pybind.cc 45.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
C
chengduoZH 已提交
15 16
#include <algorithm>
#include <map>
S
sneaxiy 已提交
17
#include <memory>
C
chengduoZH 已提交
18 19 20 21 22
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
23

Y
Yi Wang 已提交
24 25 26
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/framework.pb.h"
27
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
28 29 30
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
31
#include "paddle/fluid/framework/op_registry.h"
Y
Yu Yang 已提交
32
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
33
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
34
#include "paddle/fluid/framework/reader.h"
S
sneaxiy 已提交
35
#include "paddle/fluid/framework/scope_pool.h"
Y
Yi Wang 已提交
36
#include "paddle/fluid/framework/selected_rows.h"
X
Xin Pan 已提交
37
#include "paddle/fluid/framework/version.h"
38
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
39
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
D
dzhwinter 已提交
40
#include "paddle/fluid/operators/activation_op.h"
S
sneaxiy 已提交
41
#include "paddle/fluid/operators/py_func_op.h"
S
sneaxiy 已提交
42
#include "paddle/fluid/operators/reader/lod_tensor_blocking_queue.h"
Y
Yu Yang 已提交
43
#include "paddle/fluid/platform/cpu_info.h"
Y
Yi Wang 已提交
44
#include "paddle/fluid/platform/enforce.h"
45
#include "paddle/fluid/platform/init.h"
Y
Yi Wang 已提交
46 47
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
W
Wang Guibao 已提交
48
#include "paddle/fluid/pybind/async_executor_py.h"
Y
Yi Wang 已提交
49 50
#include "paddle/fluid/pybind/const_value.h"
#include "paddle/fluid/pybind/exception.h"
51
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
52
#include "paddle/fluid/pybind/ir.h"
53 54
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
Y
Yu Yang 已提交
55
#include "paddle/fluid/pybind/recordio.h"
Y
Yi Wang 已提交
56
#include "paddle/fluid/pybind/tensor_py.h"
Y
Yu Yang 已提交
57

58
#include "paddle/fluid/string/to_string.h"
59

D
Dong Zhihong 已提交
60
#ifdef PADDLE_WITH_CUDA
P
peizhilin 已提交
61
#ifndef _WIN32
Y
Yi Wang 已提交
62
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
63
#endif
Y
Yi Wang 已提交
64 65
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
66 67
#endif

M
minqiyang 已提交
68 69
#include "pybind11/stl.h"

70 71 72 73
DEFINE_bool(reader_queue_speed_test_mode, false,
            "If set true, the queue.pop will only get data from queue but not "
            "remove the data from queue for speed testing");

Q
Qiao Longfei 已提交
74 75 76
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);

77
namespace paddle {
78
namespace pybind {
79
bool IsCompiledWithCUDA() {
80
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
81 82 83 84 85 86
  return false;
#else
  return true;
#endif
}

87
bool IsCompiledWithBrpc() {
88
#ifndef PADDLE_WITH_DISTRIBUTE
89 90
  return false;
#endif
91 92 93 94 95 96

#ifdef PADDLE_WITH_GRPC
  return false;
#endif

  return true;
97 98
}

Y
update  
Yancey1989 已提交
99
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
100
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
101 102 103 104 105 106
  return true;
#else
  return false;
#endif
}

107
PYBIND11_MODULE(core, m) {
Y
Yu Yang 已提交
108 109 110
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
111
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
112
  m.doc() = "C++ core of PaddlePaddle";
113

114 115 116 117
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

118
  BindException(&m);
Y
Yu Yang 已提交
119

S
sneaxiy 已提交
120
  m.def(
S
sneaxiy 已提交
121
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
122 123 124 125
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
126 127 128
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

