collective.py 30.3 KB
Newer Older
1
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#
# Licensed under the Apache License, Version 2.0 (the 'License');
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an 'AS IS' BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import sys
import math
from functools import reduce
18
import os
19 20 21 22 23 24 25 26 27 28 29

import collections
import six
import logging

import numpy as np

from .. import core, unique_name
from ..framework import Program, default_main_program, default_startup_program
from .details import wait_server_ready

Y
yaoxuefeng 已提交
30
__all__ = ['GradAllReduce', 'LocalSGD', 'MultiThread']
31 32 33 34 35 36 37 38

OpRole = core.op_proto_and_checker_maker.OpRole


class Collective(object):
    '''
    '''

39 40
    def __init__(self, nrings):
        self.nrings = nrings
41 42
        self.endpoints = None
        self.current_endpoint = None
F
Fan Zhang 已提交
43
        self.other_endpoints = None
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
        self.nranks = None
        self.rank = None
        self.startup_program = None
        self.main_program = None
        op_maker = core.op_proto_and_checker_maker
        self.op_role_key = op_maker.kOpRoleAttrName()
        self.op_role_var_key = op_maker.kOpRoleVarAttrName()

    def transpile(self, startup_program, main_program, rank, endpoints,
                  current_endpoint, wait_port):
        # in case of '127.0.0.1:6700,127.0.0.1:6701,...'
        if isinstance(endpoints, str):
            endpoints = endpoints.split(',')

        self.startup_program = startup_program
        if startup_program is None:
            self.startup_program = default_startup_program()

        self.main_program = main_program
        if main_program is None:
            self.main_program = default_main_program()

        self.nranks = len(endpoints)
D
danleifeng 已提交
67
        if self.nranks == 1 and self.mode != "single_process_multi_thread" and self.mode != "box":
68 69 70 71 72 73 74 75 76 77 78 79 80
            raise ValueError('the number of endpoints must > 1')

        if rank < 0:
            raise ValueError('rank must >= 0')
        self.rank = rank

        if current_endpoint not in endpoints:
            raise ValueError('current endpoint %s is not in %s',
                             current_endpoint, str(endpoints))

        self.endpoints = endpoints
        self.current_endpoint = current_endpoint

F
Fan Zhang 已提交
81 82 83 84 85 86
        if current_endpoint:
            nranks = len(endpoints)
            other_endpoints = endpoints[:]
            other_endpoints.remove(current_endpoint)
            self.other_endpoints = other_endpoints

87 88 89 90 91 92 93 94 95 96 97 98
        self.wait_port = wait_port

        self.startup_program._origin_program = self.startup_program.clone()
        self._transpile_startup_program()

        self.main_program._origin_program = self.main_program.clone()
        self._transpile_main_program()

    def _transpile_main_program(self):
        raise NotImplementedError('call the inherited method of subclasses')

    def _transpile_startup_program(self):
99 100 101 102
        for ring_id in range(self.nrings):
            self._init_communicator(self.startup_program, self.current_endpoint,
                                    self.endpoints, self.rank, ring_id,
                                    self.wait_port)
103 104
        self._broadcast_params()

Y
yaoxuefeng 已提交
105 106 107 108 109 110 111 112
    def _init_communicator(self,
                           program,
                           current_endpoint,
                           endpoints,
                           rank,
                           ring_id,
                           wait_port,
                           has_multitrainer=False):
113 114 115
        nranks = len(endpoints)
        other_endpoints = endpoints[:]
        other_endpoints.remove(current_endpoint)
116 117
        block = program.global_block()

