test_cross_entropy_loss.py 62.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import paddle
import paddle.fluid as fluid
import numpy as np
import unittest
21 22
from test_softmax_op import stable_softmax
from test_softmax_with_cross_entropy_op import cross_entropy
R
root 已提交
23
from paddle.fluid import Program, program_guard
24 25


26
def log_softmax(x, axis=-1):
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
    softmax_out = np.apply_along_axis(stable_softmax, axis, x)
    return np.log(softmax_out)


def cross_entropy_loss_1d(input,
                          label,
                          weight=None,
                          reduction='mean',
                          ignore_index=-100):
    log_softmax_out = log_softmax(input)
    input_shape = log_softmax_out.shape
    N = input_shape[0]
    C = input_shape[1]
    out = np.zeros_like(label).astype(np.float64)
    total_weight = 0
42 43
    ###1. compute softmax cross_entropy (with weight)
    ###   Note: only support hard labels.
44 45 46 47 48 49 50 51
    for i in range(N):
        cur_target = label[i]
        if cur_target == ignore_index:
            out[i] = 0
            continue
        cur_weight = weight[cur_target] if weight is not None else 1
        total_weight += cur_weight
        out[i] = -log_softmax_out[i][cur_target] * cur_weight
52

H
HydrogenSulfate 已提交
53
    ###2. deal with reduction
54 55 56
    if reduction == 'sum':
        return np.sum(out), np.array([total_weight]).astype('float64')
    elif reduction == 'mean':
57 58
        out = out.sum() / total_weight if total_weight != 0 else out.sum()
        return out, np.array([total_weight]).astype('float64')
59 60 61 62 63 64 65 66 67 68 69 70
    elif reduction == 'none':
        return out


def cross_entropy_loss_2d(input,
                          label,
                          weight=None,
                          reduction='mean',
                          ignore_index=-100):
    log_softmax_out = log_softmax(input)
    input_shape = log_softmax_out.shape
    N = input_shape[0]
71 72 73
    H = input_shape[1]
    W = input_shape[2]

74 75 76 77 78 79 80 81 82 83 84
    out = np.zeros_like(label).astype(np.float64)
    total_weight = 0
    for i in range(N):
        for h in range(H):
            for w in range(W):
                cur_target = label[i][h][w]
                if cur_target == ignore_index:
                    out[i][h][w] = 0
                    continue
                cur_weight = weight[cur_target] if weight is not None else 1
                total_weight += cur_weight
85 86
                out[i][h][w] = -log_softmax_out[i][h][w][
                    cur_target] * cur_weight
87 88 89
    if reduction == 'sum':
        return np.sum(out), np.array([total_weight]).astype('float64')
    elif reduction == 'mean':
90 91
        out = out.sum() / total_weight if total_weight != 0 else out.sum()
        return out, np.array([total_weight]).astype('float64')
92 93 94 95
    elif reduction == 'none':
        return out


96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
def cross_entropy_soft(softmax,
                       label,
                       axis,
                       N,
                       weight=None,
                       reduction='mean',
                       ignore_index=-100):
    #1.loss
    loss = cross_entropy(
        softmax,
        label,
        True,  #soft_label,
        axis,
        ignore_index)

    if weight is None and reduction == 'none':
        return loss

    #2.weight
    weighted_loss = loss
    total_weight = N  #for weight is None
    if weight is not None:
        weighted_loss = np.zeros_like(loss).astype(np.float64)
        total_weight = 0
        for i in range(N):
            cur_soft_label = label[i]
            cur_weight = np.dot(weight, cur_soft_label)
            total_weight += cur_weight
            weighted_loss[i] = loss[i] * cur_weight

    #3.reduce
    if reduction == 'none':
        return weighted_loss

    elif reduction == 'mean':
        weighted_loss_sum = np.sum(weighted_loss)
        weighted_loss_mean = weighted_loss_sum / total_weight
        return weighted_loss_mean

    else:
        weighted_loss_sum = np.sum(weighted_loss)
        return weighted_loss_sum


def cross_entropy_soft_2d(softmax,
                          label,
                          axis,
                          N,
                          H,
                          W,
                          weight=None,
                          reduction='mean',
                          ignore_index=-100):
    #1.loss
    loss = cross_entropy(
        softmax,
        label,
        True,  #soft_label,
        axis,
        ignore_index)

    if weight is None and reduction == 'none':
        return loss

    #2.weight
    weighted_loss = loss
    total_weight = N  #for weight is None
    if weight is not None:
        weighted_loss = np.zeros_like(loss).astype(np.float64)
        total_weight = 0
        for i in range(N):
            for h in range(H):
                for w in range(W):
                    cur_soft_label = label[i][h][w]
                    cur_weight = np.dot(weight, cur_soft_label)
                    total_weight += cur_weight
                    weighted_loss[i][h][w] = loss[i][h][w] * cur_weight

    #3.reduce
    if reduction == 'none':
        return weighted_loss

    elif reduction == 'mean':
        weighted_loss_sum = np.sum(weighted_loss)
        weighted_loss_mean = weighted_loss_sum / total_weight
        return weighted_loss_mean

    else:
        weighted_loss_sum = np.sum(weighted_loss)
        return weighted_loss_sum


188
class CrossEntropyLoss(unittest.TestCase):
R
ronnywang 已提交
189 190 191
    def setUp(self):
        self.dtype = 'float32' if fluid.core.is_compiled_with_rocm(
        ) else 'float64'
192 193 194 195 196

    ###test for deprecated softmax_with_cross_entropy
    def test_softmax_with_cross_entropy(self):
        self.numeric_stable_mode = False
        self.soft_label = True
R
ronnywang 已提交
197 198
        self.dtype = 'float32' if fluid.core.is_compiled_with_rocm(
        ) else 'float64'
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
        self.axis = -1
        self.ignore_index = -100  #should not be changed
        self.N = 4
        self.C = 3
        self.shape = [self.N, self.C]
        self.use_softmax = True
        self.reduction = 'none'
        self.weight = None
        self.logits = getattr(
            self, "logits",
            np.random.uniform(0.1, 1.0, self.shape).astype(self.dtype))
        softmax = np.apply_along_axis(stable_softmax, self.axis, self.logits)

        self.labels = np.random.uniform(0.1, 1.0, self.shape).astype(self.dtype)
        self.labels /= np.sum(self.labels, axis=self.axis, keepdims=True)

        expected = cross_entropy_soft(
            softmax,
            self.labels,
            self.axis,
            self.N,
            weight=self.weight,
            reduction=self.reduction,
            ignore_index=self.ignore_index)

        paddle.set_device("cpu")

        paddle.disable_static()
        paddle_loss_swce = paddle.nn.functional.softmax_with_cross_entropy(
            fluid.dygraph.to_variable(self.logits),
            fluid.dygraph.to_variable(self.labels),
            soft_label=True,
            axis=self.axis)

        paddle_loss_ce = paddle.nn.functional.cross_entropy(
            fluid.dygraph.to_variable(self.logits),
            fluid.dygraph.to_variable(self.labels),
            soft_label=True,
            axis=self.axis,
            weight=fluid.dygraph.to_variable(self.weight)
            if self.weight is not None else None,
            reduction=self.reduction)

        self.assertTrue(np.allclose(paddle_loss_swce.numpy(), expected))
        self.assertTrue(np.allclose(paddle_loss_ce.numpy(), expected))