M
minqiyang 已提交
129
  py::class_<imperative::VarBase>(m, "VarBase", R"DOC()DOC")
130 131
      // .def(py::init<>())
      .def(py::init<bool>(), py::arg("stop_gradient") = false)
132
      .def("_run_backward",
X
Xin Pan 已提交
133
           [](imperative::VarBase &self) { self.RunBackward(); })
M
minqiyang 已提交
134
      .def("_grad_name", &imperative::VarBase::GradName)
M
minqiyang 已提交
135
      .def("_grad_value", &imperative::VarBase::GradValue)
M
minqiyang 已提交
136
      .def("_grad_ivar",
M
minqiyang 已提交
137
           [](const imperative::VarBase &self) { return self.grads_; },
M
minqiyang 已提交
138
           py::return_value_policy::reference)
M
minqiyang 已提交
139 140 141
      .def("_cpu_tensor",
           [](const imperative::VarBase &self) { return self.CopiedTensor(); },
           py::return_value_policy::take_ownership)
M
minqiyang 已提交
142
      .def("value", [](const imperative::VarBase &self) { return self.var_; },
M
minqiyang 已提交
143
           py::return_value_policy::reference)
144 145 146 147 148 149
      .def_property(
          "desc",
          [](const imperative::VarBase &self) { return self.var_desc_; },
          [](imperative::VarBase &self, framework::VarDesc *var_desc) {
            self.var_desc_ = var_desc;
          },
150 151 152 153 154 155
          py::return_value_policy::reference)
      .def_property(
          "stop_gradient",
          [](const imperative::VarBase &self) { return self.stop_gradient_; },
          [](imperative::VarBase &self, bool stop_gradient) {
            self.stop_gradient_ = stop_gradient;
156
          });
157

158
  py::class_<imperative::OpBase, PyOpBase>(m, "OpBase", R"DOC()DOC")
159 160 161 162 163 164 165 166
      .def(py::init<>())
      .def_property(
          "desc", [](const imperative::OpBase &self) { return self.op_desc_; },
          [](imperative::OpBase &self, framework::OpDesc *op_desc) {
            if (op_desc) {
              self.op_desc_ = op_desc;
            }
          },
X
Xin Pan 已提交
167 168 169 170 171 172 173
          py::return_value_policy::reference)
      .def_property(
          "forward_id",
          [](const imperative::OpBase &self) { return self.forward_id_; },
          [](imperative::OpBase &self, int forward_id) {
            self.forward_id_ = forward_id;
          },
X
Xin Pan 已提交
174 175 176 177 178 179 180
          py::return_value_policy::reference)
      .def_property(
          "backward_id",
          [](const imperative::OpBase &self) { return self.backward_id_; },
          [](imperative::OpBase &self, int backward_id) {
            self.backward_id_ = backward_id;
          },
181 182
          py::return_value_policy::reference);

X
Xin Pan 已提交
183
  py::class_<imperative::Layer, Layer /* <--- trampoline*/> layer(m, "Layer");
184
  layer.def(py::init<>())
X
Xin Pan 已提交
185 186 187
      .def("forward", [](imperative::Layer &self,
                         const std::vector<imperative::VarBase> &inputs) {
        return self.Forward(inputs);
X
Xin Pan 已提交
188
      });
X
Xin Pan 已提交
189

X
polish  
Xin Pan 已提交
190
  py::class_<imperative::PyLayer>(m, "PyLayer")
X
Xin Pan 已提交
191
      .def(py::init<>())
X
Xin Pan 已提交
192 193
      .def_static(
          "apply",
X
Xin Pan 已提交
194
          [](int func_id, const std::vector<imperative::VarBase *> &inputs)
X
Xin Pan 已提交
195 196 197 198
              -> std::vector<imperative::VarBase *> {
                return imperative::PyLayer::Apply(func_id, inputs);
              },
          py::return_value_policy::take_ownership)
X
polish  
Xin Pan 已提交
199 200 201 202 203
      .def_static("register_func",
                  [](int func_id, const py::object &callable) {
                    imperative::PyLayer::RegisterFunc(func_id, callable);
                  })
      .def_static("num_funcs", &imperative::PyLayer::NumFuncs);
X
Xin Pan 已提交
204

