_x = layers.transpose(x, perm=[0, 2, 1, 3])
        # The value 0 in shape attr means copying the corresponding dimension
        # size of the input as the output dimension size.
        return layers.reshape(
            x=trans_x,
1168 1169
            shape=list(map(int, [0, 0, trans_x.shape[2] * trans_x.shape[3]])),
        )
G
gongweibao 已提交
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180

    def scaled_dot_product_attention(q, k, v, attn_bias, d_model, dropout_rate):
        """
        Scaled Dot-Product Attention
        """
        scaled_q = layers.scale(x=q, scale=d_model**-0.5)
        product = layers.matmul(x=scaled_q, y=k, transpose_y=True)
        if attn_bias:
            product += attn_bias
        weights = layers.softmax(product)
        if dropout_rate:
1181 1182 1183 1184 1185 1186
            weights = layers.dropout(
                weights,
                dropout_prob=dropout_rate,
                seed=ModelHyperParams.dropout_seed,
                is_test=False,
            )
G
gongweibao 已提交
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
        out = layers.matmul(weights, v)
        return out

    q, k, v = __compute_qkv(queries, keys, values, n_head, d_key, d_value)

    if cache is not None:  # use cache and concat time steps
        k = cache["k"] = layers.concat([cache["k"], k], axis=1)
        v = cache["v"] = layers.concat([cache["v"], v], axis=1)

    q = __split_heads(q, n_head)
    k = __split_heads(k, n_head)
    v = __split_heads(v, n_head)

1200 1201 1202
    ctx_multiheads = scaled_dot_product_attention(
        q, k, v, attn_bias, d_model, dropout_rate
    )
G
gongweibao 已提交
1203 1204 1205 1206

    out = __combine_heads(ctx_multiheads)

    # Project back to the model size.
1207 1208 1209 1210 1211 1212 1213
    proj_out = layers.fc(
        input=out,
        size=d_model,
        num_flatten_dims=2,
        param_attr=const_para_attr,
        bias_attr=const_bias_attr,
    )
G
gongweibao 已提交
1214 1215 1216 1217 1218 1219 1220 1221 1222
    return proj_out


def positionwise_feed_forward(x, d_inner_hid, d_hid):
    """
    Position-wise Feed-Forward Networks.
    This module consists of two linear transformations with a ReLU activation
    in between, which is applied to each position separately and identically.
    """
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
    hidden = layers.fc(
        input=x,
        size=d_inner_hid,
        num_flatten_dims=2,
        act="relu",
        param_attr=const_para_attr,
        bias_attr=const_bias_attr,
    )
    out = layers.fc(
        input=hidden,
        size=d_hid,
        num_flatten_dims=2,
        param_attr=const_para_attr,
        bias_attr=const_bias_attr,
    )
G
gongweibao 已提交
1238 1239 1240
    return out


1241
def pre_post_process_layer(prev_out, out, process_cmd, dropout_rate=0.0):
G
gongweibao 已提交
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
    """
    Add residual connection, layer normalization and droput to the out tensor
    optionally according to the value of process_cmd.
    This will be used before or after multi-head attention and position-wise
    feed-forward networks.
    """
    for cmd in process_cmd:
        if cmd == "a":  # add residual connection
            out = out + prev_out if prev_out else out
        elif cmd == "n":  # add layer normalization
1252 1253 1254 1255 1256 1257
            out = layers.layer_norm(
                out,
                begin_norm_axis=len(out.shape) - 1,
                param_attr=fluid.initializer.Constant(1.0),
                bias_attr=fluid.initializer.Constant(0.0),
            )
G
gongweibao 已提交
1258 1259
        elif cmd == "d":  # add dropout
            if dropout_rate:
1260 1261 1262 1263 1264 1265
                out = layers.dropout(
                    out,
                    dropout_prob=dropout_rate,
                    seed=ModelHyperParams.dropout_seed,
                    is_test=False,
                )
G
gongweibao 已提交
1266 1267 1268 1269 1270 1271 1272
    return out


pre_process_layer = partial(pre_post_process_layer, None)
post_process_layer = pre_post_process_layer


