test_cross_entropy_loss.py 57.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import paddle
import paddle.fluid as fluid
import numpy as np
import unittest
21 22
from test_softmax_op import stable_softmax
from test_softmax_with_cross_entropy_op import cross_entropy
R
root 已提交
23
from paddle.fluid import Program, program_guard
24 25


26 27 28 29 30 31
def stable_softmax(x):
    shiftx = (x - np.max(x)).clip(-64.)
    exps = np.exp(shiftx)
    return exps / np.sum(exps)


32
def log_softmax(x, axis=-1):
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
    softmax_out = np.apply_along_axis(stable_softmax, axis, x)
    return np.log(softmax_out)


def cross_entropy_loss_1d(input,
                          label,
                          weight=None,
                          reduction='mean',
                          ignore_index=-100):
    log_softmax_out = log_softmax(input)
    input_shape = log_softmax_out.shape
    N = input_shape[0]
    C = input_shape[1]
    out = np.zeros_like(label).astype(np.float64)
    total_weight = 0
48 49
    ###1. compute softmax cross_entropy (with weight)
    ###   Note: only support hard labels.
50 51 52 53 54 55 56 57
    for i in range(N):
        cur_target = label[i]
        if cur_target == ignore_index:
            out[i] = 0
            continue
        cur_weight = weight[cur_target] if weight is not None else 1
        total_weight += cur_weight
        out[i] = -log_softmax_out[i][cur_target] * cur_weight
58 59

    ###2. deal with reduction 
60 61 62
    if reduction == 'sum':
        return np.sum(out), np.array([total_weight]).astype('float64')
    elif reduction == 'mean':
63 64
        out = out.sum() / total_weight if total_weight != 0 else out.sum()
        return out, np.array([total_weight]).astype('float64')
65 66 67 68 69 70 71 72 73 74 75 76
    elif reduction == 'none':
        return out


def cross_entropy_loss_2d(input,
                          label,
                          weight=None,
                          reduction='mean',
                          ignore_index=-100):
    log_softmax_out = log_softmax(input)
    input_shape = log_softmax_out.shape
    N = input_shape[0]
77 78 79
    H = input_shape[1]
    W = input_shape[2]

80 81 82 83 84 85 86 87 88 89 90
    out = np.zeros_like(label).astype(np.float64)
    total_weight = 0
    for i in range(N):
        for h in range(H):
            for w in range(W):
                cur_target = label[i][h][w]
                if cur_target == ignore_index:
                    out[i][h][w] = 0
                    continue
                cur_weight = weight[cur_target] if weight is not None else 1
                total_weight += cur_weight
91 92
                out[i][h][w] = -log_softmax_out[i][h][w][
                    cur_target] * cur_weight
93 94 95
    if reduction == 'sum':
        return np.sum(out), np.array([total_weight]).astype('float64')
    elif reduction == 'mean':
96 97
        out = out.sum() / total_weight if total_weight != 0 else out.sum()
        return out, np.array([total_weight]).astype('float64')
98 99 100 101
    elif reduction == 'none':
        return out


102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
def cross_entropy_soft(softmax,
                       label,
                       axis,
                       N,
                       weight=None,
                       reduction='mean',
                       ignore_index=-100):
    #1.loss
    loss = cross_entropy(
        softmax,
        label,
        True,  #soft_label,
        axis,
        ignore_index)

    if weight is None and reduction == 'none':
        return loss

    #2.weight
    weighted_loss = loss
    total_weight = N  #for weight is None
    if weight is not None:
        weighted_loss = np.zeros_like(loss).astype(np.float64)
        total_weight = 0
        for i in range(N):
            cur_soft_label = label[i]
            cur_weight = np.dot(weight, cur_soft_label)
            total_weight += cur_weight
            weighted_loss[i] = loss[i] * cur_weight

    #3.reduce
    if reduction == 'none':
        return weighted_loss

    elif reduction == 'mean':
        weighted_loss_sum = np.sum(weighted_loss)
        weighted_loss_mean = weighted_loss_sum / total_weight
        return weighted_loss_mean

    else:
        weighted_loss_sum = np.sum(weighted_loss)
        return weighted_loss_sum


def cross_entropy_soft_2d(softmax,
                          label,
                          axis,
                          N,
                          H,
                          W,
                          weight=None,
                          reduction='mean',
                          ignore_index=-100):
    #1.loss
    loss = cross_entropy(
        softmax,
        label,
        True,  #soft_label,
        axis,
        ignore_index)

    if weight is None and reduction == 'none':
        return loss

    #2.weight
    weighted_loss = loss
    total_weight = N  #for weight is None
    if weight is not None:
        weighted_loss = np.zeros_like(loss).astype(np.float64)
        total_weight = 0
        for i in range(N):
            for h in range(H):
                for w in range(W):
                    cur_soft_label = label[i][h][w]
                    cur_weight = np.dot(weight, cur_soft_label)
                    total_weight += cur_weight
                    weighted_loss[i][h][w] = loss[i][h][w] * cur_weight

    #3.reduce
    if reduction == 'none':
        return weighted_loss

    elif reduction == 'mean':
        weighted_loss_sum = np.sum(weighted_loss)
        weighted_loss_mean = weighted_loss_sum / total_weight
        return weighted_loss_mean

    else:
        weighted_loss_sum = np.sum(weighted_loss)
        return weighted_loss_sum


194
class CrossEntropyLoss(unittest.TestCase):
R
ronnywang 已提交
195 196 197
    def setUp(self):
        self.dtype = 'float32' if fluid.core.is_compiled_with_rocm(
        ) else 'float64'
198 199 200 201 202

    ###test for deprecated softmax_with_cross_entropy
    def test_softmax_with_cross_entropy(self):
        self.numeric_stable_mode = False
        self.soft_label = True
R
ronnywang 已提交
203 204
        self.dtype = 'float32' if fluid.core.is_compiled_with_rocm(
        ) else 'float64'
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
        self.axis = -1
        self.ignore_index = -100  #should not be changed
        self.N = 4
        self.C = 3
        self.shape = [self.N, self.C]
        self.use_softmax = True
        self.reduction = 'none'
        self.weight = None
        self.logits = getattr(
            self, "logits",
            np.random.uniform(0.1, 1.0, self.shape).astype(self.dtype))
        softmax = np.apply_along_axis(stable_softmax, self.axis, self.logits)

        self.labels = np.random.uniform(0.1, 1.0, self.shape).astype(self.dtype)
        self.labels /= np.sum(self.labels, axis=self.axis, keepdims=True)

        expected = cross_entropy_soft(
            softmax,
            self.labels,
            self.axis,
            self.N,
            weight=self.weight,
            reduction=self.reduction,
            ignore_index=self.ignore_index)

        paddle.set_device("cpu")

        paddle.disable_static()
        paddle_loss_swce = paddle.nn.functional.softmax_with_cross_entropy(
            fluid.dygraph.to_variable(self.logits),
            fluid.dygraph.to_variable(self.labels),
            soft_label=True,
            axis=self.axis)

        paddle_loss_ce = paddle.nn.functional.cross_entropy(
            fluid.dygraph.to_variable(self.logits),
            fluid.dygraph.to_variable(self.labels),
            soft_label=True,
            axis=self.axis,
            weight=fluid.dygraph.to_variable(self.weight)
            if self.weight is not None else None,
            reduction=self.reduction)

        self.assertTrue(np.allclose(paddle_loss_swce.numpy(), expected))
        self.assertTrue(np.allclose(paddle_loss_ce.numpy(), expected))