    ###soft_label test start
    ###soft_label test 1
    def test_cross_entropy_loss_soft_1d(self):
        self.numeric_stable_mode = False
        self.soft_label = True
R
ronnywang 已提交
250 251
        self.dtype = 'float32' if fluid.core.is_compiled_with_rocm(
        ) else 'float64'
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
        self.axis = -1
        self.ignore_index = -100  #should not be changed
        self.N = 4
        self.C = 3
        self.shape = [self.N, self.C]
        self.use_softmax = True
        self.reduction = 'none'
        self.weight = None
        self.logits = getattr(
            self, "logits",
            np.random.uniform(0.1, 1.0, self.shape).astype(self.dtype))
        softmax = np.apply_along_axis(stable_softmax, self.axis, self.logits)

        self.labels = np.random.uniform(0.1, 1.0, self.shape).astype(self.dtype)
        self.labels /= np.sum(self.labels, axis=self.axis, keepdims=True)

        expected = cross_entropy_soft(
            softmax,
            self.labels,
            self.axis,
            self.N,
            weight=self.weight,
            reduction=self.reduction,
            ignore_index=self.ignore_index)

        paddle.set_device("cpu")

        #2. dygraph
        paddle.disable_static()
        paddle_loss_none_weight = paddle.nn.functional.cross_entropy(
            fluid.dygraph.to_variable(self.logits),
            fluid.dygraph.to_variable(self.labels),
            soft_label=True,
            axis=self.axis,
            weight=fluid.dygraph.to_variable(self.weight)
            if self.weight is not None else None,
            reduction=self.reduction)
        dy_ret_value = paddle_loss_none_weight.numpy()

        #3. static
        paddle.enable_static()
        prog = fluid.Program()
        startup_prog = fluid.Program()
        place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
        ) else fluid.CPUPlace()
        with fluid.program_guard(prog, startup_prog):
            input = fluid.data(
R
ronnywang 已提交
299
                name='input', shape=[self.N, self.C], dtype=self.dtype)
300
            label = fluid.data(
R
ronnywang 已提交
301
                name='label', shape=[self.N, self.C], dtype=self.dtype)
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323

            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                reduction=self.reduction, soft_label=True)
            ret = cross_entropy_loss(input, label)

            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': self.logits,
                                     'label': self.labels,
                                 },
                                 fetch_list=[ret])
            self.assertIsNotNone(static_ret)
        paddle.disable_static()

        self.assertTrue(np.allclose(static_ret, expected))
        self.assertTrue(np.allclose(dy_ret_value, expected))

    ###soft_label test 2
    def test_cross_entropy_loss_soft_1d_weight(self):
        self.numeric_stable_mode = False
        self.soft_label = True
R
ronnywang 已提交
324 325
        self.dtype = 'float32' if fluid.core.is_compiled_with_rocm(
        ) else 'float64'
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
        self.axis = -1
        self.ignore_index = -100  #should not be changed
        self.N = 4
        self.C = 3
        self.shape = [self.N, self.C]
        self.use_softmax = True
        self.reduction = 'none'
        self.weight = np.random.uniform(0.1, 1.0, self.C).astype(self.dtype)
        self.logits = getattr(
            self, "logits",
            np.random.uniform(0.1, 1.0, self.shape).astype(self.dtype))
        softmax = np.apply_along_axis(stable_softmax, self.axis, self.logits)

        if self.soft_label:
            self.labels = np.random.uniform(0.1, 1.0,
                                            self.shape).astype(self.dtype)
            self.labels /= np.sum(self.labels, axis=self.axis, keepdims=True)
        else:
            axis_dim = self.shape[self.axis]
            self.shape[self.axis] = 1
            self.labels = np.random.randint(
                0, axis_dim, self.shape, dtype="int64")

        #1. numpy
        expected = cross_entropy_soft(
            softmax,
            self.labels,
            self.axis,
            self.N,
            weight=self.weight,
            reduction=self.reduction,
            ignore_index=self.ignore_index)

        paddle.set_device("cpu")

        #2. dygraph
        paddle.disable_static()
        paddle_loss_none_weight = paddle.nn.functional.cross_entropy(
            fluid.dygraph.to_variable(self.logits),
            fluid.dygraph.to_variable(self.labels),
            soft_label=True,
            axis=self.axis,
            weight=fluid.dygraph.to_variable(self.weight),
            reduction=self.reduction)
        dy_ret_value = paddle_loss_none_weight.numpy()

        # 3.static
        paddle.enable_static()
        prog = fluid.Program()
        startup_prog = fluid.Program()
        place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
        ) else fluid.CPUPlace()
        with fluid.program_guard(prog, startup_prog):
            input = fluid.data(
R
ronnywang 已提交
380
                name='input', shape=[self.N, self.C], dtype=self.dtype)
381
            label = fluid.data(
R
ronnywang 已提交
382 383
                name='label', shape=[self.N, self.C], dtype=self.dtype)
            weight = fluid.data(name='weight', shape=[self.C], dtype=self.dtype)
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406

            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=weight, reduction=self.reduction, soft_label=True)
            ret = cross_entropy_loss(input, label)

            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': self.logits,
                                     'label': self.labels,
                                     "weight": self.weight
                                 },
                                 fetch_list=[ret])
            self.assertIsNotNone(static_ret)
        paddle.disable_static()

        self.assertTrue(np.allclose(static_ret, expected))
        self.assertTrue(np.allclose(dy_ret_value, expected))

    ###soft_label test 3
    def test_cross_entropy_loss_soft_1d_mean(self):
        self.numeric_stable_mode = False
        self.soft_label = True
R
ronnywang 已提交
407 408
        self.dtype = 'float32' if fluid.core.is_compiled_with_rocm(
        ) else 'float64'
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
        self.axis = -1
        self.ignore_index = -100  #should not be changed
        self.N = 4
        self.C = 3
        self.shape = [self.N, self.C]
        self.use_softmax = True
        self.reduction = 'mean'
        self.weight = None
        self.logits = getattr(
            self, "logits",
            np.random.uniform(0.1, 1.0, self.shape).astype(self.dtype))
        softmax = np.apply_along_axis(stable_softmax, self.axis, self.logits)

        self.labels = np.random.uniform(0.1, 1.0, self.shape).astype(self.dtype)
        self.labels /= np.sum(self.labels, axis=self.axis, keepdims=True)

        #1. numpy
        expected = cross_entropy_soft(
            softmax,
            self.labels,
            self.axis,
            self.N,
            weight=self.weight,
            reduction=self.reduction,
            ignore_index=self.ignore_index)

        paddle.set_device("cpu")

H
HydrogenSulfate 已提交
437
        #2 dygraph
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
        paddle.disable_static()
        paddle_loss_mean = paddle.nn.functional.cross_entropy(
            fluid.dygraph.to_variable(self.logits),
            fluid.dygraph.to_variable(self.labels),
            soft_label=True,
            axis=self.axis,
            weight=self.weight,
            reduction=self.reduction)
        dy_ret_value = paddle_loss_mean.numpy()

        #3. static
        paddle.enable_static()
        prog = fluid.Program()
        startup_prog = fluid.Program()
        place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
        ) else fluid.CPUPlace()
        with fluid.program_guard(prog, startup_prog):
            input = fluid.data(
R
ronnywang 已提交
456
                name='input', shape=[self.N, self.C], dtype=self.dtype)
457
            label = fluid.data(
R
ronnywang 已提交
458
                name='label', shape=[self.N, self.C], dtype=self.dtype)
459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479