1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
def prepare_encoder(
    src_word,
    src_pos,
    src_vocab_size,
    src_emb_dim,
    src_max_len,
    dropout_rate=0.0,
    word_emb_param_name=None,
    pos_enc_param_name=None,
):
G
gongweibao 已提交
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
    """Add word embeddings and position encodings.
    The output tensor has a shape of:
    [batch_size, max_src_length_in_batch, d_model].
    This module is used at the bottom of the encoder stacks.
    """
    if TrainTaskConfig.check_acc:
        src_word_emb = layers.embedding(
            src_word,
            size=[src_vocab_size, src_emb_dim],
            param_attr=fluid.ParamAttr(
                name=word_emb_param_name,
1294 1295 1296
                initializer=fluid.initializer.ConstantInitializer(0.001),
            ),
        )
G
gongweibao 已提交
1297 1298 1299 1300
    else:
        src_word_emb = layers.embedding(
            src_word,
            size=[src_vocab_size, src_emb_dim],
1301 1302 1303 1304 1305
            param_attr=fluid.ParamAttr(
                name=word_emb_param_name,
                initializer=fluid.initializer.Normal(0.0, src_emb_dim**-0.5),
            ),
        )
G
gongweibao 已提交
1306 1307 1308 1309 1310 1311 1312 1313

    src_word_emb = layers.scale(x=src_word_emb, scale=src_emb_dim**0.5)
    src_pos_enc = layers.embedding(
        src_pos,
        size=[src_max_len, src_emb_dim],
        param_attr=fluid.ParamAttr(
            name=pos_enc_param_name,
            trainable=False,
1314 1315 1316
            initializer=fluid.initializer.ConstantInitializer(0.001),
        ),
    )
M
minqiyang 已提交
1317
    src_pos_enc.stop_gradient = True
G
gongweibao 已提交
1318
    enc_input = src_word_emb + src_pos_enc
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
    return (
        layers.dropout(
            enc_input,
            dropout_prob=dropout_rate,
            seed=ModelHyperParams.dropout_seed,
            is_test=False,
        )
        if dropout_rate
        else enc_input
    )


prepare_encoder = partial(
    prepare_encoder, pos_enc_param_name=pos_enc_param_names[0]
)
prepare_decoder = partial(
    prepare_encoder, pos_enc_param_name=pos_enc_param_names[1]
)


def encoder_layer(
    enc_input,
    attn_bias,
    n_head,
    d_key,
    d_value,
    d_model,
    d_inner_hid,
    dropout_rate=0.0,
):
G
gongweibao 已提交
1349 1350 1351 1352 1353 1354
    """The encoder layers that can be stacked to form a deep encoder.
    This module consits of a multi-head (self) attention followed by
    position-wise feed-forward networks and both the two components companied
    with the post_process_layer to add residual connection, layer normalization
    and droput.
    """
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
    attn_output = multi_head_attention(
        enc_input,
        enc_input,
        enc_input,
        attn_bias,
        d_key,
        d_value,
        d_model,
        n_head,
        dropout_rate,
    )
    attn_output = post_process_layer(
        enc_input, attn_output, "dan", dropout_rate
    )
G
gongweibao 已提交
1369 1370 1371 1372
    ffd_output = positionwise_feed_forward(attn_output, d_inner_hid, d_model)
    return post_process_layer(attn_output, ffd_output, "dan", dropout_rate)


1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
def encoder(
    enc_input,
    attn_bias,
    n_layer,
    n_head,
    d_key,
    d_value,
    d_model,
    d_inner_hid,
    dropout_rate=0.0,
):
    """
    The encoder is composed of a stack of identical layers returned by calling
    encoder_layer.
    """
    for i in range(n_layer):
        enc_output = encoder_layer(
            enc_input,
G
gongweibao 已提交
1391 1392 1393 1394 1395 1396
            attn_bias,
            n_head,
            d_key,
            d_value,
            d_model,
            d_inner_hid,
1397 1398
            dropout_rate,
        )
G
gongweibao 已提交
1399 1400 1401 1402
        enc_input = enc_output
    return enc_output


