test_cross_entropy_loss.py 63.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import paddle
import paddle.fluid as fluid
import numpy as np
import unittest
21 22
from test_softmax_op import stable_softmax
from test_softmax_with_cross_entropy_op import cross_entropy
R
root 已提交
23
from paddle.fluid import Program, program_guard
24 25


26
def log_softmax(x, axis=-1):
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
    softmax_out = np.apply_along_axis(stable_softmax, axis, x)
    return np.log(softmax_out)


def cross_entropy_loss_1d(input,
                          label,
                          weight=None,
                          reduction='mean',
                          ignore_index=-100):
    log_softmax_out = log_softmax(input)
    input_shape = log_softmax_out.shape
    N = input_shape[0]
    C = input_shape[1]
    out = np.zeros_like(label).astype(np.float64)
    total_weight = 0
42 43
    ###1. compute softmax cross_entropy (with weight)
    ###   Note: only support hard labels.
44 45 46 47 48 49 50 51
    for i in range(N):
        cur_target = label[i]
        if cur_target == ignore_index:
            out[i] = 0
            continue
        cur_weight = weight[cur_target] if weight is not None else 1
        total_weight += cur_weight
        out[i] = -log_softmax_out[i][cur_target] * cur_weight
52

53
    ###2. deal with reduction
54 55 56
    if reduction == 'sum':
        return np.sum(out), np.array([total_weight]).astype('float64')
    elif reduction == 'mean':
57 58
        out = out.sum() / total_weight if total_weight != 0 else out.sum()
        return out, np.array([total_weight]).astype('float64')
59 60 61 62 63 64 65 66 67 68 69 70
    elif reduction == 'none':
        return out


def cross_entropy_loss_2d(input,
                          label,
                          weight=None,
                          reduction='mean',
                          ignore_index=-100):
    log_softmax_out = log_softmax(input)
    input_shape = log_softmax_out.shape
    N = input_shape[0]
71 72 73
    H = input_shape[1]
    W = input_shape[2]

74 75 76 77 78 79 80 81 82 83 84
    out = np.zeros_like(label).astype(np.float64)
    total_weight = 0
    for i in range(N):
        for h in range(H):
            for w in range(W):
                cur_target = label[i][h][w]
                if cur_target == ignore_index:
                    out[i][h][w] = 0
                    continue
                cur_weight = weight[cur_target] if weight is not None else 1
                total_weight += cur_weight
85 86
                out[i][h][w] = -log_softmax_out[i][h][w][
                    cur_target] * cur_weight
87 88 89
    if reduction == 'sum':
        return np.sum(out), np.array([total_weight]).astype('float64')
    elif reduction == 'mean':
90 91
        out = out.sum() / total_weight if total_weight != 0 else out.sum()
        return out, np.array([total_weight]).astype('float64')
92 93 94 95
    elif reduction == 'none':
        return out


96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
def cross_entropy_soft(softmax,
                       label,
                       axis,
                       N,
                       weight=None,
                       reduction='mean',
                       ignore_index=-100):
    #1.loss
    loss = cross_entropy(
        softmax,
        label,
        True,  #soft_label,
        axis,
        ignore_index)

    if weight is None and reduction == 'none':
        return loss

    #2.weight
    weighted_loss = loss
    total_weight = N  #for weight is None
    if weight is not None:
        weighted_loss = np.zeros_like(loss).astype(np.float64)
        total_weight = 0
        for i in range(N):
            cur_soft_label = label[i]
            cur_weight = np.dot(weight, cur_soft_label)
            total_weight += cur_weight
            weighted_loss[i] = loss[i] * cur_weight

    #3.reduce
    if reduction == 'none':
        return weighted_loss

    elif reduction == 'mean':
        weighted_loss_sum = np.sum(weighted_loss)
        weighted_loss_mean = weighted_loss_sum / total_weight
        return weighted_loss_mean

    else:
        weighted_loss_sum = np.sum(weighted_loss)
        return weighted_loss_sum


def cross_entropy_soft_2d(softmax,
                          label,
                          axis,
                          N,
                          H,
                          W,
                          weight=None,
                          reduction='mean',
                          ignore_index=-100):
    #1.loss
    loss = cross_entropy(
        softmax,
        label,
        True,  #soft_label,
        axis,
        ignore_index)

    if weight is None and reduction == 'none':
        return loss

    #2.weight
    weighted_loss = loss
    total_weight = N  #for weight is None
    if weight is not None:
        weighted_loss = np.zeros_like(loss).astype(np.float64)
        total_weight = 0
        for i in range(N):
            for h in range(H):
                for w in range(W):
                    cur_soft_label = label[i][h][w]
                    cur_weight = np.dot(weight, cur_soft_label)
                    total_weight += cur_weight
                    weighted_loss[i][h][w] = loss[i][h][w] * cur_weight

    #3.reduce
    if reduction == 'none':
        return weighted_loss

    elif reduction == 'mean':
        weighted_loss_sum = np.sum(weighted_loss)
        weighted_loss_mean = weighted_loss_sum / total_weight
        return weighted_loss_mean

    else:
        weighted_loss_sum = np.sum(weighted_loss)
        return weighted_loss_sum


188
class CrossEntropyLoss(unittest.TestCase):
189 190 191
    def setUp(self):
        self.dtype = 'float32' if fluid.core.is_compiled_with_rocm(
        ) else 'float64'
192 193 194 195 196

    ###test for deprecated softmax_with_cross_entropy
    def test_softmax_with_cross_entropy(self):
        self.numeric_stable_mode = False
        self.soft_label = True
197 198
        self.dtype = 'float32' if fluid.core.is_compiled_with_rocm(
        ) else 'float64'
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
        self.axis = -1
        self.ignore_index = -100  #should not be changed
        self.N = 4
        self.C = 3
        self.shape = [self.N, self.C]
        self.use_softmax = True
        self.reduction = 'none'
        self.weight = None
        self.logits = getattr(
            self, "logits",
            np.random.uniform(0.1, 1.0, self.shape).astype(self.dtype))
        softmax = np.apply_along_axis(stable_softmax, self.axis, self.logits)

        self.labels = np.random.uniform(0.1, 1.0, self.shape).astype(self.dtype)
        self.labels /= np.sum(self.labels, axis=self.axis, keepdims=True)

        expected = cross_entropy_soft(
            softmax,
            self.labels,
            self.axis,
            self.N,
            weight=self.weight,
            reduction=self.reduction,
            ignore_index=self.ignore_index)

        paddle.set_device("cpu")

        paddle.disable_static()
        paddle_loss_swce = paddle.nn.functional.softmax_with_cross_entropy(
            fluid.dygraph.to_variable(self.logits),
            fluid.dygraph.to_variable(self.labels),
            soft_label=True,
            axis=self.axis)

        paddle_loss_ce = paddle.nn.functional.cross_entropy(
            fluid.dygraph.to_variable(self.logits),
            fluid.dygraph.to_variable(self.labels),
            soft_label=True,
            axis=self.axis,
            weight=fluid.dygraph.to_variable(self.weight)
            if self.weight is not None else None,
            reduction=self.reduction)

        self.assertTrue(np.allclose(paddle_loss_swce.numpy(), expected))
        self.assertTrue(np.allclose(paddle_loss_ce.numpy(), expected))