            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                reduction=self.reduction, soft_label=True)
            ret = cross_entropy_loss(input, label)

            exe = fluid.Executor(place)
            static_ret = exe.run(
                prog,
                feed={'input': self.logits,
                      'label': self.labels},
                fetch_list=[ret])
            self.assertIsNotNone(static_ret)
        paddle.disable_static()

        self.assertTrue(np.allclose(static_ret, expected))
        self.assertTrue(np.allclose(dy_ret_value, expected))

    ###soft_label test 4
    def test_cross_entropy_loss_soft_1d_weight_mean(self):
        self.numeric_stable_mode = False
        self.soft_label = True
R
ronnywang 已提交
480 481
        self.dtype = 'float32' if fluid.core.is_compiled_with_rocm(
        ) else 'float64'
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
        self.axis = -1
        self.ignore_index = -100  #should not be changed
        self.N = 4
        self.C = 3
        self.shape = [self.N, self.C]
        self.use_softmax = True
        self.reduction = 'mean'
        self.weight = np.random.uniform(0.1, 1.0, self.C).astype(self.dtype)
        self.logits = getattr(
            self, "logits",
            np.random.uniform(0.1, 1.0, self.shape).astype(self.dtype))
        softmax = np.apply_along_axis(stable_softmax, self.axis, self.logits)

        self.labels = np.random.uniform(0.1, 1.0, self.shape).astype(self.dtype)
        self.labels /= np.sum(self.labels, axis=self.axis, keepdims=True)

        #1. numpy
        expected = cross_entropy_soft(
            softmax,
            self.labels,
            self.axis,
            self.N,
            weight=self.weight,
            reduction=self.reduction,
            ignore_index=self.ignore_index)

        paddle.set_device("cpu")
        paddle.disable_static()

        #2. dygraph
        paddle_loss_none_weight = paddle.nn.functional.cross_entropy(
            fluid.dygraph.to_variable(self.logits),
            fluid.dygraph.to_variable(self.labels),
            soft_label=True,
            axis=self.axis,
            weight=fluid.dygraph.to_variable(self.weight),
            reduction=self.reduction)
        dy_ret_value = paddle_loss_none_weight.numpy()

        #3. static
        paddle.enable_static()
        prog = fluid.Program()
        startup_prog = fluid.Program()
        place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
        ) else fluid.CPUPlace()
        with fluid.program_guard(prog, startup_prog):
            input = fluid.data(
R
ronnywang 已提交
529
                name='input', shape=[self.N, self.C], dtype=self.dtype)
530
            label = fluid.data(
R
ronnywang 已提交
531 532
                name='label', shape=[self.N, self.C], dtype=self.dtype)
            weight = fluid.data(name='weight', shape=[self.C], dtype=self.dtype)
533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554

            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=weight, reduction=self.reduction, soft_label=True)
            ret = cross_entropy_loss(input, label)
            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': self.logits,
                                     'label': self.labels,
                                     "weight": self.weight
                                 },
                                 fetch_list=[ret])
            self.assertIsNotNone(static_ret)
        paddle.disable_static()

        self.assertTrue(np.allclose(static_ret, expected))
        self.assertTrue(np.allclose(dy_ret_value, expected))

    ###soft_label test 5
    def test_cross_entropy_loss_soft_2d(self):
        self.numeric_stable_mode = False
        self.soft_label = True
R
ronnywang 已提交
555 556
        self.dtype = 'float32' if fluid.core.is_compiled_with_rocm(
        ) else 'float64'
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
        self.axis = -1
        self.ignore_index = -100  #should not be changed
        self.N = 3
        self.H = 2
        self.W = 2
        self.C = 5
        self.shape = [self.N, self.H, self.W, self.C]
        self.use_softmax = True
        self.reduction = 'none'
        self.weight = None
        self.logits = getattr(
            self, "logits",
            np.random.uniform(0.1, 1.0, self.shape).astype(self.dtype))
        softmax = np.apply_along_axis(stable_softmax, self.axis, self.logits)

        self.labels = np.random.uniform(0.1, 1.0, self.shape).astype(self.dtype)
        self.labels /= np.sum(self.labels, axis=self.axis, keepdims=True)

        #1. numpy
        expected = cross_entropy_soft_2d(
            softmax,
            self.labels,
            self.axis,
            self.N,
            self.H,
            self.W,
            weight=self.weight,
            reduction=self.reduction,
            ignore_index=self.ignore_index)

        paddle.set_device("cpu")
        paddle.disable_static()

        #2. dygraph
        paddle_loss_none_weight = paddle.nn.functional.cross_entropy(
            fluid.dygraph.to_variable(self.logits),
            fluid.dygraph.to_variable(self.labels),
            soft_label=True,
            axis=self.axis,
            weight=fluid.dygraph.to_variable(self.weight)
            if self.weight is not None else None,
            reduction=self.reduction)
        dy_ret_value = paddle_loss_none_weight.numpy()

        #3. static
        paddle.enable_static()
        prog = fluid.Program()
        startup_prog = fluid.Program()
        place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
        ) else fluid.CPUPlace()
        with fluid.program_guard(prog, startup_prog):
            input = fluid.data(
                name='input',
                shape=[self.N, self.H, self.W, self.C],
R
ronnywang 已提交
611
                dtype=self.dtype)
612 613 614
            label = fluid.data(
                name='label',
                shape=[self.N, self.H, self.W, self.C],
R
ronnywang 已提交
615
                dtype=self.dtype)
616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637

            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                reduction=self.reduction, soft_label=True)
            ret = cross_entropy_loss(input, label)
            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': self.logits,
                                     'label': self.labels,
                                 },
                                 fetch_list=[ret])
            self.assertIsNotNone(static_ret)
        paddle.disable_static()

        self.assertTrue(np.allclose(static_ret, dy_ret_value))
        self.assertTrue(np.allclose(static_ret, expected))
        self.assertTrue(np.allclose(dy_ret_value, expected))

    ###soft_label test 6
    def test_cross_entropy_loss_soft_2d_weight_mean(self):
        self.numeric_stable_mode = False
        self.soft_label = True
R
ronnywang 已提交
638 639
        self.dtype = 'float32' if fluid.core.is_compiled_with_rocm(
        ) else 'float64'
640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
        self.axis = -1
        self.ignore_index = -100  #should not be changed
        self.N = 3
        self.H = 2
        self.W = 2
        self.C = 5
        self.shape = [self.N, self.H, self.W, self.C]
        self.use_softmax = True
        self.reduction = 'mean'
        self.weight = np.random.uniform(0.1, 1.0, self.C).astype(self.dtype)
        self.logits = getattr(
            self, "logits",
            np.random.uniform(0.1, 1.0, self.shape).astype(self.dtype))
        softmax = np.apply_along_axis(stable_softmax, self.axis, self.logits)

        self.labels = np.random.uniform(0.1, 1.0, self.shape).astype(self.dtype)
        self.labels /= np.sum(self.labels, axis=self.axis, keepdims=True)

        #1. numpy
        expected = cross_entropy_soft_2d(
            softmax,
            self.labels,
            self.axis,
            self.N,
            self.H,
            self.W,
            weight=self.weight,
            reduction=self.reduction,
            ignore_index=self.ignore_index)

        paddle.set_device("cpu")
        paddle.disable_static()