1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
def decoder_layer(
    dec_input,
    enc_output,
    slf_attn_bias,
    dec_enc_attn_bias,
    n_head,
    d_key,
    d_value,
    d_model,
    d_inner_hid,
    dropout_rate=0.0,
    cache=None,
):
    """The layer to be stacked in decoder part.
G
gongweibao 已提交
1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
    The structure of this module is similar to that in the encoder part except
    a multi-head attention is added to implement encoder-decoder attention.
    """
    slf_attn_output = multi_head_attention(
        dec_input,
        dec_input,
        dec_input,
        slf_attn_bias,
        d_key,
        d_value,
        d_model,
        n_head,
        dropout_rate,
1430 1431
        cache,
    )
G
gongweibao 已提交
1432 1433 1434 1435
    slf_attn_output = post_process_layer(
        dec_input,
        slf_attn_output,
        "dan",  # residual connection + dropout + layer normalization
1436 1437
        dropout_rate,
    )
G
gongweibao 已提交
1438 1439 1440 1441 1442 1443 1444 1445 1446
    enc_attn_output = multi_head_attention(
        slf_attn_output,
        enc_output,
        enc_output,
        dec_enc_attn_bias,
        d_key,
        d_value,
        d_model,
        n_head,
1447 1448
        dropout_rate,
    )
G
gongweibao 已提交
1449 1450 1451 1452
    enc_attn_output = post_process_layer(
        slf_attn_output,
        enc_attn_output,
        "dan",  # residual connection + dropout + layer normalization
1453 1454
        dropout_rate,
    )
G
gongweibao 已提交
1455 1456 1457
    ffd_output = positionwise_feed_forward(
        enc_attn_output,
        d_inner_hid,
1458 1459
        d_model,
    )
G
gongweibao 已提交
1460 1461 1462 1463
    dec_output = post_process_layer(
        enc_attn_output,
        ffd_output,
        "dan",  # residual connection + dropout + layer normalization
1464 1465
        dropout_rate,
    )
G
gongweibao 已提交
1466
    return dec_output
X
Xin Pan 已提交
1467 1468


1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
def decoder(
    dec_input,
    enc_output,
    dec_slf_attn_bias,
    dec_enc_attn_bias,
    n_layer,
    n_head,
    d_key,
    d_value,
    d_model,
    d_inner_hid,
    dropout_rate=0.0,
    caches=None,
):
G
gongweibao 已提交
1483 1484 1485 1486 1487 1488 1489 1490
    """
    The decoder is composed of a stack of identical decoder_layer layers.
    """
    for i in range(n_layer):
        cache = None
        if caches is not None:
            cache = caches[i]

1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
        dec_output = decoder_layer(
            dec_input,
            enc_output,
            dec_slf_attn_bias,
            dec_enc_attn_bias,
            n_head,
            d_key,
            d_value,
            d_model,
            d_inner_hid,
            dropout_rate,
            cache=cache,
        )
G
gongweibao 已提交
1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
        dec_input = dec_output
    return dec_output


def make_all_inputs(input_fields):
    """
    Define the input data layers for the transformer model.
    """
    inputs = []
    for input_field in input_fields:
1514 1515 1516 1517 1518 1519 1520 1521 1522
        input_var = layers.data(
            name=input_field,
            shape=input_descs[input_field][0],
            dtype=input_descs[input_field][1],
            lod_level=input_descs[input_field][2]
            if len(input_descs[input_field]) == 3
            else 0,
            append_batch_size=False,
        )
G
gongweibao 已提交
1523 1524 1525 1526 1527
        inputs.append(input_var)
    return inputs


def transformer(
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
    src_vocab_size,
    trg_vocab_size,
    max_length,
    n_layer,
    n_head,
    d_key,
    d_value,
    d_model,
    d_inner_hid,
    dropout_rate,
    weight_sharing,
    label_smooth_eps,
):
G
gongweibao 已提交
1541
    if weight_sharing:
1542 1543 1544
        assert (
            src_vocab_size == src_vocab_size
        ), "Vocabularies in source and target should be same for weight sharing."
G
gongweibao 已提交
1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
    enc_inputs = make_all_inputs(encoder_data_input_fields)

    enc_output = wrap_encoder(
        src_vocab_size,
        max_length,
        n_layer,
        n_head,
        d_key,
        d_value,
        d_model,
        d_inner_hid,
        dropout_rate,
        weight_sharing,
1558 1559
        enc_inputs,
    )
G
gongweibao 已提交
1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574

    dec_inputs = make_all_inputs(decoder_data_input_fields[:-1])

    predict = wrap_decoder(
        trg_vocab_size,
        max_length,
        n_layer,
        n_head,
        d_key,
        d_value,
        d_model,
        d_inner_hid,
        dropout_rate,
        weight_sharing,
        dec_inputs,
1575 1576
        enc_output,
    )
G
gongweibao 已提交
1577 1578 1579 1580 1581