    ###soft_label test start
    ###soft_label test 1
    def test_cross_entropy_loss_soft_1d(self):
        self.numeric_stable_mode = False
        self.soft_label = True
R
ronnywang 已提交
256 257
        self.dtype = 'float32' if fluid.core.is_compiled_with_rocm(
        ) else 'float64'
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
        self.axis = -1
        self.ignore_index = -100  #should not be changed
        self.N = 4
        self.C = 3
        self.shape = [self.N, self.C]
        self.use_softmax = True
        self.reduction = 'none'
        self.weight = None
        self.logits = getattr(
            self, "logits",
            np.random.uniform(0.1, 1.0, self.shape).astype(self.dtype))
        softmax = np.apply_along_axis(stable_softmax, self.axis, self.logits)

        self.labels = np.random.uniform(0.1, 1.0, self.shape).astype(self.dtype)
        self.labels /= np.sum(self.labels, axis=self.axis, keepdims=True)

        expected = cross_entropy_soft(
            softmax,
            self.labels,
            self.axis,
            self.N,
            weight=self.weight,
            reduction=self.reduction,
            ignore_index=self.ignore_index)

        paddle.set_device("cpu")

        #2. dygraph
        paddle.disable_static()
        paddle_loss_none_weight = paddle.nn.functional.cross_entropy(
            fluid.dygraph.to_variable(self.logits),
            fluid.dygraph.to_variable(self.labels),
            soft_label=True,
            axis=self.axis,
            weight=fluid.dygraph.to_variable(self.weight)
            if self.weight is not None else None,
            reduction=self.reduction)
        dy_ret_value = paddle_loss_none_weight.numpy()

        #3. static
        paddle.enable_static()
        prog = fluid.Program()
        startup_prog = fluid.Program()
        place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
        ) else fluid.CPUPlace()
        with fluid.program_guard(prog, startup_prog):
            input = fluid.data(
R
ronnywang 已提交
305
                name='input', shape=[self.N, self.C], dtype=self.dtype)
306
            label = fluid.data(
R
ronnywang 已提交
307
                name='label', shape=[self.N, self.C], dtype=self.dtype)
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329

            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                reduction=self.reduction, soft_label=True)
            ret = cross_entropy_loss(input, label)

            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': self.logits,
                                     'label': self.labels,
                                 },
                                 fetch_list=[ret])
            self.assertIsNotNone(static_ret)
        paddle.disable_static()

        self.assertTrue(np.allclose(static_ret, expected))
        self.assertTrue(np.allclose(dy_ret_value, expected))

    ###soft_label test 2
    def test_cross_entropy_loss_soft_1d_weight(self):
        self.numeric_stable_mode = False
        self.soft_label = True
R
ronnywang 已提交
330 331
        self.dtype = 'float32' if fluid.core.is_compiled_with_rocm(
        ) else 'float64'
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
        self.axis = -1
        self.ignore_index = -100  #should not be changed
        self.N = 4
        self.C = 3
        self.shape = [self.N, self.C]
        self.use_softmax = True
        self.reduction = 'none'
        self.weight = np.random.uniform(0.1, 1.0, self.C).astype(self.dtype)
        self.logits = getattr(
            self, "logits",
            np.random.uniform(0.1, 1.0, self.shape).astype(self.dtype))
        softmax = np.apply_along_axis(stable_softmax, self.axis, self.logits)

        if self.soft_label:
            self.labels = np.random.uniform(0.1, 1.0,
                                            self.shape).astype(self.dtype)
            self.labels /= np.sum(self.labels, axis=self.axis, keepdims=True)
        else:
            axis_dim = self.shape[self.axis]
            self.shape[self.axis] = 1
            self.labels = np.random.randint(
                0, axis_dim, self.shape, dtype="int64")

        #1. numpy
        expected = cross_entropy_soft(
            softmax,
            self.labels,
            self.axis,
            self.N,
            weight=self.weight,
            reduction=self.reduction,
            ignore_index=self.ignore_index)

        paddle.set_device("cpu")

        #2. dygraph
        paddle.disable_static()
        paddle_loss_none_weight = paddle.nn.functional.cross_entropy(
            fluid.dygraph.to_variable(self.logits),
            fluid.dygraph.to_variable(self.labels),
            soft_label=True,
            axis=self.axis,
            weight=fluid.dygraph.to_variable(self.weight),
            reduction=self.reduction)
        dy_ret_value = paddle_loss_none_weight.numpy()

        # 3.static
        paddle.enable_static()
        prog = fluid.Program()
        startup_prog = fluid.Program()
        place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
        ) else fluid.CPUPlace()
        with fluid.program_guard(prog, startup_prog):
            input = fluid.data(
R
ronnywang 已提交
386
                name='input', shape=[self.N, self.C], dtype=self.dtype)
387
            label = fluid.data(
R
ronnywang 已提交
388 389
                name='label', shape=[self.N, self.C], dtype=self.dtype)
            weight = fluid.data(name='weight', shape=[self.C], dtype=self.dtype)
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412

            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=weight, reduction=self.reduction, soft_label=True)
            ret = cross_entropy_loss(input, label)

            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': self.logits,
                                     'label': self.labels,
                                     "weight": self.weight
                                 },
                                 fetch_list=[ret])
            self.assertIsNotNone(static_ret)
        paddle.disable_static()

        self.assertTrue(np.allclose(static_ret, expected))
        self.assertTrue(np.allclose(dy_ret_value, expected))

    ###soft_label test 3
    def test_cross_entropy_loss_soft_1d_mean(self):
        self.numeric_stable_mode = False
        self.soft_label = True
R
ronnywang 已提交
413 414
        self.dtype = 'float32' if fluid.core.is_compiled_with_rocm(
        ) else 'float64'
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
        self.axis = -1
        self.ignore_index = -100  #should not be changed
        self.N = 4
        self.C = 3
        self.shape = [self.N, self.C]
        self.use_softmax = True
        self.reduction = 'mean'
        self.weight = None
        self.logits = getattr(
            self, "logits",
            np.random.uniform(0.1, 1.0, self.shape).astype(self.dtype))
        softmax = np.apply_along_axis(stable_softmax, self.axis, self.logits)

        self.labels = np.random.uniform(0.1, 1.0, self.shape).astype(self.dtype)
        self.labels /= np.sum(self.labels, axis=self.axis, keepdims=True)