205 206
  BindTracer(&m);

207 208 209
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
Y
yuyang18 已提交
210
      .def("_get_dims",
211
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
212
      .def("_set_dims",
Q
qijun 已提交
213
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
214
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
215
           })
Y
yuyang18 已提交
216
      .def("_set_layout",
D
dzhwinter 已提交
217 218 219
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
220
      .def("_alloc_float",
D
dzhwinter 已提交
221
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
222
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
223
           })
Y
yuyang18 已提交
224
      .def("_alloc_float",
Y
Yu Yang 已提交
225
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
226
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
227
           })
Y
yuyang18 已提交
228
      .def("_alloc_int",
Y
Yu Yang 已提交
229
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
230
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
231
           })
Y
yuyang18 已提交
232
      .def("_alloc_int",
D
dzhwinter 已提交
233
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
234
             self.mutable_data<int>(place);
Q
qijun 已提交
235
           })
Y
yuyang18 已提交
236
      .def("_alloc_int",
C
chengduoZH 已提交
237 238 239
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
240
      .def("_alloc_float",
C
chengduoZH 已提交
241 242 243
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
Y
Yu Yang 已提交
244 245
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
246
      .def("set", PyCPUTensorSetFromArray<double>)
247
      .def("set", PyCPUTensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
248
      .def("set", PyCPUTensorSetFromArray<bool>)
249
      .def("set", PyCPUTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
250
      .def("set", PyCPUTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
251
      .def("set", PyCPUTensorSetFromArray<int8_t>)
252
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
253 254
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
255
      .def("set", PyCUDATensorSetFromArray<double>)
256
      .def("set", PyCUDATensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
257
      .def("set", PyCUDATensorSetFromArray<bool>)
258
      .def("set", PyCUDATensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
259
      .def("set", PyCUDATensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
260
      .def("set", PyCUDATensorSetFromArray<int8_t>)
C
chengduoZH 已提交
261 262 263 264 265 266
      .def("set", PyCUDAPinnedTensorSetFromArray<float>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int>)
      .def("set", PyCUDAPinnedTensorSetFromArray<double>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int64_t>)
      .def("set", PyCUDAPinnedTensorSetFromArray<bool>)
      .def("set", PyCUDAPinnedTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
267
      .def("set", PyCUDAPinnedTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
268
      .def("set", PyCUDAPinnedTensorSetFromArray<int8_t>)
Q
qijun 已提交
269
#endif
270
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
271 272 273 274
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
Y
Yu Yang 已提交
275
      .def("_dtype", [](Tensor &self) { return self.type(); });
Y
Yu Yang 已提交
276

X
Xin Pan 已提交
277 278 279 280 281 282 283 284 285 286 287 288 289
  py::class_<LoDTensor, Tensor>(m, "LoDTensor", R"DOC(
    LoDTensor is a Tensor with optional LoD information.

    np.array(lod_tensor) can convert LoDTensor to numpy array.
    lod_tensor.lod() can retrieve the LoD information.

    LoD is short for Level of Details and is usually used for varied sequence
    length. You can skip the following comment if you don't need optional LoD.

  For example:
     A LoDTensor X can look like the example below. It contains 2 sequences.
     The first has length 2 and the second has length 3, as described by x.lod.