        #2. dygraph
        paddle_loss_none_weight = paddle.nn.functional.cross_entropy(
            fluid.dygraph.to_variable(self.logits),
            fluid.dygraph.to_variable(self.labels),
            soft_label=True,
            axis=self.axis,
            weight=fluid.dygraph.to_variable(self.weight),
            reduction=self.reduction)
        dy_ret_value = paddle_loss_none_weight.numpy()

        #3. static
        paddle.enable_static()
        prog = fluid.Program()
        startup_prog = fluid.Program()
        place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
        ) else fluid.CPUPlace()
        with fluid.program_guard(prog, startup_prog):
            input = fluid.data(
                name='input',
                shape=[self.N, self.H, self.W, self.C],
R
ronnywang 已提交
693
                dtype=self.dtype)
694 695 696
            label = fluid.data(
                name='label',
                shape=[self.N, self.H, self.W, self.C],
R
ronnywang 已提交
697 698
                dtype=self.dtype)
            weight = fluid.data(name='weight', shape=[self.C], dtype=self.dtype)
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719

            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=weight, reduction=self.reduction, soft_label=True)
            ret = cross_entropy_loss(input, label)
            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': self.logits,
                                     'label': self.labels,
                                     "weight": self.weight
                                 },
                                 fetch_list=[ret])
            self.assertIsNotNone(static_ret)
        paddle.disable_static()

        self.assertTrue(np.allclose(static_ret, dy_ret_value))
        self.assertTrue(np.allclose(static_ret, expected))
        self.assertTrue(np.allclose(dy_ret_value, expected))

    ###soft_label test end

720
    def test_cross_entropy_loss_1d_with_mean_ignore(self):
R
ronnywang 已提交
721
        input_np = np.random.random([2, 4]).astype(self.dtype)
722 723 724 725 726 727 728
        label_np = np.random.randint(0, 4, size=(2)).astype(np.int64)
        paddle.enable_static()
        prog = fluid.Program()
        startup_prog = fluid.Program()
        place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
        ) else fluid.CPUPlace()
        with fluid.program_guard(prog, startup_prog):
R
ronnywang 已提交
729
            input = fluid.data(name='input', shape=[2, 4], dtype=self.dtype)
730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
            label = fluid.data(name='label', shape=[2], dtype='int64')
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(ignore_index=0)
            ret = cross_entropy_loss(input, label)

            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': input_np,
                                     'label': label_np,
                                 },
                                 fetch_list=[ret])
            self.assertIsNotNone(static_ret)
        expected = cross_entropy_loss_1d(input_np, label_np)[0]

        with fluid.dygraph.guard():
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                axis=1, ignore_index=0)
            dy_ret = cross_entropy_loss(
                fluid.dygraph.to_variable(input_np),
                fluid.dygraph.to_variable(label_np))
            dy_ret_value = dy_ret.numpy()
            self.assertIsNotNone(dy_ret_value)
        expected = cross_entropy_loss_1d(input_np, label_np, ignore_index=0)[0]
        self.assertTrue(np.allclose(static_ret, dy_ret_value))
        self.assertTrue(np.allclose(static_ret, expected))
        self.assertTrue(np.allclose(dy_ret_value, expected))

757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
    def test_cross_entropy_loss_1d_with_mean_ignore_negative(self):
        N = 100
        C = 200
        input_np = np.random.random([N, C]).astype(self.dtype)
        label_np = -np.ones((N)).astype(np.int64)
        paddle.enable_static()
        prog = fluid.Program()
        startup_prog = fluid.Program()
        place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
        ) else fluid.CPUPlace()
        with fluid.program_guard(prog, startup_prog):
            input = fluid.data(name='input', shape=[N, C], dtype=self.dtype)
            label = fluid.data(name='label', shape=[N], dtype='int64')
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                ignore_index=-1)
            ret = cross_entropy_loss(input, label)
            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': input_np,
                                     'label': label_np,
                                 },
                                 fetch_list=[ret])
            self.assertIsNotNone(static_ret)

        with fluid.dygraph.guard():
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                axis=1, ignore_index=-1)
            dy_ret = cross_entropy_loss(
                fluid.dygraph.to_variable(input_np),
                fluid.dygraph.to_variable(label_np))
            dy_ret_value = dy_ret.numpy()
            self.assertIsNotNone(dy_ret_value)
        expected = cross_entropy_loss_1d(input_np, label_np, ignore_index=-1)[0]

        self.assertTrue(np.allclose(static_ret, dy_ret_value))
        self.assertTrue(np.allclose(static_ret, expected))
        self.assertTrue(np.allclose(dy_ret_value, expected))

796
    def test_cross_entropy_loss_1d_with_weight_mean_ignore(self):
797 798
        N = 100
        C = 200
R
ronnywang 已提交
799
        input_np = np.random.random([N, C]).astype(self.dtype)
800
        label_np = np.random.randint(0, C, size=(N)).astype(np.int64)
R
ronnywang 已提交
801
        weight_np = np.random.random([C]).astype(self.dtype)
802 803 804 805 806 807
        paddle.enable_static()
        prog = fluid.Program()
        startup_prog = fluid.Program()
        place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
        ) else fluid.CPUPlace()
        with fluid.program_guard(prog, startup_prog):
R
ronnywang 已提交
808
            input = fluid.data(name='input', shape=[N, C], dtype=self.dtype)
809
            label = fluid.data(name='label', shape=[N], dtype='int64')
810
            weight = fluid.data(
811
                name='weight', shape=[C],
R
ronnywang 已提交
812
                dtype=self.dtype)  #weight for each class
813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=weight, ignore_index=0)
            ret = cross_entropy_loss(input, label)

            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': input_np,
                                     'label': label_np,
                                     "weight": weight_np
                                 },
                                 fetch_list=[ret])
            self.assertIsNotNone(static_ret)

        with fluid.dygraph.guard():
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=fluid.dygraph.to_variable(weight_np),
                axis=1,
                ignore_index=0)
            dy_ret = cross_entropy_loss(
                fluid.dygraph.to_variable(input_np),
                fluid.dygraph.to_variable(label_np))
            dy_ret_value = dy_ret.numpy()
            self.assertIsNotNone(dy_ret_value)
        expected = cross_entropy_loss_1d(
            input_np, label_np, weight=weight_np, ignore_index=0)[0]
839

840 841 842 843
        self.assertTrue(np.allclose(static_ret, dy_ret_value))
        self.assertTrue(np.allclose(static_ret, expected))
        self.assertTrue(np.allclose(dy_ret_value, expected))

H
HydrogenSulfate 已提交
844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865
    def test_cross_entropy_loss_1d_with_weight_mean_ignore_exceedlabel(self):
        N = 100
        C = 200
        input_np = np.random.random([N, C]).astype(self.dtype)
        label_np = np.random.randint(0, C, size=(N)).astype(np.int64)
        label_np[0] = 255
        weight_np = np.random.random([C]).astype(self.dtype)

        with fluid.dygraph.guard():
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=fluid.dygraph.to_variable(weight_np),
                ignore_index=255)
            dy_ret = cross_entropy_loss(
                fluid.dygraph.to_variable(input_np),
                fluid.dygraph.to_variable(label_np))
            dy_ret_value = dy_ret.numpy()
            self.assertIsNotNone(dy_ret_value)
        expected = cross_entropy_loss_1d(
            input_np, label_np, weight=weight_np, ignore_index=255)[0]

        self.assertTrue(np.allclose(dy_ret_value, expected))