        #1. numpy
        expected = cross_entropy_soft(
            softmax,
            self.labels,
            self.axis,
            self.N,
            weight=self.weight,
            reduction=self.reduction,
            ignore_index=self.ignore_index)

        paddle.set_device("cpu")

        #2 dygraph 
        paddle.disable_static()
        paddle_loss_mean = paddle.nn.functional.cross_entropy(
            fluid.dygraph.to_variable(self.logits),
            fluid.dygraph.to_variable(self.labels),
            soft_label=True,
            axis=self.axis,
            weight=self.weight,
            reduction=self.reduction)
        dy_ret_value = paddle_loss_mean.numpy()

        #3. static
        paddle.enable_static()
        prog = fluid.Program()
        startup_prog = fluid.Program()
        place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
        ) else fluid.CPUPlace()
        with fluid.program_guard(prog, startup_prog):
            input = fluid.data(
R
ronnywang 已提交
462
                name='input', shape=[self.N, self.C], dtype=self.dtype)
463
            label = fluid.data(
R
ronnywang 已提交
464
                name='label', shape=[self.N, self.C], dtype=self.dtype)
465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485

            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                reduction=self.reduction, soft_label=True)
            ret = cross_entropy_loss(input, label)

            exe = fluid.Executor(place)
            static_ret = exe.run(
                prog,
                feed={'input': self.logits,
                      'label': self.labels},
                fetch_list=[ret])
            self.assertIsNotNone(static_ret)
        paddle.disable_static()

        self.assertTrue(np.allclose(static_ret, expected))
        self.assertTrue(np.allclose(dy_ret_value, expected))

    ###soft_label test 4
    def test_cross_entropy_loss_soft_1d_weight_mean(self):
        self.numeric_stable_mode = False
        self.soft_label = True
R
ronnywang 已提交
486 487
        self.dtype = 'float32' if fluid.core.is_compiled_with_rocm(
        ) else 'float64'
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
        self.axis = -1
        self.ignore_index = -100  #should not be changed
        self.N = 4
        self.C = 3
        self.shape = [self.N, self.C]
        self.use_softmax = True
        self.reduction = 'mean'
        self.weight = np.random.uniform(0.1, 1.0, self.C).astype(self.dtype)
        self.logits = getattr(
            self, "logits",
            np.random.uniform(0.1, 1.0, self.shape).astype(self.dtype))
        softmax = np.apply_along_axis(stable_softmax, self.axis, self.logits)

        self.labels = np.random.uniform(0.1, 1.0, self.shape).astype(self.dtype)
        self.labels /= np.sum(self.labels, axis=self.axis, keepdims=True)

        #1. numpy
        expected = cross_entropy_soft(
            softmax,
            self.labels,
            self.axis,
            self.N,
            weight=self.weight,
            reduction=self.reduction,
            ignore_index=self.ignore_index)

        paddle.set_device("cpu")
        paddle.disable_static()

        #2. dygraph
        paddle_loss_none_weight = paddle.nn.functional.cross_entropy(
            fluid.dygraph.to_variable(self.logits),
            fluid.dygraph.to_variable(self.labels),
            soft_label=True,
            axis=self.axis,
            weight=fluid.dygraph.to_variable(self.weight),
            reduction=self.reduction)
        dy_ret_value = paddle_loss_none_weight.numpy()

        #3. static
        paddle.enable_static()
        prog = fluid.Program()
        startup_prog = fluid.Program()
        place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
        ) else fluid.CPUPlace()
        with fluid.program_guard(prog, startup_prog):
            input = fluid.data(
R
ronnywang 已提交
535
                name='input', shape=[self.N, self.C], dtype=self.dtype)
536
            label = fluid.data(
R
ronnywang 已提交
537 538
                name='label', shape=[self.N, self.C], dtype=self.dtype)
            weight = fluid.data(name='weight', shape=[self.C], dtype=self.dtype)
539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560

            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=weight, reduction=self.reduction, soft_label=True)
            ret = cross_entropy_loss(input, label)
            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': self.logits,
                                     'label': self.labels,
                                     "weight": self.weight
                                 },
                                 fetch_list=[ret])
            self.assertIsNotNone(static_ret)
        paddle.disable_static()

        self.assertTrue(np.allclose(static_ret, expected))
        self.assertTrue(np.allclose(dy_ret_value, expected))

    ###soft_label test 5
    def test_cross_entropy_loss_soft_2d(self):
        self.numeric_stable_mode = False
        self.soft_label = True
R
ronnywang 已提交
561 562
        self.dtype = 'float32' if fluid.core.is_compiled_with_rocm(
        ) else 'float64'
563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
        self.axis = -1
        self.ignore_index = -100  #should not be changed
        self.N = 3
        self.H = 2
        self.W = 2
        self.C = 5
        self.shape = [self.N, self.H, self.W, self.C]
        self.use_softmax = True
        self.reduction = 'none'
        self.weight = None
        self.logits = getattr(
            self, "logits",
            np.random.uniform(0.1, 1.0, self.shape).astype(self.dtype))
        softmax = np.apply_along_axis(stable_softmax, self.axis, self.logits)

        self.labels = np.random.uniform(0.1, 1.0, self.shape).astype(self.dtype)
        self.labels /= np.sum(self.labels, axis=self.axis, keepdims=True)

        #1. numpy
        expected = cross_entropy_soft_2d(
            softmax,
            self.labels,
            self.axis,
            self.N,
            self.H,
            self.W,
            weight=self.weight,
            reduction=self.reduction,
            ignore_index=self.ignore_index)

        paddle.set_device("cpu")
        paddle.disable_static()

        #2. dygraph
        paddle_loss_none_weight = paddle.nn.functional.cross_entropy(
            fluid.dygraph.to_variable(self.logits),
            fluid.dygraph.to_variable(self.labels),
            soft_label=True,
            axis=self.axis,
            weight=fluid.dygraph.to_variable(self.weight)
            if self.weight is not None else None,
            reduction=self.reduction)
        dy_ret_value = paddle_loss_none_weight.numpy()

        #3. static
        paddle.enable_static()
        prog = fluid.Program()
        startup_prog = fluid.Program()
        place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
        ) else fluid.CPUPlace()
        with fluid.program_guard(prog, startup_prog):
            input = fluid.data(
                name='input',
                shape=[self.N, self.H, self.W, self.C],
R
ronnywang 已提交
617
                dtype=self.dtype)
618 619 620
            label = fluid.data(
                name='label',
                shape=[self.N, self.H, self.W, self.C],
R
ronnywang 已提交
621
                dtype=self.dtype)
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643