    ###soft_label test start
    ###soft_label test 1
    def test_cross_entropy_loss_soft_1d(self):
        self.numeric_stable_mode = False
        self.soft_label = True
250 251
        self.dtype = 'float32' if fluid.core.is_compiled_with_rocm(
        ) else 'float64'
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
        self.axis = -1
        self.ignore_index = -100  #should not be changed
        self.N = 4
        self.C = 3
        self.shape = [self.N, self.C]
        self.use_softmax = True
        self.reduction = 'none'
        self.weight = None
        self.logits = getattr(
            self, "logits",
            np.random.uniform(0.1, 1.0, self.shape).astype(self.dtype))
        softmax = np.apply_along_axis(stable_softmax, self.axis, self.logits)

        self.labels = np.random.uniform(0.1, 1.0, self.shape).astype(self.dtype)
        self.labels /= np.sum(self.labels, axis=self.axis, keepdims=True)

        expected = cross_entropy_soft(
            softmax,
            self.labels,
            self.axis,
            self.N,
            weight=self.weight,
            reduction=self.reduction,
            ignore_index=self.ignore_index)

        paddle.set_device("cpu")

        #2. dygraph
        paddle.disable_static()
        paddle_loss_none_weight = paddle.nn.functional.cross_entropy(
            fluid.dygraph.to_variable(self.logits),
            fluid.dygraph.to_variable(self.labels),
            soft_label=True,
            axis=self.axis,
            weight=fluid.dygraph.to_variable(self.weight)
            if self.weight is not None else None,
            reduction=self.reduction)
        dy_ret_value = paddle_loss_none_weight.numpy()

        #3. static
        paddle.enable_static()
        prog = fluid.Program()
        startup_prog = fluid.Program()
        place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
        ) else fluid.CPUPlace()
        with fluid.program_guard(prog, startup_prog):
            input = fluid.data(
299
                name='input', shape=[self.N, self.C], dtype=self.dtype)
300
            label = fluid.data(
301
                name='label', shape=[self.N, self.C], dtype=self.dtype)
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323

            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                reduction=self.reduction, soft_label=True)
            ret = cross_entropy_loss(input, label)

            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': self.logits,
                                     'label': self.labels,
                                 },
                                 fetch_list=[ret])
            self.assertIsNotNone(static_ret)
        paddle.disable_static()

        self.assertTrue(np.allclose(static_ret, expected))
        self.assertTrue(np.allclose(dy_ret_value, expected))

    ###soft_label test 2
    def test_cross_entropy_loss_soft_1d_weight(self):
        self.numeric_stable_mode = False
        self.soft_label = True
324 325
        self.dtype = 'float32' if fluid.core.is_compiled_with_rocm(
        ) else 'float64'
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
        self.axis = -1
        self.ignore_index = -100  #should not be changed
        self.N = 4
        self.C = 3
        self.shape = [self.N, self.C]
        self.use_softmax = True
        self.reduction = 'none'
        self.weight = np.random.uniform(0.1, 1.0, self.C).astype(self.dtype)
        self.logits = getattr(
            self, "logits",
            np.random.uniform(0.1, 1.0, self.shape).astype(self.dtype))
        softmax = np.apply_along_axis(stable_softmax, self.axis, self.logits)

        if self.soft_label:
            self.labels = np.random.uniform(0.1, 1.0,
                                            self.shape).astype(self.dtype)
            self.labels /= np.sum(self.labels, axis=self.axis, keepdims=True)
        else:
            axis_dim = self.shape[self.axis]
            self.shape[self.axis] = 1
            self.labels = np.random.randint(
                0, axis_dim, self.shape, dtype="int64")

        #1. numpy
        expected = cross_entropy_soft(
            softmax,
            self.labels,
            self.axis,
            self.N,
            weight=self.weight,
            reduction=self.reduction,
            ignore_index=self.ignore_index)

        paddle.set_device("cpu")

        #2. dygraph
        paddle.disable_static()
        paddle_loss_none_weight = paddle.nn.functional.cross_entropy(
            fluid.dygraph.to_variable(self.logits),
            fluid.dygraph.to_variable(self.labels),
            soft_label=True,
            axis=self.axis,
            weight=fluid.dygraph.to_variable(self.weight),
            reduction=self.reduction)
        dy_ret_value = paddle_loss_none_weight.numpy()

        # 3.static
        paddle.enable_static()
        prog = fluid.Program()
        startup_prog = fluid.Program()
        place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
        ) else fluid.CPUPlace()
        with fluid.program_guard(prog, startup_prog):
            input = fluid.data(
380
                name='input', shape=[self.N, self.C], dtype=self.dtype)
381
            label = fluid.data(
382 383
                name='label', shape=[self.N, self.C], dtype=self.dtype)
            weight = fluid.data(name='weight', shape=[self.C], dtype=self.dtype)
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406

            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=weight, reduction=self.reduction, soft_label=True)
            ret = cross_entropy_loss(input, label)

            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': self.logits,
                                     'label': self.labels,
                                     "weight": self.weight
                                 },
                                 fetch_list=[ret])
            self.assertIsNotNone(static_ret)
        paddle.disable_static()

        self.assertTrue(np.allclose(static_ret, expected))
        self.assertTrue(np.allclose(dy_ret_value, expected))

    ###soft_label test 3
    def test_cross_entropy_loss_soft_1d_mean(self):
        self.numeric_stable_mode = False
        self.soft_label = True
407 408
        self.dtype = 'float32' if fluid.core.is_compiled_with_rocm(
        ) else 'float64'
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
        self.axis = -1
        self.ignore_index = -100  #should not be changed
        self.N = 4
        self.C = 3
        self.shape = [self.N, self.C]
        self.use_softmax = True
        self.reduction = 'mean'
        self.weight = None
        self.logits = getattr(
            self, "logits",
            np.random.uniform(0.1, 1.0, self.shape).astype(self.dtype))
        softmax = np.apply_along_axis(stable_softmax, self.axis, self.logits)

        self.labels = np.random.uniform(0.1, 1.0, self.shape).astype(self.dtype)
        self.labels /= np.sum(self.labels, axis=self.axis, keepdims=True)

        #1. numpy
        expected = cross_entropy_soft(
            softmax,
            self.labels,
            self.axis,
            self.N,
            weight=self.weight,
            reduction=self.reduction,
            ignore_index=self.ignore_index)

        paddle.set_device("cpu")

437
        #2 dygraph
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
        paddle.disable_static()
        paddle_loss_mean = paddle.nn.functional.cross_entropy(
            fluid.dygraph.to_variable(self.logits),
            fluid.dygraph.to_variable(self.labels),
            soft_label=True,
            axis=self.axis,
            weight=self.weight,
            reduction=self.reduction)
        dy_ret_value = paddle_loss_mean.numpy()

        #3. static
        paddle.enable_static()
        prog = fluid.Program()
        startup_prog = fluid.Program()
        place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
        ) else fluid.CPUPlace()
        with fluid.program_guard(prog, startup_prog):
            input = fluid.data(
456
                name='input', shape=[self.N, self.C], dtype=self.dtype)
457
            label = fluid.data(
458
                name='label', shape=[self.N, self.C], dtype=self.dtype)
459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479