118 119 120 121
        if rank == 0 and wait_port:
            wait_server_ready(other_endpoints)

        block = program.global_block()
122
        if core.is_compiled_with_npu():
123 124 125
            hccl_id_var = block.create_var(name=unique_name.generate('hccl_id'),
                                           persistable=True,
                                           type=core.VarDesc.VarType.RAW)
126
            endpoint_to_index_map = {e: idx for idx, e in enumerate(endpoints)}
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
            block.append_op(type='c_gen_hccl_id',
                            inputs={},
                            outputs={'Out': hccl_id_var},
                            attrs={
                                'rank': rank,
                                'endpoint': current_endpoint,
                                'other_endpoints': other_endpoints,
                                self.op_role_key: OpRole.Forward
                            })
            block.append_op(type='c_comm_init_hccl',
                            inputs={'X': hccl_id_var},
                            outputs={},
                            attrs={
                                'rank': rank,
                                'ring_id': ring_id,
                                'device_id':
                                int(os.getenv("FLAGS_selected_npus")),
                                'rank_ids': nranks,
                                self.op_role_key: OpRole.Forward
                            })
147
        else:
148 149 150 151 152 153 154 155 156 157 158 159
            nccl_id_var = block.create_var(name=unique_name.generate('nccl_id'),
                                           persistable=True,
                                           type=core.VarDesc.VarType.RAW)
            block.append_op(type='c_gen_nccl_id',
                            inputs={},
                            outputs={'Out': nccl_id_var},
                            attrs={
                                'rank': rank,
                                'endpoint': current_endpoint,
                                'other_endpoints': other_endpoints,
                                self.op_role_key: OpRole.Forward
                            })
Y
yaoxuefeng 已提交
160
            if not has_multitrainer:
161 162 163 164 165 166 167 168 169
                block.append_op(type='c_comm_init',
                                inputs={'X': nccl_id_var},
                                outputs={},
                                attrs={
                                    'nranks': nranks,
                                    'rank': rank,
                                    'ring_id': ring_id,
                                    self.op_role_key: OpRole.Forward
                                })
Y
yaoxuefeng 已提交
170
            else:
171 172 173 174 175 176 177 178 179
                block.append_op(type='c_comm_init_multitrainer',
                                inputs={'X': nccl_id_var},
                                outputs={},
                                attrs={
                                    'ntrainers': nranks,
                                    'trainer_id': rank,
                                    'ring_id': ring_id,
                                    self.op_role_key: OpRole.Forward
                                })
180 181 182

    def _broadcast_params(self):
        block = self.startup_program.global_block()
183 184
        ring_id = -1
        for param in block.iter_parameters():
185 186 187
            if param.is_distributed:
                continue

188
            ring_id = (ring_id + 1) % self.nrings
189 190 191 192 193 194 195 196
            block.append_op(type='c_broadcast',
                            inputs={'X': param},
                            outputs={'Out': param},
                            attrs={
                                'ring_id': ring_id,
                                'root': 0,
                                self.op_role_key: OpRole.Forward
                            })
197 198

        for ring_id in range(self.nrings):
199 200 201 202 203 204 205
            block.append_op(type='c_sync_comm_stream',
                            inputs={'X': param},
                            outputs={'Out': param},
                            attrs={
                                'ring_id': ring_id,
                                self.op_role_key: OpRole.Forward
                            })
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229

    def _is_loss_grad_op(self, op):
        if self.op_role_key not in op.attr_names:
            return False
        op_role = int(op.all_attrs()[self.op_role_key])
        return op_role & int(OpRole.Backward) and op_role & int(OpRole.Loss)

    def _is_backward_op(self, op):
        return self.op_role_key in op.attr_names and \
                int(op.all_attrs()[self.op_role_key]) & int(OpRole.Backward)

    def _is_update_op(self, op):
        return 'Param' in op.input_names and 'Grad' in op.input_names and \
                "LearningRate" in op.input_names

    def _is_optimizer_op(self, op):
        return self.op_role_key in op.attr_names and \
                int(op.all_attrs()[self.op_role_key]) & int(OpRole.Optimize)


class GradAllReduce(Collective):
    '''
    '''