X
fix doc  
Xin Pan 已提交
290
     The first tensor dimension 5=2+3 is calculated from LoD if it's available.
X
Xin Pan 已提交
291
     It means the total number of sequence element. In X, each element has 2
X
fix doc  
Xin Pan 已提交
292
     columns, hence [5, 2].
X
Xin Pan 已提交
293 294 295

      x.lod  = [[2, 3]]
      x.data = [[1, 2], [3, 4],
X
fix doc  
Xin Pan 已提交
296 297
                [5, 6], [7, 8], [9, 10]]
      x.shape = [5, 2]
X
Xin Pan 已提交
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320

      LoD can have multiple levels (for example, a paragraph can have multiple
      sentences and a sentence can have multiple words). In the following
      LodTensor Y, the lod_level is 2. It means there are 2 sequence, the
      first sequence length is 2 (has 2 sub-sequences), the second one's
      length is 1. The first sequence's 2 sub-sequences have length 2 and 2,
      respectively. And the second sequence's 1 sub-sequence has length 3.

      y.lod = [[2 1], [2 2 3]]
      y.shape = [2+2+3, ...]

  Note:
      In above description, LoD is length-based. In Paddle internal
      implementation, lod is offset-based. Hence, internally,
      y.lod is represented as [[0, 2, 3], [0, 2, 4, 7]] (length-based
      equivlent would be [[2-0, 3-2], [2-0, 4-2, 7-4]]).

      Sometimes LoD is called recursive_sequence_length to be more
      self-explanatory. In this case, it must be length-based. Due to history
      reasons. when LoD is called lod in public API, it might be offset-based.
      Users should be careful about it.

        )DOC")
321 322
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
323 324 325 326 327 328 329 330 331 332 333 334 335 336
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, -1),
                 "the provided recursive_sequence_lengths info is invalid");
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
337
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
338 339 340 341 342
      // We implement offset based LOD in C++ while we use length based with
      // Python API. So we changed set_lod to set_recursive_sequence_lengths to
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
343
      .def("set_lod",
344
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
345
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
346
             LoD new_lod;
347 348
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
349 350
             PADDLE_ENFORCE(CheckLoD(new_lod, vectorize(self.dims()).front()),
                            "the provided lod info is invalid");
351
             self.set_lod(new_lod);
D
dangqingqing 已提交
352
           })
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()),
                 "the provided recursive_sequence_lengths info is invalid");
             self.set_lod(new_offset_lod);
           })
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
           })
G
gongweibao 已提交
378
      // Set above comments of set_lod.
379 380 381 382 383 384 385 386 387 388 389 390 391
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
           })
      .def("has_valid_recursive_sequence_lengths", [](LoDTensor &self) -> bool {
        // Check that the lod info is valid and match the outermost
        // dimension of the LoDTensor data
        return CheckLoD(self.lod(), vectorize(self.dims()).front());
D
dangqingqing 已提交
392 393
      });

Q
qijun 已提交
394 395 396 397 398 399 400 401 402 403 404
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
405 406
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
407 408
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
409 410 411 412 413 414 415 416 417
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
418
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
419
      .def("rows", [](SelectedRows &self) {
420 421 422 423 424
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
425
      });
Q
qijun 已提交
426

427
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
428 429 430

All parameter, weight, gradient are variables in Paddle.
)DOC")
431
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
432
      .def("set_int",
433 434
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
435 436 437 438 439 440 441
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
442
      .def("get_tensor",
443 444
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
445 446
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
447 448 449
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
450 451 452 453 454
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
455 456 457
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
P
peizhilin 已提交
458
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
459 460 461 462 463
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
464
#endif
Y
Refine  
Yu Yang 已提交
465 466 467 468 469
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
             PADDLE_ENFORCE(self.IsType<framework::ReaderHolder>());
             return self.GetMutable<framework::ReaderHolder>();
           },
W
wopeizl 已提交
470
           py::return_value_policy::reference);
471

Y
Refine  
Yu Yang 已提交
472
  py::class_<framework::ReaderHolder>(m, "Reader", "")
473
      .def("reset", &framework::ReaderHolder::ResetAll);
Y
Refine  
Yu Yang 已提交
474