            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                reduction=self.reduction, soft_label=True)
            ret = cross_entropy_loss(input, label)

            exe = fluid.Executor(place)
            static_ret = exe.run(
                prog,
                feed={'input': self.logits,
                      'label': self.labels},
                fetch_list=[ret])
            self.assertIsNotNone(static_ret)
        paddle.disable_static()

        self.assertTrue(np.allclose(static_ret, expected))
        self.assertTrue(np.allclose(dy_ret_value, expected))

    ###soft_label test 4
    def test_cross_entropy_loss_soft_1d_weight_mean(self):
        self.numeric_stable_mode = False
        self.soft_label = True
480 481
        self.dtype = 'float32' if fluid.core.is_compiled_with_rocm(
        ) else 'float64'
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
        self.axis = -1
        self.ignore_index = -100  #should not be changed
        self.N = 4
        self.C = 3
        self.shape = [self.N, self.C]
        self.use_softmax = True
        self.reduction = 'mean'
        self.weight = np.random.uniform(0.1, 1.0, self.C).astype(self.dtype)
        self.logits = getattr(
            self, "logits",
            np.random.uniform(0.1, 1.0, self.shape).astype(self.dtype))
        softmax = np.apply_along_axis(stable_softmax, self.axis, self.logits)

        self.labels = np.random.uniform(0.1, 1.0, self.shape).astype(self.dtype)
        self.labels /= np.sum(self.labels, axis=self.axis, keepdims=True)

        #1. numpy
        expected = cross_entropy_soft(
            softmax,
            self.labels,
            self.axis,
            self.N,
            weight=self.weight,
            reduction=self.reduction,
            ignore_index=self.ignore_index)

        paddle.set_device("cpu")
        paddle.disable_static()

        #2. dygraph
        paddle_loss_none_weight = paddle.nn.functional.cross_entropy(
            fluid.dygraph.to_variable(self.logits),
            fluid.dygraph.to_variable(self.labels),
            soft_label=True,
            axis=self.axis,
            weight=fluid.dygraph.to_variable(self.weight),
            reduction=self.reduction)
        dy_ret_value = paddle_loss_none_weight.numpy()

        #3. static
        paddle.enable_static()
        prog = fluid.Program()
        startup_prog = fluid.Program()
        place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
        ) else fluid.CPUPlace()
        with fluid.program_guard(prog, startup_prog):
            input = fluid.data(
529
                name='input', shape=[self.N, self.C], dtype=self.dtype)
530
            label = fluid.data(
531 532
                name='label', shape=[self.N, self.C], dtype=self.dtype)
            weight = fluid.data(name='weight', shape=[self.C], dtype=self.dtype)
533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554

            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=weight, reduction=self.reduction, soft_label=True)
            ret = cross_entropy_loss(input, label)
            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': self.logits,
                                     'label': self.labels,
                                     "weight": self.weight
                                 },
                                 fetch_list=[ret])
            self.assertIsNotNone(static_ret)
        paddle.disable_static()

        self.assertTrue(np.allclose(static_ret, expected))
        self.assertTrue(np.allclose(dy_ret_value, expected))

    ###soft_label test 5
    def test_cross_entropy_loss_soft_2d(self):
        self.numeric_stable_mode = False
        self.soft_label = True
555 556
        self.dtype = 'float32' if fluid.core.is_compiled_with_rocm(
        ) else 'float64'
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
        self.axis = -1
        self.ignore_index = -100  #should not be changed
        self.N = 3
        self.H = 2
        self.W = 2
        self.C = 5
        self.shape = [self.N, self.H, self.W, self.C]
        self.use_softmax = True
        self.reduction = 'none'
        self.weight = None
        self.logits = getattr(
            self, "logits",
            np.random.uniform(0.1, 1.0, self.shape).astype(self.dtype))
        softmax = np.apply_along_axis(stable_softmax, self.axis, self.logits)

        self.labels = np.random.uniform(0.1, 1.0, self.shape).astype(self.dtype)
        self.labels /= np.sum(self.labels, axis=self.axis, keepdims=True)

        #1. numpy
        expected = cross_entropy_soft_2d(
            softmax,
            self.labels,
            self.axis,
            self.N,
            self.H,
            self.W,
            weight=self.weight,
            reduction=self.reduction,
            ignore_index=self.ignore_index)

        paddle.set_device("cpu")
        paddle.disable_static()

        #2. dygraph
        paddle_loss_none_weight = paddle.nn.functional.cross_entropy(
            fluid.dygraph.to_variable(self.logits),
            fluid.dygraph.to_variable(self.labels),
            soft_label=True,
            axis=self.axis,
            weight=fluid.dygraph.to_variable(self.weight)
            if self.weight is not None else None,
            reduction=self.reduction)
        dy_ret_value = paddle_loss_none_weight.numpy()

        #3. static
        paddle.enable_static()
        prog = fluid.Program()
        startup_prog = fluid.Program()
        place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
        ) else fluid.CPUPlace()
        with fluid.program_guard(prog, startup_prog):
            input = fluid.data(
                name='input',
                shape=[self.N, self.H, self.W, self.C],
611
                dtype=self.dtype)
612 613 614
            label = fluid.data(
                name='label',
                shape=[self.N, self.H, self.W, self.C],
615
                dtype=self.dtype)
616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637

            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                reduction=self.reduction, soft_label=True)
            ret = cross_entropy_loss(input, label)
            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': self.logits,
                                     'label': self.labels,
                                 },
                                 fetch_list=[ret])
            self.assertIsNotNone(static_ret)
        paddle.disable_static()

        self.assertTrue(np.allclose(static_ret, dy_ret_value))
        self.assertTrue(np.allclose(static_ret, expected))
        self.assertTrue(np.allclose(dy_ret_value, expected))

    ###soft_label test 6
    def test_cross_entropy_loss_soft_2d_weight_mean(self):
        self.numeric_stable_mode = False
        self.soft_label = True
638 639
        self.dtype = 'float32' if fluid.core.is_compiled_with_rocm(
        ) else 'float64'
640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
        self.axis = -1
        self.ignore_index = -100  #should not be changed
        self.N = 3
        self.H = 2
        self.W = 2
        self.C = 5
        self.shape = [self.N, self.H, self.W, self.C]
        self.use_softmax = True
        self.reduction = 'mean'
        self.weight = np.random.uniform(0.1, 1.0, self.C).astype(self.dtype)
        self.logits = getattr(
            self, "logits",
            np.random.uniform(0.1, 1.0, self.shape).astype(self.dtype))
        softmax = np.apply_along_axis(stable_softmax, self.axis, self.logits)

        self.labels = np.random.uniform(0.1, 1.0, self.shape).astype(self.dtype)
        self.labels /= np.sum(self.labels, axis=self.axis, keepdims=True)

        #1. numpy
        expected = cross_entropy_soft_2d(
            softmax,
            self.labels,
            self.axis,
            self.N,
            self.H,
            self.W,
            weight=self.weight,
            reduction=self.reduction,
            ignore_index=self.ignore_index)

        paddle.set_device("cpu")
        paddle.disable_static()