866
    def test_cross_entropy_loss_1d_with_weight_mean(self):
R
ronnywang 已提交
867
        input_np = np.random.random([2, 4]).astype(self.dtype)
868
        label_np = np.random.randint(0, 4, size=(2)).astype(np.int64)
R
ronnywang 已提交
869
        weight_np = np.random.random([4]).astype(self.dtype)  #shape:C
870
        paddle.enable_static()
871 872 873 874 875
        prog = fluid.Program()
        startup_prog = fluid.Program()
        place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
        ) else fluid.CPUPlace()
        with fluid.program_guard(prog, startup_prog):
R
ronnywang 已提交
876
            input = fluid.data(name='input', shape=[2, 4], dtype=self.dtype)
877 878 879
            label = fluid.data(name='label', shape=[2], dtype='int64')
            weight = fluid.data(
                name='weight', shape=[4],
R
ronnywang 已提交
880
                dtype=self.dtype)  #weight for each class
881 882 883 884 885 886 887 888 889 890 891 892
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(weight=weight)
            ret = cross_entropy_loss(input, label)

            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': input_np,
                                     'label': label_np,
                                     "weight": weight_np
                                 },
                                 fetch_list=[ret])
            self.assertIsNotNone(static_ret)
893 894 895
        expected = cross_entropy_loss_1d(
            input_np, label_np, weight=weight_np)[0]

896 897
        with fluid.dygraph.guard():
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
898
                weight=fluid.dygraph.to_variable(weight_np), axis=1)
899 900 901 902 903
            dy_ret = cross_entropy_loss(
                fluid.dygraph.to_variable(input_np),
                fluid.dygraph.to_variable(label_np))
            dy_ret_value = dy_ret.numpy()
            self.assertIsNotNone(dy_ret_value)
904 905
        expected = cross_entropy_loss_1d(
            input_np, label_np, weight=weight_np)[0]
906
        self.assertTrue(np.allclose(static_ret, dy_ret_value))
907 908
        self.assertTrue(np.allclose(static_ret, expected))
        self.assertTrue(np.allclose(dy_ret_value, expected))
909

910
    def test_cross_entropy_loss_1d_with_weight_sum(self):
R
ronnywang 已提交
911
        input_np = np.random.random([100, 200]).astype(self.dtype)  #N,C
912
        label_np = np.random.randint(0, 100, size=(100)).astype(np.int64)  #N,1
R
ronnywang 已提交
913
        weight_np = np.random.random([200]).astype(self.dtype)  #C
914
        paddle.enable_static()
915 916 917 918 919
        prog = fluid.Program()
        startup_prog = fluid.Program()
        place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
        ) else fluid.CPUPlace()
        with fluid.program_guard(prog, startup_prog):
R
ronnywang 已提交
920
            input = fluid.data(name='input', shape=[100, 200], dtype=self.dtype)
921
            label = fluid.data(name='label', shape=[100], dtype='int64')
R
ronnywang 已提交
922
            weight = fluid.data(name='weight', shape=[200], dtype=self.dtype)
923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=weight, reduction='sum')
            ret = cross_entropy_loss(input, label)

            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': input_np,
                                     'label': label_np,
                                     "weight": weight_np
                                 },
                                 fetch_list=[ret])
            self.assertIsNotNone(static_ret)
        with fluid.dygraph.guard():
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=fluid.dygraph.to_variable(weight_np), reduction='sum')
            dy_ret = cross_entropy_loss(
                fluid.dygraph.to_variable(input_np),
                fluid.dygraph.to_variable(label_np))
            dy_ret_value = dy_ret.numpy()
            self.assertIsNotNone(dy_ret_value)
944 945
        expected = cross_entropy_loss_1d(
            input_np, label_np, weight=weight_np, reduction='sum')[0]
946
        self.assertTrue(np.allclose(static_ret, dy_ret_value))
947 948
        self.assertTrue(np.allclose(static_ret, expected))
        self.assertTrue(np.allclose(dy_ret_value, expected))
949

950
    def test_cross_entropy_loss_1d_with_weight_none(self):
R
ronnywang 已提交
951
        input_np = np.random.random([100, 200]).astype(self.dtype)  #N,C
952
        label_np = np.random.randint(0, 100, size=(100)).astype(np.int64)  #N,1
R
ronnywang 已提交
953
        weight_np = np.random.random([200]).astype(self.dtype)  #C
954

955
        paddle.enable_static()
956 957 958 959 960
        prog = fluid.Program()
        startup_prog = fluid.Program()
        place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
        ) else fluid.CPUPlace()
        with fluid.program_guard(prog, startup_prog):
R
ronnywang 已提交
961
            input = fluid.data(name='input', shape=[100, 200], dtype=self.dtype)
962
            label = fluid.data(name='label', shape=[100], dtype='int64')
R
ronnywang 已提交
963
            weight = fluid.data(name='weight', shape=[200], dtype=self.dtype)
964

965 966 967 968 969 970 971 972 973 974 975 976
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=weight, reduction='none')
            ret = cross_entropy_loss(input, label)

            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': input_np,
                                     'label': label_np,
                                     "weight": weight_np
                                 },
                                 fetch_list=[ret])
977
            static_ret = np.squeeze(static_ret)
978 979 980 981 982 983 984 985
            self.assertIsNotNone(static_ret)
        with fluid.dygraph.guard():
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=fluid.dygraph.to_variable(weight_np), reduction='none')
            dy_ret = cross_entropy_loss(
                fluid.dygraph.to_variable(input_np),
                fluid.dygraph.to_variable(label_np))
            dy_ret_value = dy_ret.numpy()
986
            dy_ret_value = np.squeeze(dy_ret_value)
987
            self.assertIsNotNone(dy_ret_value)
988 989 990
        expected = cross_entropy_loss_1d(
            input_np, label_np, weight=weight_np, reduction='none')
        self.assertTrue(np.allclose(static_ret, dy_ret_value))
991 992 993 994
        self.assertTrue(np.allclose(static_ret, expected))
        self.assertTrue(np.allclose(dy_ret_value, expected))

    def test_cross_entropy_loss_1d_with_weight_none_func(self):
R
ronnywang 已提交
995
        input_np = np.random.random([100, 200]).astype(self.dtype)  #N,C
996
        label_np = np.random.randint(0, 100, size=(100)).astype(np.int64)  #N
R
ronnywang 已提交
997
        weight_np = np.random.random([200]).astype(self.dtype)  #C
998 999 1000 1001 1002 1003
        paddle.enable_static()
        prog = fluid.Program()
        startup_prog = fluid.Program()
        place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
        ) else fluid.CPUPlace()
        with fluid.program_guard(prog, startup_prog):
R
ronnywang 已提交
1004
            input = fluid.data(name='input', shape=[100, 200], dtype=self.dtype)
1005
            label = fluid.data(name='label', shape=[100], dtype='int64')
R
ronnywang 已提交
1006
            weight = fluid.data(name='weight', shape=[200], dtype=self.dtype)
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
            ret = paddle.nn.functional.cross_entropy(
                input, label, weight=weight, reduction='none')