            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                reduction=self.reduction, soft_label=True)
            ret = cross_entropy_loss(input, label)
            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': self.logits,
                                     'label': self.labels,
                                 },
                                 fetch_list=[ret])
            self.assertIsNotNone(static_ret)
        paddle.disable_static()

        self.assertTrue(np.allclose(static_ret, dy_ret_value))
        self.assertTrue(np.allclose(static_ret, expected))
        self.assertTrue(np.allclose(dy_ret_value, expected))

    ###soft_label test 6
    def test_cross_entropy_loss_soft_2d_weight_mean(self):
        self.numeric_stable_mode = False
        self.soft_label = True
R
ronnywang 已提交
644 645
        self.dtype = 'float32' if fluid.core.is_compiled_with_rocm(
        ) else 'float64'
646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
        self.axis = -1
        self.ignore_index = -100  #should not be changed
        self.N = 3
        self.H = 2
        self.W = 2
        self.C = 5
        self.shape = [self.N, self.H, self.W, self.C]
        self.use_softmax = True
        self.reduction = 'mean'
        self.weight = np.random.uniform(0.1, 1.0, self.C).astype(self.dtype)
        self.logits = getattr(
            self, "logits",
            np.random.uniform(0.1, 1.0, self.shape).astype(self.dtype))
        softmax = np.apply_along_axis(stable_softmax, self.axis, self.logits)

        self.labels = np.random.uniform(0.1, 1.0, self.shape).astype(self.dtype)
        self.labels /= np.sum(self.labels, axis=self.axis, keepdims=True)

        #1. numpy
        expected = cross_entropy_soft_2d(
            softmax,
            self.labels,
            self.axis,
            self.N,
            self.H,
            self.W,
            weight=self.weight,
            reduction=self.reduction,
            ignore_index=self.ignore_index)

        paddle.set_device("cpu")
        paddle.disable_static()

        #2. dygraph
        paddle_loss_none_weight = paddle.nn.functional.cross_entropy(
            fluid.dygraph.to_variable(self.logits),
            fluid.dygraph.to_variable(self.labels),
            soft_label=True,
            axis=self.axis,
            weight=fluid.dygraph.to_variable(self.weight),
            reduction=self.reduction)
        dy_ret_value = paddle_loss_none_weight.numpy()

        #3. static
        paddle.enable_static()
        prog = fluid.Program()
        startup_prog = fluid.Program()
        place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
        ) else fluid.CPUPlace()
        with fluid.program_guard(prog, startup_prog):
            input = fluid.data(
                name='input',
                shape=[self.N, self.H, self.W, self.C],
R
ronnywang 已提交
699
                dtype=self.dtype)
700 701 702
            label = fluid.data(
                name='label',
                shape=[self.N, self.H, self.W, self.C],
R
ronnywang 已提交
703 704
                dtype=self.dtype)
            weight = fluid.data(name='weight', shape=[self.C], dtype=self.dtype)
705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725

            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=weight, reduction=self.reduction, soft_label=True)
            ret = cross_entropy_loss(input, label)
            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': self.logits,
                                     'label': self.labels,
                                     "weight": self.weight
                                 },
                                 fetch_list=[ret])
            self.assertIsNotNone(static_ret)
        paddle.disable_static()

        self.assertTrue(np.allclose(static_ret, dy_ret_value))
        self.assertTrue(np.allclose(static_ret, expected))
        self.assertTrue(np.allclose(dy_ret_value, expected))

    ###soft_label test end

726
    def test_cross_entropy_loss_1d_with_mean_ignore(self):
R
ronnywang 已提交
727
        input_np = np.random.random([2, 4]).astype(self.dtype)
728 729 730 731 732 733 734
        label_np = np.random.randint(0, 4, size=(2)).astype(np.int64)
        paddle.enable_static()
        prog = fluid.Program()
        startup_prog = fluid.Program()
        place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
        ) else fluid.CPUPlace()
        with fluid.program_guard(prog, startup_prog):
R
ronnywang 已提交
735
            input = fluid.data(name='input', shape=[2, 4], dtype=self.dtype)
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762
            label = fluid.data(name='label', shape=[2], dtype='int64')
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(ignore_index=0)
            ret = cross_entropy_loss(input, label)

            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': input_np,
                                     'label': label_np,
                                 },
                                 fetch_list=[ret])
            self.assertIsNotNone(static_ret)
        expected = cross_entropy_loss_1d(input_np, label_np)[0]

        with fluid.dygraph.guard():
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                axis=1, ignore_index=0)
            dy_ret = cross_entropy_loss(
                fluid.dygraph.to_variable(input_np),
                fluid.dygraph.to_variable(label_np))
            dy_ret_value = dy_ret.numpy()
            self.assertIsNotNone(dy_ret_value)
        expected = cross_entropy_loss_1d(input_np, label_np, ignore_index=0)[0]
        self.assertTrue(np.allclose(static_ret, dy_ret_value))
        self.assertTrue(np.allclose(static_ret, expected))
        self.assertTrue(np.allclose(dy_ret_value, expected))

763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801
    def test_cross_entropy_loss_1d_with_mean_ignore_negative(self):
        N = 100
        C = 200
        input_np = np.random.random([N, C]).astype(self.dtype)
        label_np = -np.ones((N)).astype(np.int64)
        paddle.enable_static()
        prog = fluid.Program()
        startup_prog = fluid.Program()
        place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
        ) else fluid.CPUPlace()
        with fluid.program_guard(prog, startup_prog):
            input = fluid.data(name='input', shape=[N, C], dtype=self.dtype)
            label = fluid.data(name='label', shape=[N], dtype='int64')
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                ignore_index=-1)
            ret = cross_entropy_loss(input, label)
            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': input_np,
                                     'label': label_np,
                                 },
                                 fetch_list=[ret])
            self.assertIsNotNone(static_ret)

        with fluid.dygraph.guard():
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                axis=1, ignore_index=-1)
            dy_ret = cross_entropy_loss(
                fluid.dygraph.to_variable(input_np),
                fluid.dygraph.to_variable(label_np))
            dy_ret_value = dy_ret.numpy()
            self.assertIsNotNone(dy_ret_value)
        expected = cross_entropy_loss_1d(input_np, label_np, ignore_index=-1)[0]

        self.assertTrue(np.allclose(static_ret, dy_ret_value))
        self.assertTrue(np.allclose(static_ret, expected))
        self.assertTrue(np.allclose(dy_ret_value, expected))