        #2. dygraph
        paddle_loss_none_weight = paddle.nn.functional.cross_entropy(
            fluid.dygraph.to_variable(self.logits),
            fluid.dygraph.to_variable(self.labels),
            soft_label=True,
            axis=self.axis,
            weight=fluid.dygraph.to_variable(self.weight),
            reduction=self.reduction)
        dy_ret_value = paddle_loss_none_weight.numpy()

        #3. static
        paddle.enable_static()
        prog = fluid.Program()
        startup_prog = fluid.Program()
        place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
        ) else fluid.CPUPlace()
        with fluid.program_guard(prog, startup_prog):
            input = fluid.data(
                name='input',
                shape=[self.N, self.H, self.W, self.C],
693
                dtype=self.dtype)
694 695 696
            label = fluid.data(
                name='label',
                shape=[self.N, self.H, self.W, self.C],
697 698
                dtype=self.dtype)
            weight = fluid.data(name='weight', shape=[self.C], dtype=self.dtype)
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719

            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=weight, reduction=self.reduction, soft_label=True)
            ret = cross_entropy_loss(input, label)
            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': self.logits,
                                     'label': self.labels,
                                     "weight": self.weight
                                 },
                                 fetch_list=[ret])
            self.assertIsNotNone(static_ret)
        paddle.disable_static()

        self.assertTrue(np.allclose(static_ret, dy_ret_value))
        self.assertTrue(np.allclose(static_ret, expected))
        self.assertTrue(np.allclose(dy_ret_value, expected))

    ###soft_label test end

720
    def test_cross_entropy_loss_1d_with_mean_ignore(self):
721
        input_np = np.random.random([2, 4]).astype(self.dtype)
722 723 724 725 726 727 728
        label_np = np.random.randint(0, 4, size=(2)).astype(np.int64)
        paddle.enable_static()
        prog = fluid.Program()
        startup_prog = fluid.Program()
        place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
        ) else fluid.CPUPlace()
        with fluid.program_guard(prog, startup_prog):
729
            input = fluid.data(name='input', shape=[2, 4], dtype=self.dtype)
730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
            label = fluid.data(name='label', shape=[2], dtype='int64')
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(ignore_index=0)
            ret = cross_entropy_loss(input, label)

            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': input_np,
                                     'label': label_np,
                                 },
                                 fetch_list=[ret])
            self.assertIsNotNone(static_ret)
        expected = cross_entropy_loss_1d(input_np, label_np)[0]

        with fluid.dygraph.guard():
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                axis=1, ignore_index=0)
            dy_ret = cross_entropy_loss(
                fluid.dygraph.to_variable(input_np),
                fluid.dygraph.to_variable(label_np))
            dy_ret_value = dy_ret.numpy()
            self.assertIsNotNone(dy_ret_value)
        expected = cross_entropy_loss_1d(input_np, label_np, ignore_index=0)[0]
        self.assertTrue(np.allclose(static_ret, dy_ret_value))
        self.assertTrue(np.allclose(static_ret, expected))
        self.assertTrue(np.allclose(dy_ret_value, expected))

757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
    def test_cross_entropy_loss_1d_with_mean_ignore_negative(self):
        N = 100
        C = 200
        input_np = np.random.random([N, C]).astype(self.dtype)
        label_np = -np.ones((N)).astype(np.int64)
        paddle.enable_static()
        prog = fluid.Program()
        startup_prog = fluid.Program()
        place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
        ) else fluid.CPUPlace()
        with fluid.program_guard(prog, startup_prog):
            input = fluid.data(name='input', shape=[N, C], dtype=self.dtype)
            label = fluid.data(name='label', shape=[N], dtype='int64')
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                ignore_index=-1)
            ret = cross_entropy_loss(input, label)
            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': input_np,
                                     'label': label_np,
                                 },
                                 fetch_list=[ret])
            self.assertIsNotNone(static_ret)

        with fluid.dygraph.guard():
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                axis=1, ignore_index=-1)
            dy_ret = cross_entropy_loss(
                fluid.dygraph.to_variable(input_np),
                fluid.dygraph.to_variable(label_np))
            dy_ret_value = dy_ret.numpy()
            self.assertIsNotNone(dy_ret_value)
        expected = cross_entropy_loss_1d(input_np, label_np, ignore_index=-1)[0]

        self.assertTrue(np.allclose(static_ret, dy_ret_value))
        self.assertTrue(np.allclose(static_ret, expected))
        self.assertTrue(np.allclose(dy_ret_value, expected))

796
    def test_cross_entropy_loss_1d_with_weight_mean_ignore(self):
797 798
        N = 100
        C = 200
799
        input_np = np.random.random([N, C]).astype(self.dtype)
800
        label_np = np.random.randint(0, C, size=(N)).astype(np.int64)
801
        weight_np = np.random.random([C]).astype(self.dtype)
802 803 804 805 806 807
        paddle.enable_static()
        prog = fluid.Program()
        startup_prog = fluid.Program()
        place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
        ) else fluid.CPUPlace()
        with fluid.program_guard(prog, startup_prog):
808
            input = fluid.data(name='input', shape=[N, C], dtype=self.dtype)
809
            label = fluid.data(name='label', shape=[N], dtype='int64')
810
            weight = fluid.data(
811
                name='weight', shape=[C],
812
                dtype=self.dtype)  #weight for each class
813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=weight, ignore_index=0)
            ret = cross_entropy_loss(input, label)

            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': input_np,
                                     'label': label_np,
                                     "weight": weight_np
                                 },
                                 fetch_list=[ret])
            self.assertIsNotNone(static_ret)

        with fluid.dygraph.guard():
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=fluid.dygraph.to_variable(weight_np),
                axis=1,
                ignore_index=0)
            dy_ret = cross_entropy_loss(
                fluid.dygraph.to_variable(input_np),
                fluid.dygraph.to_variable(label_np))
            dy_ret_value = dy_ret.numpy()
            self.assertIsNotNone(dy_ret_value)
        expected = cross_entropy_loss_1d(
            input_np, label_np, weight=weight_np, ignore_index=0)[0]
839

840 841 842 843
        self.assertTrue(np.allclose(static_ret, dy_ret_value))
        self.assertTrue(np.allclose(static_ret, expected))
        self.assertTrue(np.allclose(dy_ret_value, expected))

844 845 846 847 848 849 850 851 852 853
    def test_cross_entropy_loss_1d_with_weight_mean_ignore_exceedlabel(self):
        N = 100
        C = 200
        input_np = np.random.random([N, C]).astype(self.dtype)
        label_np = np.random.randint(0, C, size=(N)).astype(np.int64)
        label_np[0] = 255
        weight_np = np.random.random([C]).astype(self.dtype)

        with fluid.dygraph.guard():
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
854
                weight=fluid.dygraph.to_variable(weight_np), ignore_index=255)
855 856 857 858 859 860 861 862 863 864
            dy_ret = cross_entropy_loss(
                fluid.dygraph.to_variable(input_np),
                fluid.dygraph.to_variable(label_np))
            dy_ret_value = dy_ret.numpy()
            self.assertIsNotNone(dy_ret_value)
        expected = cross_entropy_loss_1d(
            input_np, label_np, weight=weight_np, ignore_index=255)[0]

        self.assertTrue(np.allclose(dy_ret_value, expected))

