yolov3_loss_op.cc 9.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at
   http://www.apache.org/licenses/LICENSE-2.0
   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/fluid/operators/yolov3_loss_op.h"
#include "paddle/fluid/framework/op_registry.h"

namespace paddle {
namespace operators {

using framework::Tensor;

class Yolov3LossOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of Yolov3LossOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("GTBox"),
                   "Input(GTBox) of Yolov3LossOp should not be null.");
D
dengkaipeng 已提交
28 29
    PADDLE_ENFORCE(ctx->HasInput("GTLabel"),
                   "Input(GTLabel) of Yolov3LossOp should not be null.");
D
dengkaipeng 已提交
30 31
    PADDLE_ENFORCE(ctx->HasOutput("Loss"),
                   "Output(Loss) of Yolov3LossOp should not be null.");
32 33

    auto dim_x = ctx->GetInputDim("X");
D
dengkaipeng 已提交
34 35
    auto dim_gtbox = ctx->GetInputDim("GTBox");
    auto dim_gtlabel = ctx->GetInputDim("GTLabel");
36
    auto anchors = ctx->Attrs().Get<std::vector<int>>("anchors");
37
    int anchor_num = anchors.size() / 2;
38
    auto class_num = ctx->Attrs().Get<int>("class_num");
D
dengkaipeng 已提交
39 40 41
    PADDLE_ENFORCE_EQ(dim_x.size(), 4, "Input(X) should be a 4-D tensor.");
    PADDLE_ENFORCE_EQ(dim_x[2], dim_x[3],
                      "Input(X) dim[3] and dim[4] should be euqal.");
42
    PADDLE_ENFORCE_EQ(dim_x[1], anchor_num * (5 + class_num),
D
dengkaipeng 已提交
43 44
                      "Input(X) dim[1] should be equal to (anchor_number * (5 "
                      "+ class_num)).");
D
dengkaipeng 已提交
45 46 47 48 49 50 51 52 53
    PADDLE_ENFORCE_EQ(dim_gtbox.size(), 3,
                      "Input(GTBox) should be a 3-D tensor");
    PADDLE_ENFORCE_EQ(dim_gtbox[2], 4, "Input(GTBox) dim[2] should be 5");
    PADDLE_ENFORCE_EQ(dim_gtlabel.size(), 2,
                      "Input(GTBox) should be a 2-D tensor");
    PADDLE_ENFORCE_EQ(dim_gtlabel[0], dim_gtbox[0],
                      "Input(GTBox) and Input(GTLabel) dim[0] should be same");
    PADDLE_ENFORCE_EQ(dim_gtlabel[1], dim_gtbox[1],
                      "Input(GTBox) and Input(GTLabel) dim[1] should be same");
54 55 56 57 58 59 60
    PADDLE_ENFORCE_GT(anchors.size(), 0,
                      "Attr(anchors) length should be greater then 0.");
    PADDLE_ENFORCE_EQ(anchors.size() % 2, 0,
                      "Attr(anchors) length should be even integer.");
    PADDLE_ENFORCE_GT(class_num, 0,
                      "Attr(class_num) should be an integer greater then 0.");

61
    std::vector<int64_t> dim_out({dim_x[0]});
D
dengkaipeng 已提交
62
    ctx->SetOutputDim("Loss", framework::make_ddim(dim_out));
63 64 65 66 67
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
Y
Yu Yang 已提交
68 69
    return framework::OpKernelType(ctx.Input<Tensor>("X")->type(),
                                   platform::CPUPlace());
70 71 72 73 74 75 76
  }
};

class Yolov3LossOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
D
dengkaipeng 已提交
77 78 79 80 81
             "The input tensor of YOLO v3 loss operator, "
             "This is a 4-D tensor with shape of [N, C, H, W]."
             "H and W should be same, and the second dimention(C) stores"
             "box locations, confidence score and classification one-hot"
             "key of each anchor box");
82 83 84 85
    AddInput("GTBox",
             "The input tensor of ground truth boxes, "
             "This is a 3-D tensor with shape of [N, max_box_num, 5], "
             "max_box_num is the max number of boxes in each image, "
D
dengkaipeng 已提交
86 87 88 89 90 91 92 93 94
             "In the third dimention, stores x, y, w, h coordinates, "
             "x, y is the center cordinate of boxes and w, h is the "
             "width and height and x, y, w, h should be divided by "
             "input image height to scale to [0, 1].");
    AddInput("GTLabel",
             "The input tensor of ground truth label, "
             "This is a 2-D tensor with shape of [N, max_box_num], "
             "and each element shoudl be an integer to indicate the "
             "box class id.");
D
dengkaipeng 已提交
95 96
    AddOutput("Loss",
              "The output yolov3 loss tensor, "
97
              "This is a 1-D tensor with shape of [N]");
98 99

