yolov3_loss_op.cc 11.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at
   http://www.apache.org/licenses/LICENSE-2.0
   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/fluid/operators/yolov3_loss_op.h"
#include "paddle/fluid/framework/op_registry.h"

namespace paddle {
namespace operators {

using framework::Tensor;

class Yolov3LossOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of Yolov3LossOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("GTBox"),
                   "Input(GTBox) of Yolov3LossOp should not be null.");
D
dengkaipeng 已提交
28 29
    PADDLE_ENFORCE(ctx->HasInput("GTLabel"),
                   "Input(GTLabel) of Yolov3LossOp should not be null.");
D
dengkaipeng 已提交
30 31
    PADDLE_ENFORCE(ctx->HasOutput("Loss"),
                   "Output(Loss) of Yolov3LossOp should not be null.");
32 33 34 35 36
    PADDLE_ENFORCE(
        ctx->HasOutput("ObjectnessMask"),
        "Output(ObjectnessMask) of Yolov3LossOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("GTMatchMask"),
                   "Output(GTMatchMask) of Yolov3LossOp should not be null.");
37 38

    auto dim_x = ctx->GetInputDim("X");
D
dengkaipeng 已提交
39 40
    auto dim_gtbox = ctx->GetInputDim("GTBox");
    auto dim_gtlabel = ctx->GetInputDim("GTLabel");
41
    auto anchors = ctx->Attrs().Get<std::vector<int>>("anchors");
42
    int anchor_num = anchors.size() / 2;
43 44
    auto anchor_mask = ctx->Attrs().Get<std::vector<int>>("anchor_mask");
    int mask_num = anchor_mask.size();
45
    auto class_num = ctx->Attrs().Get<int>("class_num");
D
dengkaipeng 已提交
46 47 48
    PADDLE_ENFORCE_EQ(dim_x.size(), 4, "Input(X) should be a 4-D tensor.");
    PADDLE_ENFORCE_EQ(dim_x[2], dim_x[3],
                      "Input(X) dim[3] and dim[4] should be euqal.");
49 50 51 52
    PADDLE_ENFORCE_EQ(
        dim_x[1], mask_num * (5 + class_num),
        "Input(X) dim[1] should be equal to (anchor_mask_number * (5 "
        "+ class_num)).");
D
dengkaipeng 已提交
53 54 55 56 57 58 59 60 61
    PADDLE_ENFORCE_EQ(dim_gtbox.size(), 3,
                      "Input(GTBox) should be a 3-D tensor");
    PADDLE_ENFORCE_EQ(dim_gtbox[2], 4, "Input(GTBox) dim[2] should be 5");
    PADDLE_ENFORCE_EQ(dim_gtlabel.size(), 2,
                      "Input(GTBox) should be a 2-D tensor");
    PADDLE_ENFORCE_EQ(dim_gtlabel[0], dim_gtbox[0],
                      "Input(GTBox) and Input(GTLabel) dim[0] should be same");
    PADDLE_ENFORCE_EQ(dim_gtlabel[1], dim_gtbox[1],
                      "Input(GTBox) and Input(GTLabel) dim[1] should be same");
62 63 64 65
    PADDLE_ENFORCE_GT(anchors.size(), 0,
                      "Attr(anchors) length should be greater then 0.");
    PADDLE_ENFORCE_EQ(anchors.size() % 2, 0,
                      "Attr(anchors) length should be even integer.");
66 67 68 69 70
    for (size_t i = 0; i < anchor_mask.size(); i++) {
      PADDLE_ENFORCE_LT(
          anchor_mask[i], anchor_num,
          "Attr(anchor_mask) should not crossover Attr(anchors).");
    }
71 72 73
    PADDLE_ENFORCE_GT(class_num, 0,
                      "Attr(class_num) should be an integer greater then 0.");