865
    def test_cross_entropy_loss_1d_with_weight_mean(self):
866
        input_np = np.random.random([2, 4]).astype(self.dtype)
867
        label_np = np.random.randint(0, 4, size=(2)).astype(np.int64)
868
        weight_np = np.random.random([4]).astype(self.dtype)  #shape:C
869
        paddle.enable_static()
870 871 872 873 874
        prog = fluid.Program()
        startup_prog = fluid.Program()
        place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
        ) else fluid.CPUPlace()
        with fluid.program_guard(prog, startup_prog):
875
            input = fluid.data(name='input', shape=[2, 4], dtype=self.dtype)
876 877 878
            label = fluid.data(name='label', shape=[2], dtype='int64')
            weight = fluid.data(
                name='weight', shape=[4],
879
                dtype=self.dtype)  #weight for each class
880 881 882 883 884 885 886 887 888 889 890 891
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(weight=weight)
            ret = cross_entropy_loss(input, label)

            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': input_np,
                                     'label': label_np,
                                     "weight": weight_np
                                 },
                                 fetch_list=[ret])
            self.assertIsNotNone(static_ret)
892 893 894
        expected = cross_entropy_loss_1d(
            input_np, label_np, weight=weight_np)[0]

895 896
        with fluid.dygraph.guard():
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
897
                weight=fluid.dygraph.to_variable(weight_np), axis=1)
898 899 900 901 902
            dy_ret = cross_entropy_loss(
                fluid.dygraph.to_variable(input_np),
                fluid.dygraph.to_variable(label_np))
            dy_ret_value = dy_ret.numpy()
            self.assertIsNotNone(dy_ret_value)
903 904
        expected = cross_entropy_loss_1d(
            input_np, label_np, weight=weight_np)[0]
905
        self.assertTrue(np.allclose(static_ret, dy_ret_value))
906 907
        self.assertTrue(np.allclose(static_ret, expected))
        self.assertTrue(np.allclose(dy_ret_value, expected))
908

909
    def test_cross_entropy_loss_1d_with_weight_sum(self):
910
        input_np = np.random.random([100, 200]).astype(self.dtype)  #N,C
911
        label_np = np.random.randint(0, 100, size=(100)).astype(np.int64)  #N,1
912
        weight_np = np.random.random([200]).astype(self.dtype)  #C
913
        paddle.enable_static()
914 915 916 917 918
        prog = fluid.Program()
        startup_prog = fluid.Program()
        place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
        ) else fluid.CPUPlace()
        with fluid.program_guard(prog, startup_prog):
919
            input = fluid.data(name='input', shape=[100, 200], dtype=self.dtype)
920
            label = fluid.data(name='label', shape=[100], dtype='int64')
921
            weight = fluid.data(name='weight', shape=[200], dtype=self.dtype)
922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=weight, reduction='sum')
            ret = cross_entropy_loss(input, label)

            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': input_np,
                                     'label': label_np,
                                     "weight": weight_np
                                 },
                                 fetch_list=[ret])
            self.assertIsNotNone(static_ret)
        with fluid.dygraph.guard():
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=fluid.dygraph.to_variable(weight_np), reduction='sum')
            dy_ret = cross_entropy_loss(
                fluid.dygraph.to_variable(input_np),
                fluid.dygraph.to_variable(label_np))
            dy_ret_value = dy_ret.numpy()
            self.assertIsNotNone(dy_ret_value)
943 944
        expected = cross_entropy_loss_1d(
            input_np, label_np, weight=weight_np, reduction='sum')[0]
945
        self.assertTrue(np.allclose(static_ret, dy_ret_value))
946 947
        self.assertTrue(np.allclose(static_ret, expected))
        self.assertTrue(np.allclose(dy_ret_value, expected))
948

949
    def test_cross_entropy_loss_1d_with_weight_none(self):
950
        input_np = np.random.random([100, 200]).astype(self.dtype)  #N,C
951
        label_np = np.random.randint(0, 100, size=(100)).astype(np.int64)  #N,1
952
        weight_np = np.random.random([200]).astype(self.dtype)  #C
953

954
        paddle.enable_static()
955 956 957 958 959
        prog = fluid.Program()
        startup_prog = fluid.Program()
        place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
        ) else fluid.CPUPlace()
        with fluid.program_guard(prog, startup_prog):
960
            input = fluid.data(name='input', shape=[100, 200], dtype=self.dtype)
961
            label = fluid.data(name='label', shape=[100], dtype='int64')
962
            weight = fluid.data(name='weight', shape=[200], dtype=self.dtype)
963

964 965 966 967 968 969 970 971 972 973 974 975
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=weight, reduction='none')
            ret = cross_entropy_loss(input, label)

            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': input_np,
                                     'label': label_np,
                                     "weight": weight_np
                                 },
                                 fetch_list=[ret])
976
            static_ret = np.squeeze(static_ret)
977 978 979 980 981 982 983 984
            self.assertIsNotNone(static_ret)
        with fluid.dygraph.guard():
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=fluid.dygraph.to_variable(weight_np), reduction='none')
            dy_ret = cross_entropy_loss(
                fluid.dygraph.to_variable(input_np),
                fluid.dygraph.to_variable(label_np))
            dy_ret_value = dy_ret.numpy()
985
            dy_ret_value = np.squeeze(dy_ret_value)
986
            self.assertIsNotNone(dy_ret_value)
987 988 989
        expected = cross_entropy_loss_1d(
            input_np, label_np, weight=weight_np, reduction='none')
        self.assertTrue(np.allclose(static_ret, dy_ret_value))
990 991 992 993
        self.assertTrue(np.allclose(static_ret, expected))
        self.assertTrue(np.allclose(dy_ret_value, expected))

    def test_cross_entropy_loss_1d_with_weight_none_func(self):
994
        input_np = np.random.random([100, 200]).astype(self.dtype)  #N,C
995
        label_np = np.random.randint(0, 100, size=(100)).astype(np.int64)  #N
996
        weight_np = np.random.random([200]).astype(self.dtype)  #C
997 998 999 1000 1001 1002
        paddle.enable_static()
        prog = fluid.Program()
        startup_prog = fluid.Program()
        place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
        ) else fluid.CPUPlace()
        with fluid.program_guard(prog, startup_prog):
1003
            input = fluid.data(name='input', shape=[100, 200], dtype=self.dtype)
1004
            label = fluid.data(name='label', shape=[100], dtype='int64')
1005
            weight = fluid.data(name='weight', shape=[200], dtype=self.dtype)
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
            ret = paddle.nn.functional.cross_entropy(
                input, label, weight=weight, reduction='none')