            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': input_np,
                                     'label': label_np,
                                     "weight": weight_np
                                 },
                                 fetch_list=[ret])
            static_ret = np.squeeze(static_ret)
            self.assertIsNotNone(static_ret)
        with fluid.dygraph.guard():
            dy_ret = paddle.nn.functional.cross_entropy(
                fluid.dygraph.to_variable(input_np),
                fluid.dygraph.to_variable(label_np),
                weight=fluid.dygraph.to_variable(weight_np),
                reduction='none')
            dy_ret_value = dy_ret.numpy()
            dy_ret_value = np.squeeze(dy_ret_value)
            self.assertIsNotNone(dy_ret_value)
        expected = cross_entropy_loss_1d(
            input_np, label_np, weight=weight_np, reduction='none')
        self.assertTrue(np.allclose(static_ret, dy_ret_value))
1032 1033 1034 1035
        self.assertTrue(np.allclose(static_ret, expected))
        self.assertTrue(np.allclose(dy_ret_value, expected))

    def test_cross_entropy_loss_1d_mean(self):
R
ronnywang 已提交
1036
        input_np = np.random.random([100, 200]).astype(self.dtype)  #N,C
1037
        label_np = np.random.randint(0, 100, size=(100)).astype(np.int64)  #N,1
H
HydrogenSulfate 已提交
1038
        # weight_np = np.random.random([200]).astype(self.dtype)  #C
1039
        paddle.enable_static()
1040 1041 1042 1043 1044
        prog = fluid.Program()
        startup_prog = fluid.Program()
        place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
        ) else fluid.CPUPlace()
        with fluid.program_guard(prog, startup_prog):
R
ronnywang 已提交
1045
            input = fluid.data(name='input', shape=[100, 200], dtype=self.dtype)
1046
            label = fluid.data(name='label', shape=[100], dtype='int64')
H
HydrogenSulfate 已提交
1047
            # weight = fluid.data(name='weight', shape=[100], dtype=self.dtype)
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss()
            ret = cross_entropy_loss(input, label)
            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={'input': input_np,
                                       'label': label_np},
                                 fetch_list=[ret])
            self.assertIsNotNone(static_ret)
        with fluid.dygraph.guard():
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss()
            dy_ret = cross_entropy_loss(
                fluid.dygraph.to_variable(input_np),
                fluid.dygraph.to_variable(label_np))
            dy_ret_value = dy_ret.numpy()
            self.assertIsNotNone(dy_ret_value)
        expected = cross_entropy_loss_1d(input_np, label_np)[0]
        self.assertTrue(np.allclose(static_ret, dy_ret_value))
        self.assertTrue(np.allclose(static_ret, expected))
        self.assertTrue(np.allclose(dy_ret_value, expected))

    def test_cross_entropy_loss_1d_sum(self):
R
ronnywang 已提交
1069
        input_np = np.random.random([100, 200]).astype(self.dtype)  #N,C
1070 1071
        label_np = np.random.randint(0, 100, size=(100)).astype(np.int64)  #N,1
        paddle.enable_static()
1072 1073 1074 1075 1076
        prog = fluid.Program()
        startup_prog = fluid.Program()
        place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
        ) else fluid.CPUPlace()
        with fluid.program_guard(prog, startup_prog):
R
ronnywang 已提交
1077
            input = fluid.data(name='input', shape=[100, 200], dtype=self.dtype)
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
            label = fluid.data(name='label', shape=[100], dtype='int64')
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                reduction='sum')
            ret = cross_entropy_loss(input, label)
            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={'input': input_np,
                                       'label': label_np},
                                 fetch_list=[ret])
            self.assertIsNotNone(static_ret)
        with fluid.dygraph.guard():
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                reduction='sum')
            dy_ret = cross_entropy_loss(
                fluid.dygraph.to_variable(input_np),
                fluid.dygraph.to_variable(label_np))
            dy_ret_value = dy_ret.numpy()
            self.assertIsNotNone(dy_ret_value)
        expected = cross_entropy_loss_1d(input_np, label_np, reduction='sum')[0]
        self.assertTrue(np.allclose(static_ret, dy_ret_value))
        self.assertTrue(np.allclose(static_ret, expected))
        self.assertTrue(np.allclose(dy_ret_value, expected))

    def test_cross_entropy_loss_1d_none(self):
R
ronnywang 已提交
1102
        input_np = np.random.random([100, 200]).astype(self.dtype)  #N,C
1103 1104
        label_np = np.random.randint(0, 100, size=(100)).astype(np.int64)  #N,1
        paddle.enable_static()
1105 1106 1107 1108 1109
        prog = fluid.Program()
        startup_prog = fluid.Program()
        place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
        ) else fluid.CPUPlace()
        with fluid.program_guard(prog, startup_prog):
R
ronnywang 已提交
1110
            input = fluid.data(name='input', shape=[100, 200], dtype=self.dtype)
1111 1112 1113 1114 1115 1116 1117 1118 1119
            label = fluid.data(name='label', shape=[100], dtype='int64')
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                reduction='none')
            ret = cross_entropy_loss(input, label)
            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={'input': input_np,
                                       'label': label_np},
                                 fetch_list=[ret])
1120
            static_ret = np.squeeze(static_ret)
1121 1122 1123 1124 1125 1126 1127 1128
            self.assertIsNotNone(static_ret)
        with fluid.dygraph.guard():
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                reduction='none')
            dy_ret = cross_entropy_loss(
                fluid.dygraph.to_variable(input_np),
                fluid.dygraph.to_variable(label_np))
            dy_ret_value = dy_ret.numpy()
1129
            dy_ret_value = np.squeeze(dy_ret_value)
1130 1131 1132 1133 1134 1135 1136
            self.assertIsNotNone(dy_ret_value)
        expected = cross_entropy_loss_1d(input_np, label_np, reduction='none')
        self.assertTrue(np.allclose(static_ret, dy_ret_value))
        self.assertTrue(np.allclose(static_ret, expected))
        self.assertTrue(np.allclose(dy_ret_value, expected))

    def test_cross_entropy_loss_2d_with_weight_none(self):
R
ronnywang 已提交
1137
        input_np = np.random.random(size=(2, 2, 2, 3)).astype(self.dtype)  #NHWC
1138 1139
        label_np = np.random.randint(
            0, 3, size=(2, 2, 2)).astype(np.int64)  #NHW1
R
ronnywang 已提交
1140
        weight_np = np.random.random(size=(3, )).astype(self.dtype)  #C
1141 1142

        paddle.enable_static()
1143 1144 1145 1146 1147 1148
        prog = fluid.Program()
        startup_prog = fluid.Program()
        place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
        ) else fluid.CPUPlace()
        with fluid.program_guard(prog, startup_prog):
            input = fluid.data(
R
ronnywang 已提交
1149
                name='input', shape=[2, 2, 2, 3], dtype=self.dtype)
1150
            label = fluid.data(name='label', shape=[2, 2, 2], dtype='int64')
R
ronnywang 已提交
1151
            weight = fluid.data(name='weight', shape=[3], dtype=self.dtype)
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=weight, reduction='none')
            ret = cross_entropy_loss(input, label)

            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': input_np,
                                     'label': label_np,
                                     "weight": weight_np
                                 },
                                 fetch_list=[ret])
1164
            static_ret = np.squeeze(static_ret)
1165 1166 1167 1168 1169 1170 1171 1172
            self.assertIsNotNone(static_ret)
        with fluid.dygraph.guard():
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=fluid.dygraph.to_variable(weight_np), reduction='none')
            dy_ret = cross_entropy_loss(
                fluid.dygraph.to_variable(input_np),
                fluid.dygraph.to_variable(label_np))
            dy_ret_value = dy_ret.numpy()
1173
            dy_ret_value = np.squeeze(dy_ret_value)
1174 1175 1176 1177 1178 1179 1180
            self.assertIsNotNone(dy_ret_value)
        expected = cross_entropy_loss_2d(
            input_np, label_np, weight=weight_np, reduction='none')
        self.assertTrue(np.allclose(static_ret, dy_ret_value))
        self.assertTrue(np.allclose(static_ret, expected))
        self.assertTrue(np.allclose(dy_ret_value, expected))