    AddAttr<int>("class_num", "The number of classes to predict.");
D
dengkaipeng 已提交
100 101 102
    AddAttr<std::vector<int>>("anchors",
                              "The anchor width and height, "
                              "it will be parsed pair by pair.");
103 104 105 106
    AddAttr<int>("input_size",
                 "The input size of YOLOv3 net, "
                 "generally this is set as 320, 416 or 608.")
        .SetDefault(406);
D
dengkaipeng 已提交
107 108
    AddAttr<float>("ignore_thresh",
                   "The ignore threshold to ignore confidence loss.");
109 110 111
    AddComment(R"DOC(
         This operator generate yolov3 loss by given predict result and ground
         truth boxes.
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
         
         The output of previous network is in shape [N, C, H, W], while H and W
         should be the same, specify the grid size, each grid point predict given
         number boxes, this given number is specified by anchors, it should be 
         half anchors length, which following will be represented as S. In the 
         second dimention(the channel dimention), C should be S * (class_num + 5),
         class_num is the box categoriy number of source dataset(such as coco), 
         so in the second dimention, stores 4 box location coordinates x, y, w, h 
         and confidence score of the box and class one-hot key of each anchor box.

         While the 4 location coordinates if $$tx, ty, tw, th$$, the box predictions
         correspnd to:

         $$
         b_x = \sigma(t_x) + c_x
         b_y = \sigma(t_y) + c_y
         b_w = p_w e^{t_w}
         b_h = p_h e^{t_h}
         $$

         While $$c_x, c_y$$ is the left top corner of current grid and $$p_w, p_h$$
         is specified by anchors.

         As for confidence score, it is the logistic regression value of IoU between
         anchor boxes and ground truth boxes, the score of the anchor box which has 
         the max IoU should be 1, and if the anchor box has IoU bigger then ignore 
         thresh, the confidence score loss of this anchor box will be ignored.

         Therefore, the yolov3 loss consist of three major parts, box location loss,
141 142 143 144 145 146 147 148 149 150 151
         confidence score loss, and classification loss. The L1 loss is used for 
         box coordinates (w, h), and sigmoid cross entropy loss is used for box 
         coordinates (x, y), confidence score loss and classification loss.

         In order to trade off box coordinate losses between big boxes and small 
         boxes, box coordinate losses will be mutiplied by scale weight, which is
         calculated as follow.

         $$
         weight_{box} = 2.0 - t_w * t_h
         $$
D
dengkaipeng 已提交
152 153 154 155

         Final loss will be represented as follow.

         $$
156 157
         loss = (loss_{xy} + loss_{wh}) * weight_{box}
              + loss_{conf} + loss_{class}
D
dengkaipeng 已提交
158
         $$
159 160 161 162 163 164 165 166 167
         )DOC");
  }
};

class Yolov3LossOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null");
D
dengkaipeng 已提交
168 169
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Loss")),
                   "Input(Loss@GRAD) should not be null");
170 171 172 173 174 175
    auto dim_x = ctx->GetInputDim("X");
    if (ctx->HasOutput(framework::GradVarName("X"))) {
      ctx->SetOutputDim(framework::GradVarName("X"), dim_x);
    }
  }

176
 protected:
177 178
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
Y
Yu Yang 已提交
179 180
    return framework::OpKernelType(ctx.Input<Tensor>("X")->type(),
                                   platform::CPUPlace());
181 182 183
  }
};

184 185 186 187 188 189 190 191 192 193
class Yolov3LossGradMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto* op = new framework::OpDesc();
    op->SetType("yolov3_loss_grad");
    op->SetInput("X", Input("X"));
    op->SetInput("GTBox", Input("GTBox"));
D
dengkaipeng 已提交
194
    op->SetInput("GTLabel", Input("GTLabel"));
195 196 197 198 199 200
    op->SetInput(framework::GradVarName("Loss"), OutputGrad("Loss"));

    op->SetAttrMap(Attrs());

    op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
    op->SetOutput(framework::GradVarName("GTBox"), {});
D
dengkaipeng 已提交
201
    op->SetOutput(framework::GradVarName("GTLabel"), {});
202 203 204 205
    return std::unique_ptr<framework::OpDesc>(op);
  }
};

206 207 208 209 210
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(yolov3_loss, ops::Yolov3LossOp, ops::Yolov3LossOpMaker,
211
                  ops::Yolov3LossGradMaker);
212
REGISTER_OPERATOR(yolov3_loss_grad, ops::Yolov3LossOpGrad);
213 214 215 216
REGISTER_OP_CPU_KERNEL(yolov3_loss, ops::Yolov3LossKernel<float>,
                       ops::Yolov3LossKernel<double>);
REGISTER_OP_CPU_KERNEL(yolov3_loss_grad, ops::Yolov3LossGradKernel<float>,
                       ops::Yolov3LossGradKernel<double>);