230 231
    def __init__(self, nrings=2):
        Collective.__init__(self, nrings)
H
hutuxian 已提交
232
        self.mode = "grad_allreduce"
233 234 235 236 237 238 239 240 241 242 243 244 245 246

    def _transpile_main_program(self):
        self._insert_scale_loss_grad_ops()
        self._insert_allreduce_ops()

    def _insert_scale_loss_grad_ops(self):
        '''
        In order to keep the learning rate consistent in different numbers of
        training workers, we scale the loss grad by the number of workers
        '''
        block = self.main_program.global_block()
        for idx, op in reversed(list(enumerate(block.ops))):
            if self._is_loss_grad_op(op):
                loss_grad_var = block.vars[op.output_arg_names[0]]
247 248 249 250 251 252 253 254
                block._insert_op(idx + 1,
                                 type='scale',
                                 inputs={'X': loss_grad_var},
                                 outputs={'Out': loss_grad_var},
                                 attrs={
                                     'scale': 1.0 / self.nranks,
                                     self.op_role_key: OpRole.Backward
                                 })
255 256 257

    def _insert_allreduce_ops(self):
        block = self.main_program.global_block()
258 259
        ring_id = -1
        grad = None
260 261 262 263 264 265 266 267 268
        for idx, op in reversed(list(enumerate(block.ops))):
            if self._is_backward_op(op) and \
                    self.op_role_var_key in op.attr_names:
                op_role_var = op.all_attrs()[self.op_role_var_key]

                if len(op_role_var) == 0:
                    continue
                assert len(op_role_var) % 2 == 0

269
                offset = idx
270
                for i in range(0, len(op_role_var), 2):
271 272
                    param = block.vars[op_role_var[i]]
                    grad = block.vars[op_role_var[i + 1]]
273 274 275
                    if param.is_distributed:
                        continue

276 277 278 279 280 281 282 283 284 285 286 287 288
                    if offset == idx:
                        offset += 1
                        block._insert_op(
                            offset,
                            type='c_sync_calc_stream',
                            inputs={'X': grad},
                            outputs={'Out': grad},
                            attrs={self.op_role_key: OpRole.Backward})
                        offset += 1

                    # As we search ops reversedly, we should insert c_allreduce_sum
                    # op in the same way to keep the ring_id alternate
                    ring_id = (ring_id + 1) % self.nrings
289 290 291 292 293 294 295 296
                    block._insert_op(offset,
                                     type='c_allreduce_sum',
                                     inputs={'X': grad},
                                     outputs={'Out': grad},
                                     attrs={
                                         'ring_id': ring_id,
                                         self.op_role_key: OpRole.Backward
                                     })
297 298 299

        if grad is None:
            return
300 301 302

        for idx, op in enumerate(block.ops):
            if self._is_optimizer_op(op):
303
                for ring_id in range(self.nrings):
304 305 306 307 308 309 310 311
                    block._insert_op(idx + ring_id,
                                     type='c_sync_comm_stream',
                                     inputs={'X': grad},
                                     outputs={'Out': grad},
                                     attrs={
                                         'ring_id': ring_id,
                                         self.op_role_key: OpRole.Backward
                                     })
312 313 314 315 316 317 318
                break


class LocalSGD(Collective):
    '''
    '''

319 320
    def __init__(self, nrings=2):
        Collective.__init__(self, nrings)
321
        self.snapshot_key = '@SNAPSHOT'
H
hutuxian 已提交
322
        self.mode = "local_sgd"
323 324 325 326 327

    def _transpile_startup_program(self):
        Collective._transpile_startup_program(self)

        block = self.startup_program.global_block()
328
        non_dist_params = []
329
        for param in block.iter_parameters():
330 331
            if not param.is_distributed:
                non_dist_params.append(param)
332