S
sneaxiy 已提交
475 476 477 478
  using LoDTensorBlockingQueue =
      ::paddle::operators::reader::LoDTensorBlockingQueue;
  using LoDTensorBlockingQueueHolder =
      ::paddle::operators::reader::LoDTensorBlockingQueueHolder;
S
sneaxiy 已提交
479 480
  py::class_<LoDTensorBlockingQueue, std::shared_ptr<LoDTensorBlockingQueue>>(
      m, "LoDTensorBlockingQueue", "")
S
sneaxiy 已提交
481
      .def("push",
S
sneaxiy 已提交
482
           [](LoDTensorBlockingQueue &self,
S
sneaxiy 已提交
483
              const std::vector<framework::LoDTensor> &lod_tensor_vec) {
S
sneaxiy 已提交
484
             pybind11::gil_scoped_release release;
S
sneaxiy 已提交
485
             return self.Push(lod_tensor_vec);
S
sneaxiy 已提交
486
           })
S
sneaxiy 已提交
487 488 489 490
      .def("size", &LoDTensorBlockingQueue::Size)
      .def("capacity", &LoDTensorBlockingQueue::Cap)
      .def("close", &LoDTensorBlockingQueue::Close)
      .def("is_closed", &LoDTensorBlockingQueue::IsClosed);
S
sneaxiy 已提交
491

S
sneaxiy 已提交
492
  m.def("init_lod_tensor_blocking_queue",
S
sneaxiy 已提交
493
        [](Variable &var, size_t capacity,
S
sneaxiy 已提交
494
           const std::vector<std::vector<int64_t>> &shapes)
S
sneaxiy 已提交
495
            -> std::shared_ptr<LoDTensorBlockingQueue> {
S
sneaxiy 已提交
496 497 498 499 500 501
              std::vector<DDim> dims(shapes.size());
              std::transform(shapes.begin(), shapes.end(), dims.begin(),
                             [](const std::vector<int64_t> &shape) {
                               return make_ddim(shape);
                             });
              auto *holder = var.GetMutable<LoDTensorBlockingQueueHolder>();
502 503
              holder->InitOnce(capacity, dims,
                               FLAGS_reader_queue_speed_test_mode);
S
sneaxiy 已提交
504
              return holder->GetQueue();
S
sneaxiy 已提交
505
            },
S
sneaxiy 已提交
506
        py::return_value_policy::copy);
S
sneaxiy 已提交
507

S
sneaxiy 已提交
508
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
528 529
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
530
      .def("var",
531
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
532
             return self.Var(name);
Y
Yu Yang 已提交
533
           },
534
           py::return_value_policy::reference)
535
      .def("find_var", &Scope::FindVar, py::return_value_policy::reference)
536
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
537
           py::return_value_policy::reference)
Y
Yu Yang 已提交
538
      .def("drop_kids", &Scope::DropKids);
539

S
sneaxiy 已提交
540 541 542 543 544 545 546 547
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
        py::return_value_policy::reference);

Y
Yu Yang 已提交
548 549
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
550 551
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
552 553 554 555 556 557 558 559 560 561
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
        PADDLE_ENFORCE(
            info.Proto().SerializeToString(&str),
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
562 563
    return ret_values;
  });
564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
Y
Yu Yang 已提交
580
  m.def("prune", [](const ProgramDesc &origin,
581
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
582
    ProgramDesc prog_with_targets(origin);
583
    for (const auto &t : targets) {
584
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
585
    }
586
    proto::ProgramDesc pruned_desc;
587
    Prune(*prog_with_targets.Proto(), &pruned_desc);
Y
Yu Yang 已提交
588
    return new ProgramDesc(pruned_desc);
589
  });
590 591 592 593
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
594 595 596
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
597 598
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
599
  // clang-format off
Y
Yu Yang 已提交
600
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
601 602
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
603
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
604 605 606
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
D
dzhwinter 已提交
607
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
608
                      -> paddle::platform::DeviceContext* {
609
#ifndef PADDLE_WITH_CUDA
D
dzhwinter 已提交
610
                    PADDLE_THROW("CUDAPlace is not supported in CPU device.");
Q
qijun 已提交
611
#else
Q
qijun 已提交
612
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
613
#endif
C
chengduoZH 已提交
614 615 616 617 618 619 620 621 622 623 624
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
                  PADDLE_THROW(
                        "CUDAPinnedPlace is not supported in CPU device.");
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
625
// clang-format on
P
peizhilin 已提交
626
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
627 628
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
D
dzhwinter 已提交
629
  py::class_<platform::CUDAPlace>(m, "CUDAPlace")
630
      .def(py::init<int>())
D
dzhwinter 已提交
631
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
632