802
    def test_cross_entropy_loss_1d_with_weight_mean_ignore(self):
803 804
        N = 100
        C = 200
R
ronnywang 已提交
805
        input_np = np.random.random([N, C]).astype(self.dtype)
806
        label_np = np.random.randint(0, C, size=(N)).astype(np.int64)
R
ronnywang 已提交
807
        weight_np = np.random.random([C]).astype(self.dtype)
808 809 810 811 812 813
        paddle.enable_static()
        prog = fluid.Program()
        startup_prog = fluid.Program()
        place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
        ) else fluid.CPUPlace()
        with fluid.program_guard(prog, startup_prog):
R
ronnywang 已提交
814
            input = fluid.data(name='input', shape=[N, C], dtype=self.dtype)
815
            label = fluid.data(name='label', shape=[N], dtype='int64')
816
            weight = fluid.data(
817
                name='weight', shape=[C],
R
ronnywang 已提交
818
                dtype=self.dtype)  #weight for each class
819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=weight, ignore_index=0)
            ret = cross_entropy_loss(input, label)

            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': input_np,
                                     'label': label_np,
                                     "weight": weight_np
                                 },
                                 fetch_list=[ret])
            self.assertIsNotNone(static_ret)

        with fluid.dygraph.guard():
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=fluid.dygraph.to_variable(weight_np),
                axis=1,
                ignore_index=0)
            dy_ret = cross_entropy_loss(
                fluid.dygraph.to_variable(input_np),
                fluid.dygraph.to_variable(label_np))
            dy_ret_value = dy_ret.numpy()
            self.assertIsNotNone(dy_ret_value)
        expected = cross_entropy_loss_1d(
            input_np, label_np, weight=weight_np, ignore_index=0)[0]
845

846 847 848 849
        self.assertTrue(np.allclose(static_ret, dy_ret_value))
        self.assertTrue(np.allclose(static_ret, expected))
        self.assertTrue(np.allclose(dy_ret_value, expected))

850
    def test_cross_entropy_loss_1d_with_weight_mean(self):
R
ronnywang 已提交
851
        input_np = np.random.random([2, 4]).astype(self.dtype)
852
        label_np = np.random.randint(0, 4, size=(2)).astype(np.int64)
R
ronnywang 已提交
853
        weight_np = np.random.random([4]).astype(self.dtype)  #shape:C
854
        paddle.enable_static()
855 856 857 858 859
        prog = fluid.Program()
        startup_prog = fluid.Program()
        place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
        ) else fluid.CPUPlace()
        with fluid.program_guard(prog, startup_prog):
R
ronnywang 已提交
860
            input = fluid.data(name='input', shape=[2, 4], dtype=self.dtype)
861 862 863
            label = fluid.data(name='label', shape=[2], dtype='int64')
            weight = fluid.data(
                name='weight', shape=[4],
R
ronnywang 已提交
864
                dtype=self.dtype)  #weight for each class
865 866 867 868 869 870 871 872 873 874 875 876
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(weight=weight)
            ret = cross_entropy_loss(input, label)

            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': input_np,
                                     'label': label_np,
                                     "weight": weight_np
                                 },
                                 fetch_list=[ret])
            self.assertIsNotNone(static_ret)
877 878 879
        expected = cross_entropy_loss_1d(
            input_np, label_np, weight=weight_np)[0]

880 881
        with fluid.dygraph.guard():
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
882
                weight=fluid.dygraph.to_variable(weight_np), axis=1)
883 884 885 886 887
            dy_ret = cross_entropy_loss(
                fluid.dygraph.to_variable(input_np),
                fluid.dygraph.to_variable(label_np))
            dy_ret_value = dy_ret.numpy()
            self.assertIsNotNone(dy_ret_value)
888 889
        expected = cross_entropy_loss_1d(
            input_np, label_np, weight=weight_np)[0]
890
        self.assertTrue(np.allclose(static_ret, dy_ret_value))
891 892
        self.assertTrue(np.allclose(static_ret, expected))
        self.assertTrue(np.allclose(dy_ret_value, expected))
893

894
    def test_cross_entropy_loss_1d_with_weight_sum(self):
R
ronnywang 已提交
895
        input_np = np.random.random([100, 200]).astype(self.dtype)  #N,C
896
        label_np = np.random.randint(0, 100, size=(100)).astype(np.int64)  #N,1
R
ronnywang 已提交
897
        weight_np = np.random.random([200]).astype(self.dtype)  #C
898
        paddle.enable_static()
899 900 901 902 903
        prog = fluid.Program()
        startup_prog = fluid.Program()
        place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
        ) else fluid.CPUPlace()
        with fluid.program_guard(prog, startup_prog):
R
ronnywang 已提交
904
            input = fluid.data(name='input', shape=[100, 200], dtype=self.dtype)
905
            label = fluid.data(name='label', shape=[100], dtype='int64')
R
ronnywang 已提交
906
            weight = fluid.data(name='weight', shape=[200], dtype=self.dtype)
907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=weight, reduction='sum')
            ret = cross_entropy_loss(input, label)

            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': input_np,
                                     'label': label_np,
                                     "weight": weight_np
                                 },
                                 fetch_list=[ret])
            self.assertIsNotNone(static_ret)
        with fluid.dygraph.guard():
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=fluid.dygraph.to_variable(weight_np), reduction='sum')
            dy_ret = cross_entropy_loss(
                fluid.dygraph.to_variable(input_np),
                fluid.dygraph.to_variable(label_np))
            dy_ret_value = dy_ret.numpy()
            self.assertIsNotNone(dy_ret_value)
928 929
        expected = cross_entropy_loss_1d(
            input_np, label_np, weight=weight_np, reduction='sum')[0]
930
        self.assertTrue(np.allclose(static_ret, dy_ret_value))
931 932
        self.assertTrue(np.allclose(static_ret, expected))
        self.assertTrue(np.allclose(dy_ret_value, expected))
933

934
    def test_cross_entropy_loss_1d_with_weight_none(self):
R
ronnywang 已提交
935
        input_np = np.random.random([100, 200]).astype(self.dtype)  #N,C
936
        label_np = np.random.randint(0, 100, size=(100)).astype(np.int64)  #N,1
R
ronnywang 已提交
937
        weight_np = np.random.random([200]).astype(self.dtype)  #C
938

939
        paddle.enable_static()
940 941 942 943 944
        prog = fluid.Program()
        startup_prog = fluid.Program()
        place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
        ) else fluid.CPUPlace()
        with fluid.program_guard(prog, startup_prog):
R
ronnywang 已提交
945
            input = fluid.data(name='input', shape=[100, 200], dtype=self.dtype)
946
            label = fluid.data(name='label', shape=[100], dtype='int64')
R
ronnywang 已提交
947
            weight = fluid.data(name='weight', shape=[200], dtype=self.dtype)
948

949 950 951 952 953 954 955 956 957 958 959 960
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=weight, reduction='none')
            ret = cross_entropy_loss(input, label)