333
        for param in non_dist_params:
334 335 336 337 338 339 340 341
            snapshot = block.create_var(name=self.snapshot_name(param.name),
                                        shape=param.shape,
                                        persistable=True,
                                        stop_gradient=True)
            block.append_op(type='assign',
                            inputs={'X': [param]},
                            outputs={'Out': [snapshot]},
                            attrs={self.op_role_key: OpRole.Forward})
342 343 344 345 346 347 348

    def snapshot_name(self, param_name):
        return param_name + self.snapshot_key

    def _transpile_main_program(self):
        block = self.main_program.global_block()
        ordered_param_snapshot = []
349
        ring_id = -1
350 351 352
        for idx, op in reversed(list(enumerate(block.ops))):
            if self._is_update_op(op):
                param = block.vars[op.input('Param')[0]]
353 354 355
                if param.is_distributed:
                    continue

356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
                snapshot = block.create_var(name=self.snapshot_name(param.name),
                                            shape=param.shape,
                                            persistable=True,
                                            stop_gradient=True,
                                            dtype=param.dtype)

                block._insert_op(idx + 1,
                                 type='elementwise_sub',
                                 inputs={
                                     'X': [snapshot],
                                     'Y': [param]
                                 },
                                 outputs={'Out': [param]},
                                 attrs={self.op_role_key: OpRole.Optimize})
                block._insert_op(idx + 2,
                                 type='c_sync_calc_stream',
                                 inputs={'X': param},
                                 outputs={'Out': param},
                                 attrs={self.op_role_key: OpRole.Optimize})
375
                ring_id = (ring_id + 1) % self.nrings
376 377 378 379 380 381 382 383
                block._insert_op(idx + 3,
                                 type='c_allreduce_sum',
                                 inputs={'X': [param]},
                                 outputs={'Out': [param]},
                                 attrs={
                                     'ring_id': ring_id,
                                     self.op_role_key: OpRole.Optimize
                                 })
384 385 386

                ordered_param_snapshot.append((param, snapshot))

387
        for ring_id in range(self.nrings):
388 389 390 391 392 393 394
            block.append_op(type='c_sync_comm_stream',
                            inputs={'X': param},
                            outputs={'Out': param},
                            attrs={
                                'ring_id': ring_id,
                                self.op_role_key: OpRole.Optimize
                            })
395 396 397 398

        for param_snapshot in reversed(ordered_param_snapshot):
            param = param_snapshot[0]
            snapshot = param_snapshot[1]
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
            block.append_op(type='scale',
                            inputs={'X': [param]},
                            outputs={'Out': [param]},
                            attrs={
                                'scale': 1.0 / self.nranks,
                                self.op_role_key: OpRole.Optimize
                            })
            block.append_op(type='elementwise_sub',
                            inputs={
                                'X': [snapshot],
                                'Y': [param]
                            },
                            outputs={'Out': [param]},
                            attrs={self.op_role_key: OpRole.Optimize})
            block.append_op(type='assign',
                            inputs={'X': [param]},
                            outputs={'Out': [snapshot]},
                            attrs={self.op_role_key: OpRole.Optimize})
H
hutuxian 已提交
417 418 419 420 421 422 423


class SingleProcessMultiThread(GradAllReduce):
    '''
    '''

    def __init__(self):
H
hutuxian 已提交
424
        GradAllReduce.__init__(self, 1)
H
hutuxian 已提交
425 426 427 428 429
        self.mode = "single_process_multi_thread"

    def _transpile_startup_program(self):
        block = self.startup_program.global_block()
        block.append_op(type='c_comm_init_all', attrs={'ring_id': 0})
430 431 432 433 434 435


class MultiThread(GradAllReduce):
    '''
    '''