    # Padding index do not contribute to the total loss. The weights is used to
    # cancel padding index in calculating the loss.
    label, weights = make_all_inputs(label_data_input_fields)
    if label_smooth_eps:
1582 1583 1584 1585
        label = layers.label_smooth(
            label=layers.one_hot(input=label, depth=trg_vocab_size),
            epsilon=label_smooth_eps,
        )
G
gongweibao 已提交
1586 1587

    cost = layers.softmax_with_cross_entropy(
1588
        logits=layers.reshape(predict, shape=[-1, trg_vocab_size]),
G
gongweibao 已提交
1589
        label=label,
1590 1591
        soft_label=True if label_smooth_eps else False,
    )
G
gongweibao 已提交
1592 1593 1594 1595 1596 1597 1598 1599
    weighted_cost = cost * weights
    sum_cost = layers.reduce_sum(weighted_cost)
    token_num = layers.reduce_sum(weights)
    avg_cost = sum_cost / token_num
    avg_cost.stop_gradient = True
    return sum_cost, avg_cost, predict, token_num


1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612
def wrap_encoder(
    src_vocab_size,
    max_length,
    n_layer,
    n_head,
    d_key,
    d_value,
    d_model,
    d_inner_hid,
    dropout_rate,
    weight_sharing,
    enc_inputs=None,
):
G
gongweibao 已提交
1613 1614 1615 1616 1617
    """
    The wrapper assembles together all needed layers for the encoder.
    """
    if enc_inputs is None:
        # This is used to implement independent encoder program in inference.
1618 1619 1620
        src_word, src_pos, src_slf_attn_bias = make_all_inputs(
            encoder_data_input_fields
        )
G
gongweibao 已提交
1621
    else:
1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642
        src_word, src_pos, src_slf_attn_bias = enc_inputs
    enc_input = prepare_encoder(
        src_word,
        src_pos,
        src_vocab_size,
        d_model,
        max_length,
        dropout_rate,
        word_emb_param_name=word_emb_param_names[0],
    )
    enc_output = encoder(
        enc_input,
        src_slf_attn_bias,
        n_layer,
        n_head,
        d_key,
        d_value,
        d_model,
        d_inner_hid,
        dropout_rate,
    )
G
gongweibao 已提交
1643 1644 1645
    return enc_output


1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660
def wrap_decoder(
    trg_vocab_size,
    max_length,
    n_layer,
    n_head,
    d_key,
    d_value,
    d_model,
    d_inner_hid,
    dropout_rate,
    weight_sharing,
    dec_inputs=None,
    enc_output=None,
    caches=None,
):
G
gongweibao 已提交
1661 1662 1663 1664 1665
    """
    The wrapper assembles together all needed layers for the decoder.
    """
    if dec_inputs is None:
        # This is used to implement independent decoder program in inference.
1666 1667 1668 1669 1670 1671 1672
        (
            trg_word,
            trg_pos,
            trg_slf_attn_bias,
            trg_src_attn_bias,
            enc_output,
        ) = make_all_inputs(decoder_data_input_fields)
G
gongweibao 已提交
1673 1674 1675
    else:
        trg_word, trg_pos, trg_slf_attn_bias, trg_src_attn_bias = dec_inputs

1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700
    dec_input = prepare_decoder(
        trg_word,
        trg_pos,
        trg_vocab_size,
        d_model,
        max_length,
        dropout_rate,
        word_emb_param_name=word_emb_param_names[0]
        if weight_sharing
        else word_emb_param_names[1],
    )
    dec_output = decoder(
        dec_input,
        enc_output,
        trg_slf_attn_bias,
        trg_src_attn_bias,
        n_layer,
        n_head,
        d_key,
        d_value,
        d_model,
        d_inner_hid,
        dropout_rate,
        caches=caches,
    )
G
gongweibao 已提交
1701 1702
    # Return logits for training and probs for inference.
    if weight_sharing:
1703 1704 1705 1706 1707
        predict = layers.matmul(
            x=dec_output,
            y=fluid.framework._get_var(word_emb_param_names[0]),
            transpose_y=True,
        )
G
gongweibao 已提交
1708
    else:
1709 1710 1711 1712 1713 1714 1715
        predict = layers.fc(
            input=dec_output,
            size=trg_vocab_size,
            num_flatten_dims=2,
            param_attr=const_para_attr,
            bias_attr=const_bias_attr,
        )
G
gongweibao 已提交
1716 1717 1718 1719 1720 1721
    if dec_inputs is None:
        predict = layers.softmax(predict)
    return predict


