conv2d_op.cc 8.6 KB
Newer Older
L
Luo Tao 已提交
1 2 3 4 5 6
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

L
Luo Tao 已提交
7
http://www.apache.org/licenses/LICENSE-2.0
L
Luo Tao 已提交
8 9 10 11 12 13 14

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

L
Luo Tao 已提交
15
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
L
Luo Tao 已提交
16

W
wanghuancoder 已提交
17 18 19
namespace paddle {
namespace framework {
class Scope;
20

W
wanghuancoder 已提交
21 22 23 24 25 26
namespace proto {
class OpDesc;
}  // namespace proto
}  // namespace framework
}  // namespace paddle

L
Luo Tao 已提交
27 28 29 30
namespace paddle {
namespace inference {
namespace tensorrt {

31 32 33 34 35 36 37 38
template <typename RegistFunc, typename SetDilationFunc>
void ConvertConv2d(TensorRTEngine* engine, const framework::proto::OpDesc& op,
                   const framework::Scope& scope, bool test_mode,
                   RegistFunc fadd_layer, SetDilationFunc fset_dilation,
                   const std::string& name) {
  VLOG(3) << "convert a fluid " << name << " op to tensorrt layer without bias";

  framework::OpDesc op_desc(op, nullptr);
39 40 41 42 43 44 45 46 47 48 49 50
  PADDLE_ENFORCE_EQ(op_desc.Input("Input").size(), 1UL,
                    platform::errors::InvalidArgument(
                        "TRT Conv2d expect 1 input, but got %d input.",
                        op_desc.Input("Input").size()));
  PADDLE_ENFORCE_EQ(op_desc.Input("Filter").size(), 1UL,
                    platform::errors::InvalidArgument(
                        "TRT Conv2d expect 1 filter, but got %d filter.",
                        op_desc.Input("Filter").size()));
  PADDLE_ENFORCE_EQ(op_desc.Output("Output").size(), 1UL,
                    platform::errors::InvalidArgument(
                        "TRT Conv2d expect 1 output, but got %d output.",
                        op_desc.Output("Output").size()));
51 52

  auto* X = engine->GetITensor(op_desc.Input("Input").front());
53 54 55 56 57
  std::string filter_var_name = op_desc.Input("Filter").front();
  auto* Y_v = scope.FindVar(filter_var_name);
  PADDLE_ENFORCE_NOT_NULL(
      Y_v, platform::errors::NotFound(
               "Can not find %s presistale var in scope.", filter_var_name));
58
  auto* Y_t = Y_v->GetMutable<framework::LoDTensor>();
59
  float* weight_data = nullptr;
60
  bool enable_int8 = op_desc.HasAttr("enable_int8");
61 62 63

  if (enable_int8) {
#if IS_TRT_VERSION_GE(5000)
64 65 66 67 68 69 70
    if (op_desc.Type() != "conv2d_transpose") {
      PADDLE_ENFORCE_EQ(
          op_desc.HasAttr("Input_scale"), true,
          platform::errors::InvalidArgument("Input scale not found. TRT int8"
                                            " requires conv/deconv to have "
                                            "input quantization scales."));
    }
71 72
    float in_scale =
        BOOST_GET_CONST(float, op_desc.GetAttr("Input_scale")) * 127;
73
    auto weight_scale =
74
        BOOST_GET_CONST(std::vector<float>, op_desc.GetAttr("weight_scale"));
75 76 77 78 79 80 81 82
    weight_data = engine->GetWeightCPUData(op_desc.Input("Filter").front(), Y_t,
                                           true, weight_scale);
    engine->SetTensorDynamicRange(X, in_scale);
#endif
  } else {
    weight_data =
        engine->GetWeightCPUData(op_desc.Input("Filter").front(), Y_t, false);
  }
83

84 85 86 87 88
  PADDLE_ENFORCE_EQ(Y_t->dims().size(), 4UL,
                    platform::errors::InvalidArgument(
                        "The conv2d filter's dims size should be 4, but got %d",
                        Y_t->dims().size()));

89 90 91 92
  const int n_output = Y_t->dims()[0];
  const int n_input = Y_t->dims()[1];
  const int filter_h = Y_t->dims()[2];
  const int filter_w = Y_t->dims()[3];
93
  const int groups = BOOST_GET_CONST(int, op_desc.GetAttr("groups"));
94
  const std::vector<int> dilations =
95
      BOOST_GET_CONST(std::vector<int>, op_desc.GetAttr("dilations"));
96
  const std::vector<int> strides =
97
      BOOST_GET_CONST(std::vector<int>, op_desc.GetAttr("strides"));
98
  const std::vector<int> paddings =
99
      BOOST_GET_CONST(std::vector<int>, op_desc.GetAttr("paddings"));
100 101 102 103
  std::string padding_algorithm = "EXPLICIT";
  if (op_desc.HasAttr("padding_algorithm"))
    padding_algorithm =
        BOOST_GET_CONST(std::string, op_desc.GetAttr("padding_algorithm"));
104 105 106 107 108 109 110 111

  nvinfer1::DimsHW nv_ksize(filter_h, filter_w);
  nvinfer1::DimsHW nv_dilations(dilations[0], dilations[1]);
  nvinfer1::DimsHW nv_strides(strides[0], strides[1]);
  nvinfer1::DimsHW nv_paddings(paddings[0], paddings[1]);