H
HydrogenSulfate 已提交
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
    def test_cross_entropy_loss_2d_with_weight_mean_ignore_exceedlabel(self):
        N = 4
        C = 3
        H = 512
        W = 512
        input_np = np.random.random([N, H, W, C]).astype(self.dtype)
        label_np = np.random.randint(0, C, size=(N, H, W)).astype(np.int64)
        label_np[0, 0, 0] = 255
        weight_np = np.random.random([C]).astype(self.dtype)
        with fluid.dygraph.guard():
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=fluid.dygraph.to_variable(weight_np),
                ignore_index=255)
            dy_ret = cross_entropy_loss(
                fluid.dygraph.to_variable(input_np),
                fluid.dygraph.to_variable(label_np))
            dy_ret_value = dy_ret.numpy()
            self.assertIsNotNone(dy_ret_value)
        expected = cross_entropy_loss_2d(
            input_np, label_np, weight=weight_np, ignore_index=255)[0]
        self.assertTrue(np.allclose(dy_ret_value, expected))

1203
    def test_cross_entropy_loss_2d_with_weight_mean(self):
R
ronnywang 已提交
1204
        input_np = np.random.random(size=(2, 2, 2, 3)).astype(self.dtype)  #NHWC
1205 1206
        label_np = np.random.randint(
            0, 3, size=(2, 2, 2)).astype(np.int64)  #NHW
R
ronnywang 已提交
1207
        weight_np = np.random.random(size=(3, )).astype(self.dtype)  #C
1208
        paddle.enable_static()
1209 1210 1211 1212 1213 1214
        prog = fluid.Program()
        startup_prog = fluid.Program()
        place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
        ) else fluid.CPUPlace()
        with fluid.program_guard(prog, startup_prog):
            input = fluid.data(
R
ronnywang 已提交
1215
                name='input', shape=[2, 2, 2, 3], dtype=self.dtype)
1216
            label = fluid.data(name='label', shape=[2, 2, 2], dtype='int64')
R
ronnywang 已提交
1217
            weight = fluid.data(name='weight', shape=[3], dtype=self.dtype)
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=weight, reduction='mean')
            ret = cross_entropy_loss(input, label)

            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': input_np,
                                     'label': label_np,
                                     "weight": weight_np
                                 },
                                 fetch_list=[ret])
            self.assertIsNotNone(static_ret)
        with fluid.dygraph.guard():
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=fluid.dygraph.to_variable(weight_np), reduction='mean')
            dy_ret = cross_entropy_loss(
                fluid.dygraph.to_variable(input_np),
                fluid.dygraph.to_variable(label_np))
            dy_ret_value = dy_ret.numpy()
            self.assertIsNotNone(dy_ret_value)
        expected = cross_entropy_loss_2d(
            input_np, label_np, weight=weight_np, reduction='mean')[0]
        self.assertTrue(np.allclose(static_ret, dy_ret_value))
        self.assertTrue(np.allclose(static_ret, expected))
        self.assertTrue(np.allclose(dy_ret_value, expected))

    def test_cross_entropy_loss_2d_with_weight_sum(self):
R
ronnywang 已提交
1246
        input_np = np.random.random(size=(2, 2, 2, 3)).astype(self.dtype)  #NHWC
1247 1248
        label_np = np.random.randint(
            0, 3, size=(2, 2, 2)).astype(np.int64)  #NHW
R
ronnywang 已提交
1249
        weight_np = np.random.random(size=(3, )).astype(self.dtype)  #C
1250 1251
        paddle.enable_static()

1252 1253 1254 1255 1256 1257
        prog = fluid.Program()
        startup_prog = fluid.Program()
        place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
        ) else fluid.CPUPlace()
        with fluid.program_guard(prog, startup_prog):
            input = fluid.data(
R
ronnywang 已提交
1258
                name='input', shape=[2, 2, 2, 3], dtype=self.dtype)
1259
            label = fluid.data(name='label', shape=[2, 2, 2], dtype='int64')
R
ronnywang 已提交
1260
            weight = fluid.data(name='weight', shape=[3], dtype=self.dtype)
1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=weight, reduction='sum')
            ret = cross_entropy_loss(input, label)

            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': input_np,
                                     'label': label_np,
                                     "weight": weight_np
                                 },
                                 fetch_list=[ret])
            self.assertIsNotNone(static_ret)
        with fluid.dygraph.guard():
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=fluid.dygraph.to_variable(weight_np), reduction='sum')
            dy_ret = cross_entropy_loss(
                fluid.dygraph.to_variable(input_np),
                fluid.dygraph.to_variable(label_np))
            dy_ret_value = dy_ret.numpy()
            self.assertIsNotNone(dy_ret_value)
        expected = cross_entropy_loss_2d(
            input_np, label_np, weight=weight_np, reduction='sum')[0]
        self.assertTrue(np.allclose(static_ret, dy_ret_value))
        self.assertTrue(np.allclose(static_ret, expected))
        self.assertTrue(np.allclose(dy_ret_value, expected))

    def test_cross_entropy_loss_2d_none(self):
R
ronnywang 已提交
1289
        input_np = np.random.random(size=(2, 2, 2, 3)).astype(self.dtype)  #NHWC
1290 1291 1292
        label_np = np.random.randint(
            0, 3, size=(2, 2, 2)).astype(np.int64)  #NHW
        paddle.enable_static()
1293 1294 1295 1296 1297 1298
        prog = fluid.Program()
        startup_prog = fluid.Program()
        place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
        ) else fluid.CPUPlace()
        with fluid.program_guard(prog, startup_prog):
            input = fluid.data(
R
ronnywang 已提交
1299
                name='input', shape=[2, 2, 2, 3], dtype=self.dtype)
1300
            label = fluid.data(name='label', shape=[2, 2, 2], dtype='int64')
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                reduction='none')
            ret = cross_entropy_loss(input, label)
            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': input_np,
                                     'label': label_np,
                                 },
                                 fetch_list=[ret])
1311
            static_ret = np.squeeze(static_ret)
1312 1313 1314 1315 1316 1317 1318 1319
            self.assertIsNotNone(static_ret)
        with fluid.dygraph.guard():
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                reduction='none')
            dy_ret = cross_entropy_loss(
                fluid.dygraph.to_variable(input_np),
                fluid.dygraph.to_variable(label_np))
            dy_ret_value = dy_ret.numpy()
1320
            dy_ret_value = np.squeeze(dy_ret_value)
1321 1322 1323 1324 1325 1326 1327
            self.assertIsNotNone(dy_ret_value)
        expected = cross_entropy_loss_2d(input_np, label_np, reduction='none')
        self.assertTrue(np.allclose(static_ret, dy_ret_value))
        self.assertTrue(np.allclose(static_ret, expected))
        self.assertTrue(np.allclose(dy_ret_value, expected))

    def test_cross_entropy_loss_2d_mean(self):
R
ronnywang 已提交
1328
        input_np = np.random.random(size=(2, 2, 2, 3)).astype(self.dtype)  #NHWC
1329 1330 1331
        label_np = np.random.randint(
            0, 3, size=(2, 2, 2)).astype(np.int64)  #NHW
        paddle.enable_static()
1332 1333 1334 1335 1336 1337
        prog = fluid.Program()
        startup_prog = fluid.Program()
        place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
        ) else fluid.CPUPlace()
        with fluid.program_guard(prog, startup_prog):
            input = fluid.data(
R
ronnywang 已提交
1338
                name='input', shape=[2, 2, 2, 3], dtype=self.dtype)
1339
            label = fluid.data(name='label', shape=[2, 2, 2], dtype='int64')
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                reduction='mean')
            ret = cross_entropy_loss(input, label)