D
danleifeng 已提交
436
    def __init__(self, nrings=1, trans_mode="all_reduce"):
437
        GradAllReduce.__init__(self, nrings)
D
danleifeng 已提交
438 439 440 441 442 443
        self.mode = "box"
        self.trans_mode = trans_mode
        self.fuse_grad_size_in_num = 128
        gpu_nums = os.getenv("FLAGS_selected_gpus",
                             "0,1,2,3,4,5,6,7,8").split(",")
        self.gpu_num = len(gpu_nums)
444 445 446 447 448 449 450 451

    def _transpile_startup_program(self):
        if len(self.endpoints) > 1:
            print("begin to _transpile_startup_program for multi-node")
            print("current_endpoint: ", self.current_endpoint)
            print("total endpoints: ", self.endpoints)
            print("rank: %d, ring_id: %d" % (self.rank, self.nrings))
            for ring_id in range(self.nrings):
452 453 454 455
                self._init_communicator(self.startup_program,
                                        self.current_endpoint, self.endpoints,
                                        self.rank, ring_id, self.wait_port,
                                        True)
456

457
        else:
F
Fan Zhang 已提交
458 459
            if "xpu" in self.trans_mode:
                print(
460 461
                    "begin to _transpile_startup_program for single-node in XPU"
                )
F
Fan Zhang 已提交
462 463
                block = self.startup_program.global_block()
                block.append_op(
464
                    type='c_comm_init_all',
F
Fan Zhang 已提交
465
                    attrs={
466 467
                        'devices':
                        list(
468 469
                            map(int,
                                os.getenv("FLAGS_selected_gpus").split(","))),
470 471
                        'ring_id':
                        0
F
Fan Zhang 已提交
472 473 474 475 476
                    })
            else:
                print("begin to _transpile_startup_program for single-node")
                block = self.startup_program.global_block()
                block.append_op(type='c_comm_init_all', attrs={'ring_id': 0})
D
danleifeng 已提交
477 478 479 480 481 482 483 484 485 486 487

    def _transpile_main_program(self):
        self._insert_scale_loss_grad_ops()
        if self.trans_mode == "all_gather":
            print("begin to transpile in all-gather mode")
            self.allgather_ranks = self.nranks * self.gpu_num
            self._insert_allgather_ops()
            self._update_adam_ops()
        elif self.trans_mode == "fuse_all_reduce":
            print("begin to transpile in fuse all-reduce mode")
            self._insert_fuse_allreduce_ops()
488 489 490 491 492
        elif self.trans_mode == "all_reduce_xpu" and len(
                os.getenv("FLAGS_selected_gpus").split(",")) == 1:
            print(
                "skip transpile in all-reduce-xpu mode when number of devices is only one"
            )
D
danleifeng 已提交
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
        else:
            print("begin to transpile in all-reduce mode")
            self._insert_allreduce_ops()

    def _insert_allgather_ops(self):
        """
        insert allgather op to the main_program
        """
        block = self.main_program.global_block()
        ring_id = -1
        grad = None
        for idx, op in reversed(list(enumerate(block.ops))):
            if self._is_backward_op(op) and \
                    self.op_role_var_key in op.attr_names:
                op_role_var = op.all_attrs()[self.op_role_var_key]
                if len(op_role_var) == 0:
                    continue
                assert len(op_role_var) % 2 == 0

                offset = idx
                for i in range(0, len(op_role_var), 2):
                    param = block.vars[op_role_var[i]]
                    new_grad_var = block.create_var(
                        name=op_role_var[i] + "_allgather",
                        shape=[self.allgather_ranks] + list(param.shape),
                        persistable=False,
                        dtype=core.VarDesc.VarType.FP32,
                        stop_gradient=True)
                    grad = block.vars[op_role_var[i + 1]]
                    if param.is_distributed:  # no need to care: used in PLSC
                        continue

                    if offset == idx:
                        offset += 1
                        block._insert_op(
                            offset,
                            type='c_sync_calc_stream',
                            inputs={'X': grad},
                            outputs={'Out': grad},
                            attrs={self.op_role_key: OpRole.Backward})
                        offset += 1