  TensorRTEngine::Weight weight{nvinfer1::DataType::kFLOAT,
                                static_cast<void*>(weight_data),
112
                                static_cast<size_t>(Y_t->numel())};
113 114 115 116 117 118 119 120 121
  float* bias_data = nullptr;
  size_t bias_size = 0;
  if (op_desc.Type() == "conv2d_fusion") {
    auto* bias_tensor = scope.GetVar(op_desc.Input("Bias").front());
    auto* bias_tensor_data = bias_tensor->GetMutable<framework::LoDTensor>();
    bias_data = engine->GetWeightCPUData(op_desc.Input("Bias").front(),
                                         bias_tensor_data, false);
    bias_size = static_cast<size_t>(bias_tensor_data->numel());
  }
122

123 124
  TensorRTEngine::Weight bias{nvinfer1::DataType::kFLOAT,
                              static_cast<void*>(bias_data), bias_size};
125 126
  auto* layer = fadd_layer(const_cast<nvinfer1::ITensor*>(X), n_output, n_input,
                           nv_ksize, weight, bias);
S
Shang Zhizhou 已提交
127 128 129
  PADDLE_ENFORCE_NOT_NULL(layer,
                          platform::errors::Fatal("TensorRT create conv2d"
                                                  " layer error."));
130 131 132
  layer->setStride(nv_strides);
  layer->setPadding(nv_paddings);
  layer->setNbGroups(groups);
133 134 135
  if (padding_algorithm == "SAME") {
    layer->setPaddingMode(nvinfer1::PaddingMode::kSAME_UPPER);
  }
136 137 138 139 140 141 142 143
  // set dilations
  fset_dilation(layer, nv_dilations);

  auto output_name = op_desc.Output("Output").front();
  layer->setName((name + " (Output: " + output_name + ")").c_str());
  layer->getOutput(0)->setName(output_name.c_str());
  engine->SetITensor(output_name, layer->getOutput(0));

N
nhzlx 已提交
144
  if (test_mode) {
145 146 147 148
    engine->DeclareOutput(output_name);
  }
}

L
Luo Tao 已提交
149 150
class Conv2dOpConverter : public OpConverter {
 public:
151
  void operator()(const framework::proto::OpDesc& op,
152
                  const framework::Scope& scope, bool test_mode) override {
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
    ConvertConv2d(
        engine_, op, scope, test_mode,
        [&](nvinfer1::ITensor* inputs, int n_output, /* Conv output maps */
            int n_input,                             /* Conv input maps */
            nvinfer1::DimsHW& ksize, TensorRTEngine::Weight& weight,
            TensorRTEngine::Weight& bias) -> nvinfer1::IConvolutionLayer* {
          auto* layer =
              TRT_ENGINE_ADD_LAYER(engine_, Convolution, *inputs, n_output,
                                   ksize, weight.get(), bias.get());
          return layer;
        },
        [](nvinfer1::IConvolutionLayer* layer, nvinfer1::DimsHW& dilations) {
          layer->setDilation(dilations);
        },
        "conv2d");
  }
};

class Deconv2dOpConverter : public OpConverter {
 public:
  void operator()(const framework::proto::OpDesc& op,
                  const framework::Scope& scope, bool test_mode) override {
    ConvertConv2d(
        engine_, op, scope, test_mode,
        [&](nvinfer1::ITensor* inputs, int n_output, /* Deconv input maps */
            int n_input,                             /* Deconv output maps */
            nvinfer1::DimsHW& ksize, TensorRTEngine::Weight& weight,
            TensorRTEngine::Weight& bias) -> nvinfer1::IDeconvolutionLayer* {
          auto* layer =
              TRT_ENGINE_ADD_LAYER(engine_, Deconvolution, *inputs, n_input,
                                   ksize, weight.get(), bias.get());
          return layer;
        },
        [](nvinfer1::IDeconvolutionLayer* layer, nvinfer1::DimsHW& dilations) {
187 188 189 190 191 192 193 194
          // In trt Deconv, dilation should be 1, ohter values are not
          // supported.
          bool condition = (dilations.d[0] == 1 && dilations.d[1] == 1);
          PADDLE_ENFORCE_EQ(condition, true,
                            platform::errors::InvalidArgument(
                                "In Deconv, Dilations must be (1, 1) for "
                                "tensorRT, but given (%d, %d)",
                                dilations.d[0], dilations.d[1]));
195 196
        },
        "conv2d_transpose");
L
Luo Tao 已提交
197 198
  }
};
L
Luo Tao 已提交
199

L
Luo Tao 已提交
200 201 202
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle
203 204

REGISTER_TRT_OP_CONVERTER(conv2d, Conv2dOpConverter);
205
REGISTER_TRT_OP_CONVERTER(conv2d_fusion, Conv2dOpConverter);
206
REGISTER_TRT_OP_CONVERTER(conv2d_transpose, Deconv2dOpConverter);