            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': input_np,
                                     'label': label_np,
                                 },
                                 fetch_list=[ret])
            self.assertIsNotNone(static_ret)
        with fluid.dygraph.guard():
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                reduction='mean')
            dy_ret = cross_entropy_loss(
                fluid.dygraph.to_variable(input_np),
                fluid.dygraph.to_variable(label_np))
            dy_ret_value = dy_ret.numpy()
            self.assertIsNotNone(dy_ret_value)
        expected = cross_entropy_loss_2d(
            input_np, label_np, reduction='mean')[0]
        self.assertTrue(np.allclose(static_ret, dy_ret_value))
        self.assertTrue(np.allclose(static_ret, expected))
        self.assertTrue(np.allclose(dy_ret_value, expected))

    def test_cross_entropy_loss_2d_sum(self):
R
ronnywang 已提交
1367
        input_np = np.random.random(size=(2, 2, 2, 3)).astype(self.dtype)  #NHWC
1368 1369 1370
        label_np = np.random.randint(
            0, 3, size=(2, 2, 2)).astype(np.int64)  #NHW
        paddle.enable_static()
1371 1372 1373 1374 1375 1376
        prog = fluid.Program()
        startup_prog = fluid.Program()
        place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
        ) else fluid.CPUPlace()
        with fluid.program_guard(prog, startup_prog):
            input = fluid.data(
R
ronnywang 已提交
1377
                name='input', shape=[2, 2, 2, 3], dtype=self.dtype)
1378
            label = fluid.data(name='label', shape=[2, 2, 2], dtype='int64')
1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                reduction='sum')
            ret = cross_entropy_loss(input, label)

            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': input_np,
                                     'label': label_np,
                                 },
                                 fetch_list=[ret])
            self.assertIsNotNone(static_ret)
        with fluid.dygraph.guard():
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                reduction='sum')
            dy_ret = cross_entropy_loss(
                fluid.dygraph.to_variable(input_np),
                fluid.dygraph.to_variable(label_np))
            dy_ret_value = dy_ret.numpy()
            self.assertIsNotNone(dy_ret_value)
        expected = cross_entropy_loss_2d(input_np, label_np, reduction='sum')[0]
1400
        self.assertTrue(np.allclose(static_ret, dy_ret_value))
1401 1402
        self.assertTrue(np.allclose(static_ret, expected))
        self.assertTrue(np.allclose(dy_ret_value, expected))
1403 1404


1405 1406 1407 1408
class TestCrossEntropyFAPIError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program(), Program()):

H
HydrogenSulfate 已提交
1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
            # def test_LabelValue():
            #     input_data = paddle.rand(shape=[20, 100])
            #     label_data = paddle.randint(
            #         0, 100, shape=[20, 1], dtype="int64")
            #     label_data[0] = 255
            #     weight_data = paddle.rand([100])
            #     paddle.nn.functional.cross_entropy(
            #         input=input_data,
            #         label=label_data,
            #         weight=weight_data,
            #         ignore_index=255)

            # self.assertRaises(ValueError, test_LabelValue)

            # def test_LabelValueNeg():
            #     input_data = paddle.rand(shape=[20, 100])
            #     label_data = paddle.randint(
            #         0, 100, shape=[20, 1], dtype="int64")
            #     label_data[0] = -1
            #     weight_data = paddle.rand([100])
            #     paddle.nn.functional.cross_entropy(
            #         input=input_data,
            #         label=label_data,
            #         weight=weight_data,
            #         ignore_index=-1)

            # self.assertRaises(ValueError, test_LabelValueNeg)

            def test_WeightLength_NotEqual():
1438
                input_data = paddle.rand(shape=[20, 100])
R
root 已提交
1439 1440
                label_data = paddle.randint(
                    0, 100, shape=[20, 1], dtype="int64")
H
HydrogenSulfate 已提交
1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
                weight_data = paddle.rand([100 + 1])
                paddle.nn.functional.cross_entropy(
                    input=input_data,
                    label=label_data,
                    weight=weight_data,
                    ignore_index=-100)

            self.assertRaises(ValueError, test_WeightLength_NotEqual)

            def test_LabelValue_ExceedMax():
                input_data = paddle.rand(shape=[20, 100])
                label_data = paddle.randint(
                    0, 100, shape=[20, 1], dtype="int64")
                label_data[0] = 100
R
root 已提交
1455
                weight_data = paddle.rand([100])
1456
                paddle.nn.functional.cross_entropy(
R
root 已提交
1457 1458 1459
                    input=input_data,
                    label=label_data,
                    weight=weight_data,
H
HydrogenSulfate 已提交
1460
                    ignore_index=-100)
1461

H
HydrogenSulfate 已提交
1462
            self.assertRaises(ValueError, test_LabelValue_ExceedMax)
1463

H
HydrogenSulfate 已提交
1464
            def test_LabelValue_ExceedMin():
R
root 已提交
1465
                input_data = paddle.rand(shape=[20, 100])
R
root 已提交
1466 1467
                label_data = paddle.randint(
                    0, 100, shape=[20, 1], dtype="int64")
R
root 已提交
1468
                label_data[0] = -1
R
root 已提交
1469
                weight_data = paddle.rand([100])
R
root 已提交
1470
                paddle.nn.functional.cross_entropy(
R
root 已提交
1471 1472 1473
                    input=input_data,
                    label=label_data,
                    weight=weight_data,
H
HydrogenSulfate 已提交
1474 1475 1476 1477 1478
                    ignore_index=-100)

            self.assertRaises(ValueError, test_LabelValue_ExceedMin)

            def static_test_WeightLength_NotEqual():
1479
                input_np = np.random.random([2, 4]).astype('float32')
H
HydrogenSulfate 已提交
1480
                label_np = np.random.randint(0, 4, size=(2)).astype(np.int64)
1481
                weight_np = np.random.random([3]).astype('float32')
H
HydrogenSulfate 已提交
1482 1483 1484 1485 1486 1487 1488
                paddle.enable_static()
                prog = fluid.Program()
                startup_prog = fluid.Program()
                place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
                ) else fluid.CPUPlace()
                with fluid.program_guard(prog, startup_prog):
                    input = fluid.data(
1489
                        name='input', shape=[2, 4], dtype='float32')
H
HydrogenSulfate 已提交
1490 1491 1492
                    label = fluid.data(name='label', shape=[2], dtype='int64')
                    weight = fluid.data(
                        name='weight', shape=[3],
1493
                        dtype='float32')  #weight for each class
H
HydrogenSulfate 已提交
1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
                    cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                        weight=weight)
                    ret = cross_entropy_loss(input, label)

                    exe = fluid.Executor(place)
                    static_ret = exe.run(prog,
                                         feed={
                                             'input': input_np,
                                             'label': label_np,
                                             "weight": weight_np
                                         },
                                         fetch_list=[ret])
                    self.assertIsNotNone(static_ret)

            self.assertRaises(ValueError, static_test_WeightLength_NotEqual)

1510

1511 1512
if __name__ == "__main__":
    unittest.main()