74
    std::vector<int64_t> dim_out({dim_x[0]});
D
dengkaipeng 已提交
75
    ctx->SetOutputDim("Loss", framework::make_ddim(dim_out));
76 77 78 79 80 81

    std::vector<int64_t> dim_obj_mask({dim_x[0], mask_num, dim_x[2], dim_x[3]});
    ctx->SetOutputDim("ObjectnessMask", framework::make_ddim(dim_obj_mask));

    std::vector<int64_t> dim_gt_match_mask({dim_gtbox[0], dim_gtbox[1]});
    ctx->SetOutputDim("GTMatchMask", framework::make_ddim(dim_gt_match_mask));
82 83 84 85 86
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
Y
Yu Yang 已提交
87 88
    return framework::OpKernelType(ctx.Input<Tensor>("X")->type(),
                                   platform::CPUPlace());
89 90 91 92 93 94 95
  }
};

class Yolov3LossOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
96
             "The input tensor of YOLOv3 loss operator, "
D
dengkaipeng 已提交
97 98 99 100
             "This is a 4-D tensor with shape of [N, C, H, W]."
             "H and W should be same, and the second dimention(C) stores"
             "box locations, confidence score and classification one-hot"
             "key of each anchor box");
101 102 103 104
    AddInput("GTBox",
             "The input tensor of ground truth boxes, "
             "This is a 3-D tensor with shape of [N, max_box_num, 5], "
             "max_box_num is the max number of boxes in each image, "
D
dengkaipeng 已提交
105 106 107 108 109 110 111 112 113
             "In the third dimention, stores x, y, w, h coordinates, "
             "x, y is the center cordinate of boxes and w, h is the "
             "width and height and x, y, w, h should be divided by "
             "input image height to scale to [0, 1].");
    AddInput("GTLabel",
             "The input tensor of ground truth label, "
             "This is a 2-D tensor with shape of [N, max_box_num], "
             "and each element shoudl be an integer to indicate the "
             "box class id.");
D
dengkaipeng 已提交
114 115
    AddOutput("Loss",
              "The output yolov3 loss tensor, "
116
              "This is a 1-D tensor with shape of [N]");
117 118 119 120 121 122 123 124 125 126
    AddOutput("ObjectnessMask",
              "This is an intermediate tensor with shape of [N, M, H, W], "
              "M is the number of anchor masks. This parameter caches the "
              "mask for calculate objectness loss in gradient kernel.")
        .AsIntermediate();
    AddOutput("GTMatchMask",
              "This is an intermediate tensor with shape if [N, B], "
              "B is the max box number of GT boxes. This parameter caches "
              "matched mask index of each GT boxes for gradient calculate.")
        .AsIntermediate();
127 128

    AddAttr<int>("class_num", "The number of classes to predict.");
D
dengkaipeng 已提交
129 130
    AddAttr<std::vector<int>>("anchors",
                              "The anchor width and height, "
131 132 133 134 135 136 137 138 139 140 141
                              "it will be parsed pair by pair.")
        .SetDefault(std::vector<int>{});
    AddAttr<std::vector<int>>("anchor_mask",
                              "The mask index of anchors used in "
                              "current YOLOv3 loss calculation.")
        .SetDefault(std::vector<int>{});
    AddAttr<int>("downsample",
                 "The downsample ratio from network input to YOLOv3 loss "
                 "input, so 32, 16, 8 should be set for the first, second, "
                 "and thrid YOLOv3 loss operators.")
        .SetDefault(32);
D
dengkaipeng 已提交
142
    AddAttr<float>("ignore_thresh",
143 144
                   "The ignore threshold to ignore confidence loss.")
        .SetDefault(0.7);
145 146 147
    AddComment(R"DOC(
         This operator generate yolov3 loss by given predict result and ground
         truth boxes.
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
         
         The output of previous network is in shape [N, C, H, W], while H and W
         should be the same, specify the grid size, each grid point predict given
         number boxes, this given number is specified by anchors, it should be 
         half anchors length, which following will be represented as S. In the 
         second dimention(the channel dimention), C should be S * (class_num + 5),
         class_num is the box categoriy number of source dataset(such as coco), 
         so in the second dimention, stores 4 box location coordinates x, y, w, h 
         and confidence score of the box and class one-hot key of each anchor box.