            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': input_np,
                                     'label': label_np,
                                     "weight": weight_np
                                 },
                                 fetch_list=[ret])
961
            static_ret = np.squeeze(static_ret)
962 963 964 965 966 967 968 969
            self.assertIsNotNone(static_ret)
        with fluid.dygraph.guard():
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=fluid.dygraph.to_variable(weight_np), reduction='none')
            dy_ret = cross_entropy_loss(
                fluid.dygraph.to_variable(input_np),
                fluid.dygraph.to_variable(label_np))
            dy_ret_value = dy_ret.numpy()
970
            dy_ret_value = np.squeeze(dy_ret_value)
971
            self.assertIsNotNone(dy_ret_value)
972 973 974
        expected = cross_entropy_loss_1d(
            input_np, label_np, weight=weight_np, reduction='none')
        self.assertTrue(np.allclose(static_ret, dy_ret_value))
975 976 977 978
        self.assertTrue(np.allclose(static_ret, expected))
        self.assertTrue(np.allclose(dy_ret_value, expected))

    def test_cross_entropy_loss_1d_with_weight_none_func(self):
R
ronnywang 已提交
979
        input_np = np.random.random([100, 200]).astype(self.dtype)  #N,C
980
        label_np = np.random.randint(0, 100, size=(100)).astype(np.int64)  #N
R
ronnywang 已提交
981
        weight_np = np.random.random([200]).astype(self.dtype)  #C
982 983 984 985 986 987
        paddle.enable_static()
        prog = fluid.Program()
        startup_prog = fluid.Program()
        place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
        ) else fluid.CPUPlace()
        with fluid.program_guard(prog, startup_prog):
R
ronnywang 已提交
988
            input = fluid.data(name='input', shape=[100, 200], dtype=self.dtype)
989
            label = fluid.data(name='label', shape=[100], dtype='int64')
R
ronnywang 已提交
990
            weight = fluid.data(name='weight', shape=[200], dtype=self.dtype)
991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
            ret = paddle.nn.functional.cross_entropy(
                input, label, weight=weight, reduction='none')

            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': input_np,
                                     'label': label_np,
                                     "weight": weight_np
                                 },
                                 fetch_list=[ret])
            static_ret = np.squeeze(static_ret)
            self.assertIsNotNone(static_ret)
        with fluid.dygraph.guard():
            dy_ret = paddle.nn.functional.cross_entropy(
                fluid.dygraph.to_variable(input_np),
                fluid.dygraph.to_variable(label_np),
                weight=fluid.dygraph.to_variable(weight_np),
                reduction='none')
            dy_ret_value = dy_ret.numpy()
            dy_ret_value = np.squeeze(dy_ret_value)
            self.assertIsNotNone(dy_ret_value)
        expected = cross_entropy_loss_1d(
            input_np, label_np, weight=weight_np, reduction='none')
        self.assertTrue(np.allclose(static_ret, dy_ret_value))
1016 1017 1018 1019
        self.assertTrue(np.allclose(static_ret, expected))
        self.assertTrue(np.allclose(dy_ret_value, expected))

    def test_cross_entropy_loss_1d_mean(self):
R
ronnywang 已提交
1020
        input_np = np.random.random([100, 200]).astype(self.dtype)  #N,C
1021
        label_np = np.random.randint(0, 100, size=(100)).astype(np.int64)  #N,1
R
ronnywang 已提交
1022
        weight_np = np.random.random([200]).astype(self.dtype)  #C
1023
        paddle.enable_static()
1024 1025 1026 1027 1028
        prog = fluid.Program()
        startup_prog = fluid.Program()
        place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
        ) else fluid.CPUPlace()
        with fluid.program_guard(prog, startup_prog):
R
ronnywang 已提交
1029
            input = fluid.data(name='input', shape=[100, 200], dtype=self.dtype)
1030
            label = fluid.data(name='label', shape=[100], dtype='int64')
R
ronnywang 已提交
1031
            weight = fluid.data(name='weight', shape=[100], dtype=self.dtype)
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss()
            ret = cross_entropy_loss(input, label)
            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={'input': input_np,
                                       'label': label_np},
                                 fetch_list=[ret])
            self.assertIsNotNone(static_ret)
        with fluid.dygraph.guard():
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss()
            dy_ret = cross_entropy_loss(
                fluid.dygraph.to_variable(input_np),
                fluid.dygraph.to_variable(label_np))
            dy_ret_value = dy_ret.numpy()
            self.assertIsNotNone(dy_ret_value)
        expected = cross_entropy_loss_1d(input_np, label_np)[0]
        self.assertTrue(np.allclose(static_ret, dy_ret_value))
        self.assertTrue(np.allclose(static_ret, expected))
        self.assertTrue(np.allclose(dy_ret_value, expected))

    def test_cross_entropy_loss_1d_sum(self):
R
ronnywang 已提交
1053
        input_np = np.random.random([100, 200]).astype(self.dtype)  #N,C
1054 1055
        label_np = np.random.randint(0, 100, size=(100)).astype(np.int64)  #N,1
        paddle.enable_static()
1056 1057 1058 1059 1060
        prog = fluid.Program()
        startup_prog = fluid.Program()
        place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
        ) else fluid.CPUPlace()
        with fluid.program_guard(prog, startup_prog):
R
ronnywang 已提交
1061
            input = fluid.data(name='input', shape=[100, 200], dtype=self.dtype)
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
            label = fluid.data(name='label', shape=[100], dtype='int64')
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                reduction='sum')
            ret = cross_entropy_loss(input, label)
            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={'input': input_np,
                                       'label': label_np},
                                 fetch_list=[ret])
            self.assertIsNotNone(static_ret)
        with fluid.dygraph.guard():
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                reduction='sum')
            dy_ret = cross_entropy_loss(
                fluid.dygraph.to_variable(input_np),
                fluid.dygraph.to_variable(label_np))
            dy_ret_value = dy_ret.numpy()
            self.assertIsNotNone(dy_ret_value)
        expected = cross_entropy_loss_1d(input_np, label_np, reduction='sum')[0]
        self.assertTrue(np.allclose(static_ret, dy_ret_value))
        self.assertTrue(np.allclose(static_ret, expected))
        self.assertTrue(np.allclose(dy_ret_value, expected))