def fast_decode(
1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
    src_vocab_size,
    trg_vocab_size,
    max_in_len,
    n_layer,
    n_head,
    d_key,
    d_value,
    d_model,
    d_inner_hid,
    dropout_rate,
    weight_sharing,
    beam_size,
    max_out_len,
    eos_idx,
):
G
gongweibao 已提交
1737 1738 1739 1740
    """
    Use beam search to decode. Caches will be used to store states of history
    steps which can make the decoding faster.
    """
1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755
    enc_output = wrap_encoder(
        src_vocab_size,
        max_in_len,
        n_layer,
        n_head,
        d_key,
        d_value,
        d_model,
        d_inner_hid,
        dropout_rate,
        weight_sharing,
    )
    start_tokens, init_scores, trg_src_attn_bias = make_all_inputs(
        fast_decoder_data_input_fields
    )
G
gongweibao 已提交
1756 1757

    def beam_search():
1758 1759 1760 1761 1762 1763
        max_len = layers.fill_constant(
            shape=[1], dtype=start_tokens.dtype, value=max_out_len
        )
        step_idx = layers.fill_constant(
            shape=[1], dtype=start_tokens.dtype, value=0
        )
G
gongweibao 已提交
1764 1765 1766
        cond = layers.less_than(x=step_idx, y=max_len)
        while_op = layers.While(cond)
        # array states will be stored for each step.
1767 1768 1769
        ids = layers.array_write(
            layers.reshape(start_tokens, (-1, 1)), step_idx
        )
G
gongweibao 已提交
1770 1771 1772 1773
        scores = layers.array_write(init_scores, step_idx)
        # cell states will be overwrited at each step.
        # caches contains states of history steps to reduce redundant
        # computation in decoder.
1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790
        caches = [
            {
                "k": layers.fill_constant_batch_size_like(
                    input=start_tokens,
                    shape=[-1, 0, d_model],
                    dtype=enc_output.dtype,
                    value=0,
                ),
                "v": layers.fill_constant_batch_size_like(
                    input=start_tokens,
                    shape=[-1, 0, d_model],
                    dtype=enc_output.dtype,
                    value=0,
                ),
            }
            for i in range(n_layer)
        ]
G
gongweibao 已提交
1791 1792 1793 1794 1795 1796
        with while_op.block():
            pre_ids = layers.array_read(array=ids, i=step_idx)
            pre_ids = layers.reshape(pre_ids, (-1, 1, 1))
            pre_scores = layers.array_read(array=scores, i=step_idx)
            # sequence_expand can gather sequences according to lod thus can be
            # used in beam search to sift states corresponding to selected ids.
1797 1798 1799
            pre_src_attn_bias = layers.sequence_expand(
                x=trg_src_attn_bias, y=pre_scores
            )
G
gongweibao 已提交
1800
            pre_enc_output = layers.sequence_expand(x=enc_output, y=pre_scores)
1801 1802 1803 1804 1805 1806 1807
            pre_caches = [
                {
                    "k": layers.sequence_expand(x=cache["k"], y=pre_scores),
                    "v": layers.sequence_expand(x=cache["v"], y=pre_scores),
                }
                for cache in caches
            ]
G
gongweibao 已提交
1808 1809
            pre_pos = layers.elementwise_mul(
                x=layers.fill_constant_batch_size_like(
1810
                    input=pre_enc_output,  # can't use pre_ids here since it has lod
G
gongweibao 已提交
1811 1812
                    value=1,
                    shape=[-1, 1, 1],
1813 1814
                    dtype=pre_ids.dtype,
                ),
1815
                y=layers.increment(x=step_idx, value=1.0, in_place=False),
1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832
                axis=0,
            )
            logits = wrap_decoder(
                trg_vocab_size,
                max_in_len,
                n_layer,
                n_head,
                d_key,
                d_value,
                d_model,
                d_inner_hid,
                dropout_rate,
                weight_sharing,
                dec_inputs=(pre_ids, pre_pos, None, pre_src_attn_bias),
                enc_output=pre_enc_output,
                caches=pre_caches,
            )
G
gongweibao 已提交
1833 1834 1835
            logits = layers.reshape(logits, (-1, trg_vocab_size))