633 634 635
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
636

C
chengduoZH 已提交
637 638 639 640
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
641 642 643 644 645 646 647
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
D
dzhwinter 已提交
648
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
649
             self = gpu_place;
C
chengduoZH 已提交
650 651
           })
      .def("set_place", [](platform::Place &self,
C
chengduoZH 已提交
652 653
                           const platform::CUDAPinnedPlace &cuda_pinned_place) {
        self = cuda_pinned_place;
C
chengduoZH 已提交
654
      });
Y
Yu Yang 已提交
655

Y
Yu Yang 已提交
656 657 658
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
659
                    proto::OpDesc desc;
Y
Yu Yang 已提交
660 661 662 663 664
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
665
                    return OpRegistry::CreateOp(desc);
Y
Yu Yang 已提交
666
                  })
667
      .def("run",
668
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
669 670 671
              const platform::CPUPlace &place) { self.Run(scope, place); })
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
672
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
673 674 675 676 677
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
678 679 680 681 682 683 684
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
685 686
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
687
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
688
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
689 690 691 692
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
693

F
fengjiayi 已提交
694
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
695
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
696
      .def("close", &Executor::Close)
S
sneaxiy 已提交
697 698 699 700 701
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
                     int block_id, bool create_local_scope, bool create_vars) {
        pybind11::gil_scoped_release release;
        self.Run(prog, scope, block_id, create_local_scope, create_vars);
      });
S
sneaxiy 已提交
702

D
dzhwinter 已提交
703
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
704
  m.def("init_glog", framework::InitGLOG);
X
Xin Pan 已提交
705 706
  m.def("init_devices",
        [](bool init_p2p) { framework::InitDevices(init_p2p); });
707

708
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
709
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
710
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
711 712 713 714 715 716
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
717

718
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
719
  m.def("get_fetch_variable", framework::GetFetchVariable);
720
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
721

X
Xin Pan 已提交
722 723
  m.def("_is_program_version_supported", IsProgramVersionSupported);

724 725 726 727 728
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
Y
Yu Yang 已提交
729

Y
Yu Yang 已提交
730 731 732 733 734 735 736 737 738
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Y
Yu Yang 已提交
739
  py::class_<LoDTensorArray>(m, "LoDTensorArray")
S
sneaxiy 已提交
740 741
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
             PADDLE_ENFORCE_LT(i, self.size());
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
      .def("append", [](LoDTensorArray &self, const LoDTensor &t) {
        self.emplace_back();
        self.back().ShareDataWith(t);
        self.back().set_lod(t.lod());
      });

D
dzhwinter 已提交
758 759 760
  m.def("IsInplace",
        [](std::string op) -> bool { return operators::IsInplace(op); });

Y
Yu Yang 已提交
761
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
762
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
763
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
764

P
peizhilin 已提交
765
#ifndef _WIN32
D
dangqingqing 已提交
766 767 768
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
769
#endif
P
peizhilin 已提交
770
#endif
Y
Yu Yang 已提交
771

772 773 774 775
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
776
      .value("kAll", platform::ProfilerState::kAll)
777 778 779 780 781 782 783 784 785 786 787 788 789
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
790
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
791
  m.def("reset_profiler", platform::ResetProfiler);
Y
Yu Yang 已提交
792