            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': input_np,
                                     'label': label_np,
                                     "weight": weight_np
                                 },
                                 fetch_list=[ret])
            static_ret = np.squeeze(static_ret)
            self.assertIsNotNone(static_ret)
        with fluid.dygraph.guard():
            dy_ret = paddle.nn.functional.cross_entropy(
                fluid.dygraph.to_variable(input_np),
                fluid.dygraph.to_variable(label_np),
                weight=fluid.dygraph.to_variable(weight_np),
                reduction='none')
            dy_ret_value = dy_ret.numpy()
            dy_ret_value = np.squeeze(dy_ret_value)
            self.assertIsNotNone(dy_ret_value)
        expected = cross_entropy_loss_1d(
            input_np, label_np, weight=weight_np, reduction='none')
        self.assertTrue(np.allclose(static_ret, dy_ret_value))
1031 1032 1033 1034
        self.assertTrue(np.allclose(static_ret, expected))
        self.assertTrue(np.allclose(dy_ret_value, expected))

    def test_cross_entropy_loss_1d_mean(self):
1035
        input_np = np.random.random([100, 200]).astype(self.dtype)  #N,C
1036 1037
        label_np = np.random.randint(0, 100, size=(100)).astype(np.int64)  #N,1
        paddle.enable_static()
1038 1039 1040 1041 1042
        prog = fluid.Program()
        startup_prog = fluid.Program()
        place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
        ) else fluid.CPUPlace()
        with fluid.program_guard(prog, startup_prog):
1043
            input = fluid.data(name='input', shape=[100, 200], dtype=self.dtype)
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
            label = fluid.data(name='label', shape=[100], dtype='int64')
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss()
            ret = cross_entropy_loss(input, label)
            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={'input': input_np,
                                       'label': label_np},
                                 fetch_list=[ret])
            self.assertIsNotNone(static_ret)
        with fluid.dygraph.guard():
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss()
            dy_ret = cross_entropy_loss(
                fluid.dygraph.to_variable(input_np),
                fluid.dygraph.to_variable(label_np))
            dy_ret_value = dy_ret.numpy()
            self.assertIsNotNone(dy_ret_value)
        expected = cross_entropy_loss_1d(input_np, label_np)[0]
        self.assertTrue(np.allclose(static_ret, dy_ret_value))
        self.assertTrue(np.allclose(static_ret, expected))
        self.assertTrue(np.allclose(dy_ret_value, expected))

    def test_cross_entropy_loss_1d_sum(self):
1066
        input_np = np.random.random([100, 200]).astype(self.dtype)  #N,C
1067 1068
        label_np = np.random.randint(0, 100, size=(100)).astype(np.int64)  #N,1
        paddle.enable_static()
1069 1070 1071 1072 1073
        prog = fluid.Program()
        startup_prog = fluid.Program()
        place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
        ) else fluid.CPUPlace()
        with fluid.program_guard(prog, startup_prog):
1074
            input = fluid.data(name='input', shape=[100, 200], dtype=self.dtype)
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
            label = fluid.data(name='label', shape=[100], dtype='int64')
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                reduction='sum')
            ret = cross_entropy_loss(input, label)
            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={'input': input_np,
                                       'label': label_np},
                                 fetch_list=[ret])
            self.assertIsNotNone(static_ret)
        with fluid.dygraph.guard():
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                reduction='sum')
            dy_ret = cross_entropy_loss(
                fluid.dygraph.to_variable(input_np),
                fluid.dygraph.to_variable(label_np))
            dy_ret_value = dy_ret.numpy()
            self.assertIsNotNone(dy_ret_value)
        expected = cross_entropy_loss_1d(input_np, label_np, reduction='sum')[0]
        self.assertTrue(np.allclose(static_ret, dy_ret_value))
        self.assertTrue(np.allclose(static_ret, expected))
        self.assertTrue(np.allclose(dy_ret_value, expected))

    def test_cross_entropy_loss_1d_none(self):
1099
        input_np = np.random.random([100, 200]).astype(self.dtype)  #N,C
1100 1101
        label_np = np.random.randint(0, 100, size=(100)).astype(np.int64)  #N,1
        paddle.enable_static()
1102 1103 1104 1105 1106
        prog = fluid.Program()
        startup_prog = fluid.Program()
        place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
        ) else fluid.CPUPlace()
        with fluid.program_guard(prog, startup_prog):
1107
            input = fluid.data(name='input', shape=[100, 200], dtype=self.dtype)
1108 1109 1110 1111 1112 1113 1114 1115 1116
            label = fluid.data(name='label', shape=[100], dtype='int64')
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                reduction='none')
            ret = cross_entropy_loss(input, label)
            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={'input': input_np,
                                       'label': label_np},
                                 fetch_list=[ret])
1117
            static_ret = np.squeeze(static_ret)
1118 1119 1120 1121 1122 1123 1124 1125
            self.assertIsNotNone(static_ret)
        with fluid.dygraph.guard():
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                reduction='none')
            dy_ret = cross_entropy_loss(
                fluid.dygraph.to_variable(input_np),
                fluid.dygraph.to_variable(label_np))
            dy_ret_value = dy_ret.numpy()
1126
            dy_ret_value = np.squeeze(dy_ret_value)
1127 1128 1129 1130 1131 1132 1133
            self.assertIsNotNone(dy_ret_value)
        expected = cross_entropy_loss_1d(input_np, label_np, reduction='none')
        self.assertTrue(np.allclose(static_ret, dy_ret_value))
        self.assertTrue(np.allclose(static_ret, expected))
        self.assertTrue(np.allclose(dy_ret_value, expected))

    def test_cross_entropy_loss_2d_with_weight_none(self):
1134
        input_np = np.random.random(size=(2, 2, 2, 3)).astype(self.dtype)  #NHWC
1135 1136
        label_np = np.random.randint(
            0, 3, size=(2, 2, 2)).astype(np.int64)  #NHW1
1137
        weight_np = np.random.random(size=(3, )).astype(self.dtype)  #C
1138 1139

        paddle.enable_static()
1140 1141 1142 1143 1144 1145
        prog = fluid.Program()
        startup_prog = fluid.Program()
        place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
        ) else fluid.CPUPlace()
        with fluid.program_guard(prog, startup_prog):
            input = fluid.data(
1146
                name='input', shape=[2, 2, 2, 3], dtype=self.dtype)
1147
            label = fluid.data(name='label', shape=[2, 2, 2], dtype='int64')
1148
            weight = fluid.data(name='weight', shape=[3], dtype=self.dtype)
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=weight, reduction='none')
            ret = cross_entropy_loss(input, label)

            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': input_np,
                                     'label': label_np,
                                     "weight": weight_np
                                 },
                                 fetch_list=[ret])
1161
            static_ret = np.squeeze(static_ret)
1162 1163 1164 1165 1166 1167 1168 1169
            self.assertIsNotNone(static_ret)
        with fluid.dygraph.guard():
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=fluid.dygraph.to_variable(weight_np), reduction='none')
            dy_ret = cross_entropy_loss(
                fluid.dygraph.to_variable(input_np),
                fluid.dygraph.to_variable(label_np))
            dy_ret_value = dy_ret.numpy()
1170
            dy_ret_value = np.squeeze(dy_ret_value)
1171 1172 1173 1174 1175
            self.assertIsNotNone(dy_ret_value)
        expected = cross_entropy_loss_2d(
            input_np, label_np, weight=weight_np, reduction='none')
        self.assertTrue(np.allclose(static_ret, dy_ret_value))
        self.assertTrue(np.allclose(static_ret, expected))
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
        self.assertTrue(np.allclose(dy_ret_value, expected))

    def test_cross_entropy_loss_2d_with_weight_axis_change_mean(self):
        input_np = np.random.random(size=(2, 3, 2, 2)).astype(self.dtype)  #NCHW
        label_np = np.random.randint(
            0, 3, size=(2, 2, 2)).astype(np.int64)  #NHW
        weight_np = np.random.random(size=(3, )).astype(self.dtype)  #C

        paddle.enable_static()
        prog = fluid.Program()
        startup_prog = fluid.Program()
        place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
        ) else fluid.CPUPlace()
        with fluid.program_guard(prog, startup_prog):
            input = fluid.data(
                name='input', shape=[2, 3, 2, 2], dtype=self.dtype)
            label = fluid.data(name='label', shape=[2, 2, 2], dtype='int64')
            weight = fluid.data(name='weight', shape=[3], dtype=self.dtype)
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=weight, reduction='mean', axis=1)
            # specify the class channels to axis 1
            ret = cross_entropy_loss(input, label)