            topk_scores, topk_indices = layers.topk(
1836 1837 1838 1839 1840 1841 1842
                input=layers.softmax(logits), k=beam_size
            )
            accu_scores = layers.elementwise_add(
                x=layers.log(topk_scores),
                y=layers.reshape(pre_scores, shape=[-1]),
                axis=0,
            )
G
gongweibao 已提交
1843 1844 1845 1846 1847 1848 1849 1850
            # beam_search op uses lod to distinguish branches.
            topk_indices = layers.lod_reset(topk_indices, pre_ids)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
1851 1852
                end_id=eos_idx,
            )
G
gongweibao 已提交
1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863

            layers.increment(x=step_idx, value=1.0, in_place=True)
            # update states
            layers.array_write(selected_ids, i=step_idx, array=ids)
            layers.array_write(selected_scores, i=step_idx, array=scores)
            layers.assign(pre_src_attn_bias, trg_src_attn_bias)
            layers.assign(pre_enc_output, enc_output)
            for i in range(n_layer):
                layers.assign(pre_caches[i]["k"], caches[i]["k"])
                layers.assign(pre_caches[i]["v"], caches[i]["v"])
            length_cond = layers.less_than(x=step_idx, y=max_len)
2
201716010711 已提交
1864
            finish_cond = paddle.logical_not(layers.is_empty(x=selected_ids))
G
gongweibao 已提交
1865 1866 1867
            layers.logical_and(x=length_cond, y=finish_cond, out=cond)

        finished_ids, finished_scores = layers.beam_search_decode(
1868 1869
            ids, scores, beam_size=beam_size, end_id=eos_idx
        )
G
gongweibao 已提交
1870 1871 1872 1873 1874 1875 1876 1877
        return finished_ids, finished_scores

    finished_ids, finished_scores = beam_search()
    return finished_ids, finished_scores


def get_model(is_dist, is_async):
    sum_cost, avg_cost, predict, token_num = transformer(
1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896
        ModelHyperParams.src_vocab_size,
        ModelHyperParams.trg_vocab_size,
        ModelHyperParams.max_length + 1,
        ModelHyperParams.n_layer,
        ModelHyperParams.n_head,
        ModelHyperParams.d_key,
        ModelHyperParams.d_value,
        ModelHyperParams.d_model,
        ModelHyperParams.d_inner_hid,
        ModelHyperParams.dropout,
        ModelHyperParams.weight_sharing,
        TrainTaskConfig.label_smooth_eps,
    )

    local_lr_scheduler = LearningRateScheduler(
        ModelHyperParams.d_model,
        TrainTaskConfig.warmup_steps,
        TrainTaskConfig.learning_rate,
    )
1897 1898
    # Context to do validation.
    test_program = fluid.default_main_program().clone(for_test=True)
G
gongweibao 已提交
1899 1900 1901 1902 1903 1904

    if not is_dist:
        optimizer = fluid.optimizer.Adam(
            learning_rate=local_lr_scheduler.learning_rate,
            beta1=TrainTaskConfig.beta1,
            beta2=TrainTaskConfig.beta2,
1905 1906
            epsilon=TrainTaskConfig.eps,
        )
G
gongweibao 已提交
1907 1908 1909 1910 1911
        optimizer.minimize(sum_cost)
    elif is_async:
        optimizer = fluid.optimizer.SGD(0.003)
        optimizer.minimize(sum_cost)
    else:
1912 1913 1914 1915 1916 1917 1918 1919 1920 1921
        lr_decay = fluid.layers.learning_rate_scheduler.noam_decay(
            ModelHyperParams.d_model, TrainTaskConfig.warmup_steps
        )

        optimizer = fluid.optimizer.Adam(
            learning_rate=lr_decay,
            beta1=TrainTaskConfig.beta1,
            beta2=TrainTaskConfig.beta2,
            epsilon=TrainTaskConfig.eps,
        )
G
gongweibao 已提交
1922 1923
        optimizer.minimize(sum_cost)