793 794
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
795 796 797 798 799
      .def(
          "set_str",
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
X
Xin Pan 已提交
800 801
      .def("set_int", [](ir::Pass &self, const std::string &name,
                         int val) { self.Set<const int>(name, new int(val)); })
F
flame 已提交
802 803 804 805 806 807
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
        std::unique_ptr<ir::Graph> origin_graph(graph.get());
        auto optim_graph = self.Apply(std::move(origin_graph));
        graph.reset(optim_graph.release());
      });
808

X
fix  
Xin Pan 已提交
809 810
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
811 812 813 814 815 816 817 818 819 820 821 822 823 824
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
825
  // -- python binds for parallel executor.
Y
yuyang18 已提交
826
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
827 828 829 830
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

C
chengduo 已提交
831 832 833 834 835 836 837 838 839 840 841
    Examples:
        .. code-block:: python

          exec_strategy = fluid.ExecutionStrategy()
          exec_strategy.num_threads = 4

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             exec_strategy=exec_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
842 843 844

        )DOC");

Y
yuyang18 已提交
845
  exec_strategy.def(py::init())
Y
yuyang18 已提交
846 847 848 849 850
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
851 852 853 854 855 856 857 858 859 860
          },
          R"DOC(The type is INT, num_threads represents the size of thread pool that
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
            `multiprocessing.cpu_count()`. Default 0.)DOC")
Y
yuyang18 已提交
861
      .def_property(
862 863 864 865
          "use_cuda",
          [](const ExecutionStrategy &self) { return self.use_cuda_; },
          [](ExecutionStrategy &self, bool use_cuda) {
            self.use_cuda_ = use_cuda;
C
chengduo 已提交
866 867 868 869
          })  // FIXME(chengduo): Doesn't add doc for 'use_cuda', use_cuda may
      // make user confuse, because ParallelExecutor has a parameter named
      // 'use_cuda' too, in current implementation, ParallelExecutor's
      // 'use_cuda' will rewrite ExecutionStrategy's 'use_cuda'.
Y
yuyang18 已提交
870 871 872 873 874
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
875 876 877 878
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
                Note that in some models, allow_op_delay may cause program hang. Default False.)DOC")
Y
yuyang18 已提交
879 880 881 882 883 884 885
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
886 887 888 889 890 891 892 893 894 895 896
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
                because the temp variable's shape maybe the same between two iterations. Default 100.

                NOTES:
                    1. If you fetch data when calling the 'run', the ParallelExecutor
                       will clean up the temp variables at the end of the current iteration.
                    2. In some NLP model, it may cause the GPU memory is insufficient,
                       in this case, you should reduce `num_iteration_per_drop_scope`.
897 898 899 900 901 902
              )DOC")
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
903

Y
yuyang18 已提交
904
  exec_strategy.def_property(
Y
yuyang18 已提交
905 906 907 908 909 910 911
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
912 913
      });

C
chengduo 已提交
914 915 916 917
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

C
chengduo 已提交
918 919 920 921 922 923 924 925 926 927 928
    Examples:
        .. code-block:: python