                    # As we search ops reversedly, we should insert c_allgather
                    # op in the same way to keep the ring_id alternate
                    ring_id = (ring_id + 1) % self.nrings
538 539 540 541 542 543 544 545 546
                    block._insert_op(offset,
                                     type='c_allgather',
                                     inputs={'X': grad},
                                     outputs={'Out': new_grad_var},
                                     attrs={
                                         'nranks': self.allgather_ranks,
                                         'ring_id': ring_id,
                                         self.op_role_key: OpRole.Backward
                                     })
D
danleifeng 已提交
547 548 549 550 551 552 553

        if grad is None:
            return

        for idx, op in enumerate(block.ops):
            if self._is_optimizer_op(op):
                for ring_id in range(self.nrings):
554 555 556 557 558 559 560 561
                    block._insert_op(idx + ring_id,
                                     type='c_sync_comm_stream',
                                     inputs={'X': grad},
                                     outputs={'Out': grad},
                                     attrs={
                                         'ring_id': ring_id,
                                         self.op_role_key: OpRole.Backward
                                     })
D
danleifeng 已提交
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
                break

    def _update_adam_ops(self):
        """
        remove the original adam op, and add new adam ops
        """
        block = self.main_program.global_block()

        for idx, op in reversed(list(enumerate(block.ops))):
            if self._is_optimizer_op(op):
                offset = idx
                if op.type != 'adam' and op.type != 'lamb':  # filter out scale op
                    continue
                param_name = op.input("Param")[0]
                inputs = {
                    "Param": block.vars[op.input("Param")[0]],
                    "LearningRate": block.vars[op.input("LearningRate")[0]],
                    "Moment1": block.vars[op.input("Moment1")[0]],
                    "Moment2": block.vars[op.input("Moment2")[0]],
                    "Beta1Pow": block.vars[op.input("Beta1Pow")[0]],
                    "Beta2Pow": block.vars[op.input("Beta2Pow")[0]]
                }
                outputs = {
                    "ParamOut": block.vars[op.output("ParamOut")[0]],
                    "Moment1Out": block.vars[op.output("Moment1Out")[0]],
                    "Moment2Out": block.vars[op.output("Moment2Out")[0]],
                    "Beta1PowOut": block.vars[op.output("Beta1PowOut")[0]],
                    "Beta2PowOut": block.vars[op.output("Beta2PowOut")[0]]
                }
                attrs = {
592 593 594 595 596 597 598 599
                    "epsilon":
                    op.attr('epsilon'),
                    "beta1":
                    op.attr('beta1'),
                    "beta2":
                    op.attr('beta2'),
                    "lazy_mode":
                    op.attr('lazy_mode'),
D
danleifeng 已提交
600 601 602 603 604 605 606 607 608 609 610
                    "min_row_size_to_use_multithread":
                    op.attr('min_row_size_to_use_multithread')
                }
                split_vars = [
                    block.create_var(
                        name=param_name + "_" + str(i),
                        shape=block.vars[op.input("Param")[0]].shape,
                        persistable=False,
                        dtype=core.VarDesc.VarType.FP32,
                        stop_gradient=True) for i in range(self.allgather_ranks)
                ]
611 612 613 614 615 616 617 618 619 620 621 622
                block._insert_op(offset,
                                 type="split",
                                 inputs={
                                     'X':
                                     block.vars[op.input("Param")[0] +
                                                "_allgather"]
                                 },
                                 outputs={'Out': split_vars},
                                 attrs={
                                     'num': self.allgather_ranks,
                                     'axis': 0
                                 })
D
danleifeng 已提交
623 624 625 626
                offset += 1

                for i in range(self.allgather_ranks):
                    inputs["Grad"] = split_vars[i]
627 628 629 630 631
                    block._insert_op(offset,
                                     type=op.type,
                                     inputs=inputs,
                                     outputs=outputs,
                                     attrs=attrs)
D
danleifeng 已提交
632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
                    offset += 1
                # remove the original adam op
                block._remove_op(offset)