1924 1925 1926 1927 1928 1929 1930 1931
    return (
        sum_cost,
        avg_cost,
        predict,
        token_num,
        local_lr_scheduler,
        test_program,
    )
X
Xin Pan 已提交
1932 1933


G
gongweibao 已提交
1934 1935 1936 1937
def update_args():
    src_dict = DataReader.load_dict(TrainTaskConfig.src_vocab_fpath)
    trg_dict = DataReader.load_dict(TrainTaskConfig.trg_vocab_fpath)
    dict_args = [
1938
        "src_vocab_size",
1939 1940 1941 1942 1943 1944 1945 1946 1947
        str(len(src_dict)),
        "trg_vocab_size",
        str(len(trg_dict)),
        "bos_idx",
        str(src_dict[TrainTaskConfig.special_token[0]]),
        "eos_idx",
        str(src_dict[TrainTaskConfig.special_token[1]]),
        "unk_idx",
        str(src_dict[TrainTaskConfig.special_token[2]]),
G
gongweibao 已提交
1948 1949 1950 1951 1952
    ]
    merge_cfg_from_list(dict_args, [TrainTaskConfig, ModelHyperParams])


class DistTransformer2x2(TestDistRunnerBase):
W
Wu Yi 已提交
1953 1954
    def run_pserver(self, args):
        get_model(True, not args.sync_mode)
1955 1956 1957 1958 1959 1960 1961
        t = self.get_transpiler(
            args.trainer_id,
            fluid.default_main_program(),
            args.endpoints,
            args.trainers,
            args.sync_mode,
        )
W
Wu Yi 已提交
1962
        pserver_prog = t.get_pserver_program(args.current_endpoint)
1963 1964 1965
        startup_prog = t.get_startup_program(
            args.current_endpoint, pserver_prog
        )
X
Xin Pan 已提交
1966 1967 1968 1969 1970 1971

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(startup_prog)
        exe.run(pserver_prog)

1972 1973
    def run_trainer(self, args):
        TrainTaskConfig.use_gpu = args.use_cuda
1974 1975 1976 1977 1978 1979 1980 1981
        (
            sum_cost,
            avg_cost,
            predict,
            token_num,
            local_lr_scheduler,
            test_program,
        ) = get_model(args.is_dist, not args.sync_mode)
G
gongweibao 已提交
1982

W
Wu Yi 已提交
1983
        if args.is_dist:
1984 1985 1986 1987 1988 1989 1990
            t = self.get_transpiler(
                args.trainer_id,
                fluid.default_main_program(),
                args.endpoints,
                args.trainers,
                args.sync_mode,
            )
X
Xin Pan 已提交
1991
            trainer_prog = t.get_trainer_program()
G
gongweibao 已提交
1992
            TrainTaskConfig.batch_size = 10
1993 1994 1995 1996 1997 1998
            TrainTaskConfig.train_file_pattern = (
                TrainTaskConfig.data_path
                + "train.tok.clean.bpe.32000.en-de.train_{}".format(
                    args.trainer_id
                )
            )
X
Xin Pan 已提交
1999
        else:
G
gongweibao 已提交
2000
            TrainTaskConfig.batch_size = 20
X
Xin Pan 已提交
2001 2002
            trainer_prog = fluid.default_main_program()

2003 2004 2005 2006 2007
        if args.use_cuda:
            place = fluid.CUDAPlace(0)
        else:
            place = fluid.CPUPlace()

X
Xin Pan 已提交
2008
        startup_exe = fluid.Executor(place)
G
gongweibao 已提交
2009

W
Wu Yi 已提交
2010
        TrainTaskConfig.local = not args.is_dist
G
gongweibao 已提交
2011

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
        train_loop(
            startup_exe,
            trainer_prog,
            1,
            sum_cost,
            avg_cost,
            local_lr_scheduler,
            token_num,
            predict,
            test_program,
        )
X
Xin Pan 已提交
2023 2024 2025


if __name__ == "__main__":
G
gongweibao 已提交
2026 2027
    update_args()
    runtime_main(DistTransformer2x2)