         While the 4 location coordinates if $$tx, ty, tw, th$$, the box predictions
         correspnd to:

         $$
         b_x = \sigma(t_x) + c_x
         b_y = \sigma(t_y) + c_y
         b_w = p_w e^{t_w}
         b_h = p_h e^{t_h}
         $$

         While $$c_x, c_y$$ is the left top corner of current grid and $$p_w, p_h$$
         is specified by anchors.

         As for confidence score, it is the logistic regression value of IoU between
         anchor boxes and ground truth boxes, the score of the anchor box which has 
         the max IoU should be 1, and if the anchor box has IoU bigger then ignore 
         thresh, the confidence score loss of this anchor box will be ignored.

         Therefore, the yolov3 loss consist of three major parts, box location loss,
177 178 179 180 181 182 183 184 185 186 187
         confidence score loss, and classification loss. The L1 loss is used for 
         box coordinates (w, h), and sigmoid cross entropy loss is used for box 
         coordinates (x, y), confidence score loss and classification loss.

         In order to trade off box coordinate losses between big boxes and small 
         boxes, box coordinate losses will be mutiplied by scale weight, which is
         calculated as follow.

         $$
         weight_{box} = 2.0 - t_w * t_h
         $$
D
dengkaipeng 已提交
188 189 190 191

         Final loss will be represented as follow.

         $$
192 193
         loss = (loss_{xy} + loss_{wh}) * weight_{box}
              + loss_{conf} + loss_{class}
D
dengkaipeng 已提交
194
         $$
195 196 197 198 199 200 201 202 203
         )DOC");
  }
};

class Yolov3LossOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null");
D
dengkaipeng 已提交
204 205
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Loss")),
                   "Input(Loss@GRAD) should not be null");
206 207 208 209 210 211
    auto dim_x = ctx->GetInputDim("X");
    if (ctx->HasOutput(framework::GradVarName("X"))) {
      ctx->SetOutputDim(framework::GradVarName("X"), dim_x);
    }
  }

212
 protected:
213 214
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
Y
Yu Yang 已提交
215 216
    return framework::OpKernelType(ctx.Input<Tensor>("X")->type(),
                                   platform::CPUPlace());
217 218 219
  }
};

220 221 222 223 224 225 226 227 228 229
class Yolov3LossGradMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto* op = new framework::OpDesc();
    op->SetType("yolov3_loss_grad");
    op->SetInput("X", Input("X"));
    op->SetInput("GTBox", Input("GTBox"));
D
dengkaipeng 已提交
230
    op->SetInput("GTLabel", Input("GTLabel"));
231
    op->SetInput(framework::GradVarName("Loss"), OutputGrad("Loss"));
232 233
    op->SetInput("ObjectnessMask", Output("ObjectnessMask"));
    op->SetInput("GTMatchMask", Output("GTMatchMask"));
234 235 236 237 238

    op->SetAttrMap(Attrs());

    op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
    op->SetOutput(framework::GradVarName("GTBox"), {});
D
dengkaipeng 已提交
239
    op->SetOutput(framework::GradVarName("GTLabel"), {});
240 241 242 243
    return std::unique_ptr<framework::OpDesc>(op);
  }
};

244 245 246 247 248
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(yolov3_loss, ops::Yolov3LossOp, ops::Yolov3LossOpMaker,
249
                  ops::Yolov3LossGradMaker);
250
REGISTER_OPERATOR(yolov3_loss_grad, ops::Yolov3LossOpGrad);
251 252 253 254
REGISTER_OP_CPU_KERNEL(yolov3_loss, ops::Yolov3LossKernel<float>,
                       ops::Yolov3LossKernel<double>);
REGISTER_OP_CPU_KERNEL(yolov3_loss_grad, ops::Yolov3LossGradKernel<float>,
                       ops::Yolov3LossGradKernel<double>);