            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': input_np,
                                     'label': label_np,
                                     "weight": weight_np
                                 },
                                 fetch_list=[ret])

            self.assertIsNotNone(static_ret)
        with fluid.dygraph.guard():
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=fluid.dygraph.to_variable(weight_np),
                reduction='mean',
                axis=1)
            dy_ret = cross_entropy_loss(
                fluid.dygraph.to_variable(input_np),
                fluid.dygraph.to_variable(label_np))
            dy_ret_value = dy_ret.numpy()
            self.assertIsNotNone(dy_ret_value)
        expected = cross_entropy_loss_2d(
            np.transpose(input_np, [0, 2, 3, 1]),
            label_np,
            weight=weight_np,
            reduction='mean')[0]
        self.assertTrue(np.allclose(static_ret, dy_ret_value))
        self.assertTrue(np.allclose(static_ret, expected))
1226 1227
        self.assertTrue(np.allclose(dy_ret_value, expected))

1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
    def test_cross_entropy_loss_2d_with_weight_mean_ignore_exceedlabel(self):
        N = 4
        C = 3
        H = 512
        W = 512
        input_np = np.random.random([N, H, W, C]).astype(self.dtype)
        label_np = np.random.randint(0, C, size=(N, H, W)).astype(np.int64)
        label_np[0, 0, 0] = 255
        weight_np = np.random.random([C]).astype(self.dtype)
        with fluid.dygraph.guard():
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
1239
                weight=fluid.dygraph.to_variable(weight_np), ignore_index=255)
1240 1241 1242 1243 1244 1245 1246 1247 1248
            dy_ret = cross_entropy_loss(
                fluid.dygraph.to_variable(input_np),
                fluid.dygraph.to_variable(label_np))
            dy_ret_value = dy_ret.numpy()
            self.assertIsNotNone(dy_ret_value)
        expected = cross_entropy_loss_2d(
            input_np, label_np, weight=weight_np, ignore_index=255)[0]
        self.assertTrue(np.allclose(dy_ret_value, expected))

1249
    def test_cross_entropy_loss_2d_with_weight_mean(self):
1250
        input_np = np.random.random(size=(2, 2, 2, 3)).astype(self.dtype)  #NHWC
1251 1252
        label_np = np.random.randint(
            0, 3, size=(2, 2, 2)).astype(np.int64)  #NHW
1253
        weight_np = np.random.random(size=(3, )).astype(self.dtype)  #C
1254
        paddle.enable_static()
1255 1256 1257 1258 1259 1260
        prog = fluid.Program()
        startup_prog = fluid.Program()
        place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
        ) else fluid.CPUPlace()
        with fluid.program_guard(prog, startup_prog):
            input = fluid.data(
1261
                name='input', shape=[2, 2, 2, 3], dtype=self.dtype)
1262
            label = fluid.data(name='label', shape=[2, 2, 2], dtype='int64')
1263
            weight = fluid.data(name='weight', shape=[3], dtype=self.dtype)
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=weight, reduction='mean')
            ret = cross_entropy_loss(input, label)

            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': input_np,
                                     'label': label_np,
                                     "weight": weight_np
                                 },
                                 fetch_list=[ret])
            self.assertIsNotNone(static_ret)
        with fluid.dygraph.guard():
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=fluid.dygraph.to_variable(weight_np), reduction='mean')
            dy_ret = cross_entropy_loss(
                fluid.dygraph.to_variable(input_np),
                fluid.dygraph.to_variable(label_np))
            dy_ret_value = dy_ret.numpy()
            self.assertIsNotNone(dy_ret_value)
        expected = cross_entropy_loss_2d(
            input_np, label_np, weight=weight_np, reduction='mean')[0]
        self.assertTrue(np.allclose(static_ret, dy_ret_value))
        self.assertTrue(np.allclose(static_ret, expected))
        self.assertTrue(np.allclose(dy_ret_value, expected))

    def test_cross_entropy_loss_2d_with_weight_sum(self):
1292
        input_np = np.random.random(size=(2, 2, 2, 3)).astype(self.dtype)  #NHWC
1293 1294
        label_np = np.random.randint(
            0, 3, size=(2, 2, 2)).astype(np.int64)  #NHW
1295
        weight_np = np.random.random(size=(3, )).astype(self.dtype)  #C
1296 1297
        paddle.enable_static()

1298 1299 1300 1301 1302 1303
        prog = fluid.Program()
        startup_prog = fluid.Program()
        place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
        ) else fluid.CPUPlace()
        with fluid.program_guard(prog, startup_prog):
            input = fluid.data(
1304
                name='input', shape=[2, 2, 2, 3], dtype=self.dtype)
1305
            label = fluid.data(name='label', shape=[2, 2, 2], dtype='int64')
1306
            weight = fluid.data(name='weight', shape=[3], dtype=self.dtype)
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=weight, reduction='sum')
            ret = cross_entropy_loss(input, label)

            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': input_np,
                                     'label': label_np,
                                     "weight": weight_np
                                 },
                                 fetch_list=[ret])
            self.assertIsNotNone(static_ret)
        with fluid.dygraph.guard():
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=fluid.dygraph.to_variable(weight_np), reduction='sum')
            dy_ret = cross_entropy_loss(
                fluid.dygraph.to_variable(input_np),
                fluid.dygraph.to_variable(label_np))
            dy_ret_value = dy_ret.numpy()
            self.assertIsNotNone(dy_ret_value)
        expected = cross_entropy_loss_2d(
            input_np, label_np, weight=weight_np, reduction='sum')[0]
        self.assertTrue(np.allclose(static_ret, dy_ret_value))
        self.assertTrue(np.allclose(static_ret, expected))
        self.assertTrue(np.allclose(dy_ret_value, expected))

    def test_cross_entropy_loss_2d_none(self):
1335
        input_np = np.random.random(size=(2, 2, 2, 3)).astype(self.dtype)  #NHWC
1336 1337 1338
        label_np = np.random.randint(
            0, 3, size=(2, 2, 2)).astype(np.int64)  #NHW
        paddle.enable_static()
1339 1340 1341 1342 1343 1344
        prog = fluid.Program()
        startup_prog = fluid.Program()
        place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
        ) else fluid.CPUPlace()
        with fluid.program_guard(prog, startup_prog):
            input = fluid.data(
1345
                name='input', shape=[2, 2, 2, 3], dtype=self.dtype)
1346
            label = fluid.data(name='label', shape=[2, 2, 2], dtype='int64')
1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                reduction='none')
            ret = cross_entropy_loss(input, label)
            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': input_np,
                                     'label': label_np,
                                 },
                                 fetch_list=[ret])
1357
            static_ret = np.squeeze(static_ret)
1358 1359 1360 1361 1362 1363 1364 1365
            self.assertIsNotNone(static_ret)
        with fluid.dygraph.guard():
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                reduction='none')
            dy_ret = cross_entropy_loss(
                fluid.dygraph.to_variable(input_np),
                fluid.dygraph.to_variable(label_np))
            dy_ret_value = dy_ret.numpy()
1366
            dy_ret_value = np.squeeze(dy_ret_value)
1367 1368 1369 1370 1371 1372 1373
            self.assertIsNotNone(dy_ret_value)
        expected = cross_entropy_loss_2d(input_np, label_np, reduction='none')
        self.assertTrue(np.allclose(static_ret, dy_ret_value))
        self.assertTrue(np.allclose(static_ret, expected))
        self.assertTrue(np.allclose(dy_ret_value, expected))