          build_strategy = fluid.BuildStrategy()
          build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             build_strategy=build_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
929
)DOC");
Y
yuyang18 已提交
930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
X
Xin Pan 已提交
946
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
947
            self.reduce_ = strategy;
C
chengduo 已提交
948 949 950 951 952 953 954
          },
          R"DOC(The type is STR, there are two reduce strategies in ParallelExecutor,
                  'AllReduce' and 'Reduce'. If you want that all the parameters'
                  optimization are done on all devices independently, you should choose 'AllReduce';
                  if you choose 'Reduce', all the parameters' optimization will be evenly distributed
                  to different devices, and then broadcast the optimized parameter to other devices.
                  In some models, `Reduce` is faster. Default 'AllReduce'. )DOC")
Y
yuyang18 已提交
955 956 957 958 959
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
X
Xin Pan 已提交
960
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
961
            self.gradient_scale_ = strategy;
C
chengduo 已提交
962 963 964 965 966 967
          },
          R"DOC(The type is STR, there are three ways of defining :math:`loss@grad` in
                   ParallelExecutor, 'CoeffNumDevice', 'One' and 'Customized'. By default,
                   ParallelExecutor sets the :math:`loss@grad` according to the number of devices.
                   If you want to customize :math:`loss@grad`, you can choose 'Customized'.
                   Default 'CoeffNumDevice'.)DOC")
Y
yuyang18 已提交
968 969 970 971
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
X
Xin Pan 已提交
972
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
973
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
974 975 976 977
          },
          R"DOC(The type is STR, debug_graphviz_path indicate the path that
                    writing the SSA Graph to file in the form of graphviz, you.
                    It is useful for debugging. Default "")DOC")
S
sneaxiy 已提交
978 979 980 981 982 983
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
984
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
985 986 987 988 989 990 991 992 993
            self.enable_sequential_execution_ = b;
          },
          R"DOC(The type is BOOL. If set True, the execution order of ops would be the same as what is in the program. Default False.)DOC")
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
994
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
995 996 997
            self.remove_unnecessary_lock_ = b;
          },
          R"DOC(The type is BOOL. If set True, some locks in GPU ops would be released and ParallelExecutor would run faster. Default False.)DOC")
998 999 1000 1001 1002 1003
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
            self.num_trainers_ = num_trainers;
          })
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
C
chengduo 已提交
1016 1017 1018 1019 1020 1021
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1022
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
C
chengduo 已提交
1023 1024 1025 1026 1027
            self.fuse_elewise_add_act_ops_ = b;
          },
          R"DOC(The type is BOOL, fuse_elewise_add_act_ops indicate whether
                     to fuse elementwise_add_op and activation_op,
                     it may make the execution faster. Default False)DOC")
D
dzhwinter 已提交
1028 1029 1030 1031
      .def_property(
          "memory_optimize",
          [](const BuildStrategy &self) { return self.memory_optimize_; },
          [](BuildStrategy &self, bool b) { self.memory_optimize_ = b; })
1032 1033 1034 1035
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
          [](BuildStrategy &self, bool b) { self.is_distribution_ = b; })
D
dzhwinter 已提交
1036 1037 1038 1039
      .def_property(
          "memory_early_delete",
          [](const BuildStrategy &self) { return self.memory_early_delete_; },
          [](BuildStrategy &self, bool b) { self.memory_early_delete_ = b; })
1040
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
1041
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
1042 1043 1044 1045 1046
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
1047 1048 1049

  pe.def(py::init<const std::vector<platform::Place> &,
                  const std::unordered_set<std::string> &, const ProgramDesc &,
Y
yuyang18 已提交
1050
                  const std::string &, Scope *, std::vector<Scope *> &,
1051
                  const ExecutionStrategy &, const BuildStrategy &>())
Y
Yu Yang 已提交
1052 1053 1054 1055
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
1056 1057 1058 1059 1060
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1061 1062 1063 1064
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
S
sneaxiy 已提交
1065 1066 1067 1068 1069 1070
      .def("run", [](ParallelExecutor &self,
                     const std::vector<std::string> &fetch_tensors,
                     const std::string &fetched_var_name) {
        pybind11::gil_scoped_release release;
        self.Run(fetch_tensors, fetched_var_name);
      });
Y
Yu Yang 已提交
1071

1072
  BindRecordIOWriter(&m);
W
Wang Guibao 已提交
1073
  BindAsyncExecutor(&m);
F
flame 已提交
1074 1075 1076

  BindGraph(&m);
  BindNode(&m);
L
Luo Tao 已提交
1077
}
1078
}  // namespace pybind
1079
}  // namespace paddle