    def test_cross_entropy_loss_1d_none(self):
R
ronnywang 已提交
1086
        input_np = np.random.random([100, 200]).astype(self.dtype)  #N,C
1087 1088
        label_np = np.random.randint(0, 100, size=(100)).astype(np.int64)  #N,1
        paddle.enable_static()
1089 1090 1091 1092 1093
        prog = fluid.Program()
        startup_prog = fluid.Program()
        place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
        ) else fluid.CPUPlace()
        with fluid.program_guard(prog, startup_prog):
R
ronnywang 已提交
1094
            input = fluid.data(name='input', shape=[100, 200], dtype=self.dtype)
1095 1096 1097 1098 1099 1100 1101 1102 1103
            label = fluid.data(name='label', shape=[100], dtype='int64')
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                reduction='none')
            ret = cross_entropy_loss(input, label)
            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={'input': input_np,
                                       'label': label_np},
                                 fetch_list=[ret])
1104
            static_ret = np.squeeze(static_ret)
1105 1106 1107 1108 1109 1110 1111 1112
            self.assertIsNotNone(static_ret)
        with fluid.dygraph.guard():
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                reduction='none')
            dy_ret = cross_entropy_loss(
                fluid.dygraph.to_variable(input_np),
                fluid.dygraph.to_variable(label_np))
            dy_ret_value = dy_ret.numpy()
1113
            dy_ret_value = np.squeeze(dy_ret_value)
1114 1115 1116 1117 1118 1119 1120
            self.assertIsNotNone(dy_ret_value)
        expected = cross_entropy_loss_1d(input_np, label_np, reduction='none')
        self.assertTrue(np.allclose(static_ret, dy_ret_value))
        self.assertTrue(np.allclose(static_ret, expected))
        self.assertTrue(np.allclose(dy_ret_value, expected))

    def test_cross_entropy_loss_2d_with_weight_none(self):
R
ronnywang 已提交
1121
        input_np = np.random.random(size=(2, 2, 2, 3)).astype(self.dtype)  #NHWC
1122 1123
        label_np = np.random.randint(
            0, 3, size=(2, 2, 2)).astype(np.int64)  #NHW1
R
ronnywang 已提交
1124
        weight_np = np.random.random(size=(3, )).astype(self.dtype)  #C
1125 1126

        paddle.enable_static()
1127 1128 1129 1130 1131 1132
        prog = fluid.Program()
        startup_prog = fluid.Program()
        place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
        ) else fluid.CPUPlace()
        with fluid.program_guard(prog, startup_prog):
            input = fluid.data(
R
ronnywang 已提交
1133
                name='input', shape=[2, 2, 2, 3], dtype=self.dtype)
1134
            label = fluid.data(name='label', shape=[2, 2, 2], dtype='int64')
R
ronnywang 已提交
1135
            weight = fluid.data(name='weight', shape=[3], dtype=self.dtype)
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=weight, reduction='none')
            ret = cross_entropy_loss(input, label)

            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': input_np,
                                     'label': label_np,
                                     "weight": weight_np
                                 },
                                 fetch_list=[ret])
1148
            static_ret = np.squeeze(static_ret)
1149 1150 1151 1152 1153 1154 1155 1156
            self.assertIsNotNone(static_ret)
        with fluid.dygraph.guard():
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=fluid.dygraph.to_variable(weight_np), reduction='none')
            dy_ret = cross_entropy_loss(
                fluid.dygraph.to_variable(input_np),
                fluid.dygraph.to_variable(label_np))
            dy_ret_value = dy_ret.numpy()
1157
            dy_ret_value = np.squeeze(dy_ret_value)
1158 1159 1160 1161 1162 1163 1164 1165
            self.assertIsNotNone(dy_ret_value)
        expected = cross_entropy_loss_2d(
            input_np, label_np, weight=weight_np, reduction='none')
        self.assertTrue(np.allclose(static_ret, dy_ret_value))
        self.assertTrue(np.allclose(static_ret, expected))
        self.assertTrue(np.allclose(dy_ret_value, expected))

    def test_cross_entropy_loss_2d_with_weight_mean(self):
R
ronnywang 已提交
1166
        input_np = np.random.random(size=(2, 2, 2, 3)).astype(self.dtype)  #NHWC
1167 1168
        label_np = np.random.randint(
            0, 3, size=(2, 2, 2)).astype(np.int64)  #NHW
R
ronnywang 已提交
1169
        weight_np = np.random.random(size=(3, )).astype(self.dtype)  #C
1170
        paddle.enable_static()
1171 1172 1173 1174 1175 1176
        prog = fluid.Program()
        startup_prog = fluid.Program()
        place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
        ) else fluid.CPUPlace()
        with fluid.program_guard(prog, startup_prog):
            input = fluid.data(
R
ronnywang 已提交
1177
                name='input', shape=[2, 2, 2, 3], dtype=self.dtype)
1178
            label = fluid.data(name='label', shape=[2, 2, 2], dtype='int64')
R
ronnywang 已提交
1179
            weight = fluid.data(name='weight', shape=[3], dtype=self.dtype)
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=weight, reduction='mean')
            ret = cross_entropy_loss(input, label)

            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': input_np,
                                     'label': label_np,
                                     "weight": weight_np
                                 },
                                 fetch_list=[ret])
            self.assertIsNotNone(static_ret)
        with fluid.dygraph.guard():
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=fluid.dygraph.to_variable(weight_np), reduction='mean')
            dy_ret = cross_entropy_loss(
                fluid.dygraph.to_variable(input_np),
                fluid.dygraph.to_variable(label_np))
            dy_ret_value = dy_ret.numpy()
            self.assertIsNotNone(dy_ret_value)
        expected = cross_entropy_loss_2d(
            input_np, label_np, weight=weight_np, reduction='mean')[0]
        self.assertTrue(np.allclose(static_ret, dy_ret_value))
        self.assertTrue(np.allclose(static_ret, expected))
        self.assertTrue(np.allclose(dy_ret_value, expected))

    def test_cross_entropy_loss_2d_with_weight_sum(self):
R
ronnywang 已提交
1208
        input_np = np.random.random(size=(2, 2, 2, 3)).astype(self.dtype)  #NHWC
1209 1210
        label_np = np.random.randint(
            0, 3, size=(2, 2, 2)).astype(np.int64)  #NHW
R
ronnywang 已提交
1211
        weight_np = np.random.random(size=(3, )).astype(self.dtype)  #C
1212 1213
        paddle.enable_static()

1214 1215 1216 1217 1218 1219
        prog = fluid.Program()
        startup_prog = fluid.Program()
        place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
        ) else fluid.CPUPlace()
        with fluid.program_guard(prog, startup_prog):
            input = fluid.data(
R
ronnywang 已提交
1220
                name='input', shape=[2, 2, 2, 3], dtype=self.dtype)
1221
            label = fluid.data(name='label', shape=[2, 2, 2], dtype='int64')
R
ronnywang 已提交
1222
            weight = fluid.data(name='weight', shape=[3], dtype=self.dtype)
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=weight, reduction='sum')
            ret = cross_entropy_loss(input, label)