    def _insert_fuse_allreduce_ops(self):
        """
        insert coalesce_tensor and all reduce ops
        """
        block = self.main_program.global_block()
        ring_id = 0 % self.nrings
        grad = None
        param_grads = []
        # find all grad params
        for op in reversed(block.ops):
            if self._is_backward_op(op) and \
                    self.op_role_var_key in op.attr_names:
                op_role_var = op.all_attrs()[self.op_role_var_key]
                if len(op_role_var) == 0:
                    continue
                assert len(op_role_var) % 2 == 0, "vars need to be one param var followed by one grad var, " \
                                                  "but got odd number of vars"
                for i in range(0, len(op_role_var), 2):
                    param_name = op_role_var[i]
                    param = block.var(param_name)
                    grad_name = op_role_var[i + 1]
                    grad = block.var(grad_name)
                    if param.is_distributed:
                        continue
                    param_grads.append(grad)
        if grad is None:
            return

        segments = []
        last_dtype = None
        # split the grad based on dtype and fused size
        for var in param_grads:
            if len(segments) == 0 \
                    or len(segments[-1]) == self.fuse_grad_size_in_num \
                    or var.dtype != last_dtype:
                segments.append([var])
                last_dtype = var.dtype
            else:
                segments[-1].append(var)

        fused_vars = []
        for idx, op in enumerate(block.ops):
            if self._is_optimizer_op(op):
                for segment in segments:
                    # insert coalesce tensor
681 682 683 684 685
                    tmp_var = block.create_var(name=unique_name.generate(
                        'FusedOutput_{}'.format(segment[0].name)),
                                               dtype=segment[0].dtype,
                                               persistable=False,
                                               stop_gradient=True)
D
danleifeng 已提交
686
                    fused_vars.append(tmp_var)
687 688 689 690 691 692 693 694 695 696 697 698 699
                    block._insert_op(idx,
                                     type="coalesce_tensor",
                                     inputs={"Input": segment},
                                     outputs={
                                         "Output": segment,
                                         "FusedOutput": tmp_var
                                     },
                                     attrs={
                                         "copy_data": True,
                                         "use_align": True,
                                         "dtype": segment[0].dtype,
                                         self.op_role_key: OpRole.Backward
                                     })
D
danleifeng 已提交
700 701 702 703 704 705
                break

        # insert the allreduce_sum op
        for idx, op in enumerate(block.ops):
            if self._is_optimizer_op(op):
                for fused_var in fused_vars:
706 707 708 709 710 711 712 713 714 715 716 717 718 719
                    block._insert_op(idx,
                                     type='c_allreduce_sum',
                                     inputs={'X': fused_var},
                                     outputs={'Out': fused_var},
                                     attrs={
                                         'ring_id': ring_id,
                                         'use_calc_stream': False,
                                         self.op_role_key: OpRole.Backward
                                     })
                    block._insert_op(idx,
                                     type='c_sync_calc_stream',
                                     inputs={'X': fused_var},
                                     outputs={'Out': fused_var},
                                     attrs={self.op_role_key: OpRole.Backward})
D
danleifeng 已提交
720 721 722 723 724 725 726 727 728
                break

        if len(fused_vars) == 0:
            block._sync_with_cpp()
            return

        # insert the sync comm op
        for idx, op in enumerate(block.ops):
            if self._is_optimizer_op(op):
729 730 731 732 733 734 735 736
                block._insert_op(idx,
                                 type='c_sync_comm_stream',
                                 inputs={'X': fused_vars[0]},
                                 outputs={'Out': fused_vars[0]},
                                 attrs={
                                     'ring_id': ring_id,
                                     self.op_role_key: OpRole.Backward
                                 })
D
danleifeng 已提交
737 738
                break
        block._sync_with_cpp()