    def test_cross_entropy_loss_2d_mean(self):
1374
        input_np = np.random.random(size=(2, 2, 2, 3)).astype(self.dtype)  #NHWC
1375 1376 1377
        label_np = np.random.randint(
            0, 3, size=(2, 2, 2)).astype(np.int64)  #NHW
        paddle.enable_static()
1378 1379 1380 1381 1382 1383
        prog = fluid.Program()
        startup_prog = fluid.Program()
        place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
        ) else fluid.CPUPlace()
        with fluid.program_guard(prog, startup_prog):
            input = fluid.data(
1384
                name='input', shape=[2, 2, 2, 3], dtype=self.dtype)
1385
            label = fluid.data(name='label', shape=[2, 2, 2], dtype='int64')
1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                reduction='mean')
            ret = cross_entropy_loss(input, label)

            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': input_np,
                                     'label': label_np,
                                 },
                                 fetch_list=[ret])
            self.assertIsNotNone(static_ret)
        with fluid.dygraph.guard():
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                reduction='mean')
            dy_ret = cross_entropy_loss(
                fluid.dygraph.to_variable(input_np),
                fluid.dygraph.to_variable(label_np))
            dy_ret_value = dy_ret.numpy()
            self.assertIsNotNone(dy_ret_value)
        expected = cross_entropy_loss_2d(
            input_np, label_np, reduction='mean')[0]
        self.assertTrue(np.allclose(static_ret, dy_ret_value))
        self.assertTrue(np.allclose(static_ret, expected))
        self.assertTrue(np.allclose(dy_ret_value, expected))

    def test_cross_entropy_loss_2d_sum(self):
1413
        input_np = np.random.random(size=(2, 2, 2, 3)).astype(self.dtype)  #NHWC
1414 1415 1416
        label_np = np.random.randint(
            0, 3, size=(2, 2, 2)).astype(np.int64)  #NHW
        paddle.enable_static()
1417 1418 1419 1420 1421 1422
        prog = fluid.Program()
        startup_prog = fluid.Program()
        place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
        ) else fluid.CPUPlace()
        with fluid.program_guard(prog, startup_prog):
            input = fluid.data(
1423
                name='input', shape=[2, 2, 2, 3], dtype=self.dtype)
1424
            label = fluid.data(name='label', shape=[2, 2, 2], dtype='int64')
1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                reduction='sum')
            ret = cross_entropy_loss(input, label)

            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': input_np,
                                     'label': label_np,
                                 },
                                 fetch_list=[ret])
            self.assertIsNotNone(static_ret)
        with fluid.dygraph.guard():
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                reduction='sum')
            dy_ret = cross_entropy_loss(
                fluid.dygraph.to_variable(input_np),
                fluid.dygraph.to_variable(label_np))
            dy_ret_value = dy_ret.numpy()
            self.assertIsNotNone(dy_ret_value)
        expected = cross_entropy_loss_2d(input_np, label_np, reduction='sum')[0]
1446
        self.assertTrue(np.allclose(static_ret, dy_ret_value))
1447 1448
        self.assertTrue(np.allclose(static_ret, expected))
        self.assertTrue(np.allclose(dy_ret_value, expected))
1449 1450


1451 1452 1453 1454
class TestCrossEntropyFAPIError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program(), Program()):

1455
            def test_WeightLength_NotEqual():
1456
                input_data = paddle.rand(shape=[20, 100])
R
root 已提交
1457 1458
                label_data = paddle.randint(
                    0, 100, shape=[20, 1], dtype="int64")
1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
                weight_data = paddle.rand([100 + 1])
                paddle.nn.functional.cross_entropy(
                    input=input_data,
                    label=label_data,
                    weight=weight_data,
                    ignore_index=-100)

            self.assertRaises(ValueError, test_WeightLength_NotEqual)

            def test_LabelValue_ExceedMax():
                input_data = paddle.rand(shape=[20, 100])
                label_data = paddle.randint(
                    0, 100, shape=[20, 1], dtype="int64")
                label_data[0] = 100
R
root 已提交
1473
                weight_data = paddle.rand([100])
1474
                paddle.nn.functional.cross_entropy(
R
root 已提交
1475 1476 1477
                    input=input_data,
                    label=label_data,
                    weight=weight_data,
1478
                    ignore_index=-100)
1479

1480
            self.assertRaises(ValueError, test_LabelValue_ExceedMax)
1481

1482
            def test_LabelValue_ExceedMin():
R
root 已提交
1483
                input_data = paddle.rand(shape=[20, 100])
R
root 已提交
1484 1485
                label_data = paddle.randint(
                    0, 100, shape=[20, 1], dtype="int64")
R
root 已提交
1486
                label_data[0] = -1
R
root 已提交
1487
                weight_data = paddle.rand([100])
R
root 已提交
1488
                paddle.nn.functional.cross_entropy(
R
root 已提交
1489 1490 1491
                    input=input_data,
                    label=label_data,
                    weight=weight_data,
1492 1493 1494 1495 1496
                    ignore_index=-100)

            self.assertRaises(ValueError, test_LabelValue_ExceedMin)

            def static_test_WeightLength_NotEqual():
1497
                input_np = np.random.random([2, 4]).astype('float32')
1498
                label_np = np.random.randint(0, 4, size=(2)).astype(np.int64)
1499
                weight_np = np.random.random([3]).astype('float32')
1500 1501 1502 1503 1504 1505 1506
                paddle.enable_static()
                prog = fluid.Program()
                startup_prog = fluid.Program()
                place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
                ) else fluid.CPUPlace()
                with fluid.program_guard(prog, startup_prog):
                    input = fluid.data(
1507
                        name='input', shape=[2, 4], dtype='float32')
1508 1509 1510
                    label = fluid.data(name='label', shape=[2], dtype='int64')
                    weight = fluid.data(
                        name='weight', shape=[3],
1511
                        dtype='float32')  #weight for each class
1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
                    cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                        weight=weight)
                    ret = cross_entropy_loss(input, label)

                    exe = fluid.Executor(place)
                    static_ret = exe.run(prog,
                                         feed={
                                             'input': input_np,
                                             'label': label_np,
                                             "weight": weight_np
                                         },
                                         fetch_list=[ret])
                    self.assertIsNotNone(static_ret)

            self.assertRaises(ValueError, static_test_WeightLength_NotEqual)

1528

1529 1530
if __name__ == "__main__":
    unittest.main()
新手
引导
客服 返回
顶部