            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': input_np,
                                     'label': label_np,
                                     "weight": weight_np
                                 },
                                 fetch_list=[ret])
            self.assertIsNotNone(static_ret)
        with fluid.dygraph.guard():
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=fluid.dygraph.to_variable(weight_np), reduction='sum')
            dy_ret = cross_entropy_loss(
                fluid.dygraph.to_variable(input_np),
                fluid.dygraph.to_variable(label_np))
            dy_ret_value = dy_ret.numpy()
            self.assertIsNotNone(dy_ret_value)
        expected = cross_entropy_loss_2d(
            input_np, label_np, weight=weight_np, reduction='sum')[0]
        self.assertTrue(np.allclose(static_ret, dy_ret_value))
        self.assertTrue(np.allclose(static_ret, expected))
        self.assertTrue(np.allclose(dy_ret_value, expected))

    def test_cross_entropy_loss_2d_none(self):
R
ronnywang 已提交
1251
        input_np = np.random.random(size=(2, 2, 2, 3)).astype(self.dtype)  #NHWC
1252 1253 1254
        label_np = np.random.randint(
            0, 3, size=(2, 2, 2)).astype(np.int64)  #NHW
        paddle.enable_static()
1255 1256 1257 1258 1259 1260
        prog = fluid.Program()
        startup_prog = fluid.Program()
        place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
        ) else fluid.CPUPlace()
        with fluid.program_guard(prog, startup_prog):
            input = fluid.data(
R
ronnywang 已提交
1261
                name='input', shape=[2, 2, 2, 3], dtype=self.dtype)
1262
            label = fluid.data(name='label', shape=[2, 2, 2], dtype='int64')
1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                reduction='none')
            ret = cross_entropy_loss(input, label)
            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': input_np,
                                     'label': label_np,
                                 },
                                 fetch_list=[ret])
1273
            static_ret = np.squeeze(static_ret)
1274 1275 1276 1277 1278 1279 1280 1281
            self.assertIsNotNone(static_ret)
        with fluid.dygraph.guard():
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                reduction='none')
            dy_ret = cross_entropy_loss(
                fluid.dygraph.to_variable(input_np),
                fluid.dygraph.to_variable(label_np))
            dy_ret_value = dy_ret.numpy()
1282
            dy_ret_value = np.squeeze(dy_ret_value)
1283 1284 1285 1286 1287 1288 1289
            self.assertIsNotNone(dy_ret_value)
        expected = cross_entropy_loss_2d(input_np, label_np, reduction='none')
        self.assertTrue(np.allclose(static_ret, dy_ret_value))
        self.assertTrue(np.allclose(static_ret, expected))
        self.assertTrue(np.allclose(dy_ret_value, expected))

    def test_cross_entropy_loss_2d_mean(self):
R
ronnywang 已提交
1290
        input_np = np.random.random(size=(2, 2, 2, 3)).astype(self.dtype)  #NHWC
1291 1292 1293
        label_np = np.random.randint(
            0, 3, size=(2, 2, 2)).astype(np.int64)  #NHW
        paddle.enable_static()
1294 1295 1296 1297 1298 1299
        prog = fluid.Program()
        startup_prog = fluid.Program()
        place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
        ) else fluid.CPUPlace()
        with fluid.program_guard(prog, startup_prog):
            input = fluid.data(
R
ronnywang 已提交
1300
                name='input', shape=[2, 2, 2, 3], dtype=self.dtype)
1301
            label = fluid.data(name='label', shape=[2, 2, 2], dtype='int64')
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                reduction='mean')
            ret = cross_entropy_loss(input, label)

            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': input_np,
                                     'label': label_np,
                                 },
                                 fetch_list=[ret])
            self.assertIsNotNone(static_ret)
        with fluid.dygraph.guard():
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                reduction='mean')
            dy_ret = cross_entropy_loss(
                fluid.dygraph.to_variable(input_np),
                fluid.dygraph.to_variable(label_np))
            dy_ret_value = dy_ret.numpy()
            self.assertIsNotNone(dy_ret_value)
        expected = cross_entropy_loss_2d(
            input_np, label_np, reduction='mean')[0]
        self.assertTrue(np.allclose(static_ret, dy_ret_value))
        self.assertTrue(np.allclose(static_ret, expected))
        self.assertTrue(np.allclose(dy_ret_value, expected))

    def test_cross_entropy_loss_2d_sum(self):
R
ronnywang 已提交
1329
        input_np = np.random.random(size=(2, 2, 2, 3)).astype(self.dtype)  #NHWC
1330 1331 1332
        label_np = np.random.randint(
            0, 3, size=(2, 2, 2)).astype(np.int64)  #NHW
        paddle.enable_static()
1333 1334 1335 1336 1337 1338
        prog = fluid.Program()
        startup_prog = fluid.Program()
        place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
        ) else fluid.CPUPlace()
        with fluid.program_guard(prog, startup_prog):
            input = fluid.data(
R
ronnywang 已提交
1339
                name='input', shape=[2, 2, 2, 3], dtype=self.dtype)
1340
            label = fluid.data(name='label', shape=[2, 2, 2], dtype='int64')
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                reduction='sum')
            ret = cross_entropy_loss(input, label)

            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': input_np,
                                     'label': label_np,
                                 },
                                 fetch_list=[ret])
            self.assertIsNotNone(static_ret)
        with fluid.dygraph.guard():
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                reduction='sum')
            dy_ret = cross_entropy_loss(
                fluid.dygraph.to_variable(input_np),
                fluid.dygraph.to_variable(label_np))
            dy_ret_value = dy_ret.numpy()
            self.assertIsNotNone(dy_ret_value)
        expected = cross_entropy_loss_2d(input_np, label_np, reduction='sum')[0]
1362
        self.assertTrue(np.allclose(static_ret, dy_ret_value))
1363 1364
        self.assertTrue(np.allclose(static_ret, expected))
        self.assertTrue(np.allclose(dy_ret_value, expected))
1365 1366


1367 1368 1369 1370 1371 1372
class TestCrossEntropyFAPIError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program(), Program()):

            def test_LabelValue():
                input_data = paddle.rand(shape=[20, 100])
R
root 已提交
1373 1374
                label_data = paddle.randint(
                    0, 100, shape=[20, 1], dtype="int64")
1375 1376 1377 1378 1379 1380
                label_data[0] = 255
                paddle.nn.functional.cross_entropy(
                    input=input_data, label=label_data)

            self.assertRaises(ValueError, test_LabelValue)

R
root 已提交
1381 1382
            def test_LabelValueNeg():
                input_data = paddle.rand(shape=[20, 100])
R
root 已提交
1383 1384
                label_data = paddle.randint(
                    0, 100, shape=[20, 1], dtype="int64")
R
root 已提交
1385 1386 1387 1388 1389 1390
                label_data[0] = -1
                paddle.nn.functional.cross_entropy(
                    input=input_data, label=label_data)

            self.assertRaises(ValueError, test_LabelValueNeg)

1391

1392 1393
if __name__ == "__main__":
    unittest.main()