test_program_prune_backward.py 12.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

import contextlib
import numpy as np
import paddle.fluid as fluid
import paddle.fluid.core as core
from simple_nets import init_data, simple_fc_net, fc_with_batchnorm
import seresnext_net
23
from test_parallel_executor_transformer import transformer, get_feed_data_reader, DeviceType
24
from fake_reader import fake_imdb_reader
H
hong 已提交
25
import paddle
26 27 28 29 30 31 32 33 34


def lstm_net(use_feed):
    dict_dim = 5147
    emb_dim = 128
    hid_dim = 128
    hid_dim2 = 96
    class_dim = 2
    emb_lr = 30.0
35 36 37 38
    data = fluid.layers.data(name="words",
                             shape=[1],
                             dtype="int64",
                             lod_level=1)
39 40 41 42 43 44
    label = fluid.layers.data(name="label", shape=[1], dtype="int64")
    emb = fluid.layers.embedding(
        input=data,
        size=[dict_dim, emb_dim],
        param_attr=fluid.ParamAttr(learning_rate=emb_lr))
    fc0 = fluid.layers.fc(input=emb, size=hid_dim * 4)
45 46 47
    lstm_h, c = fluid.layers.dynamic_lstm(input=fc0,
                                          size=hid_dim * 4,
                                          is_reverse=False)
48 49 50 51 52
    lstm_max = fluid.layers.sequence_pool(input=lstm_h, pool_type='max')
    lstm_max_tanh = fluid.layers.tanh(lstm_max)
    fc1 = fluid.layers.fc(input=lstm_max_tanh, size=hid_dim2, act='tanh')
    prediction = fluid.layers.fc(input=fc1, size=class_dim, act='softmax')
    cost = fluid.layers.cross_entropy(input=prediction, label=label)
53
    avg_cost = paddle.mean(x=cost)
54 55 56
    return avg_cost


57 58 59 60 61 62 63 64 65 66
def simple_fc_net_with_accuracy(use_feed):
    img = fluid.layers.data(name='image', shape=[784], dtype='float32')
    label = fluid.layers.data(name='label', shape=[1], dtype='int64')

    hidden = img
    for _ in range(4):
        hidden = fluid.layers.fc(
            hidden,
            size=200,
            act='relu',
67 68
            bias_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(
                value=1.0)))
69 70
    prediction = fluid.layers.fc(hidden, size=10, act='softmax')
    loss = fluid.layers.cross_entropy(input=prediction, label=label)
71
    loss = paddle.mean(loss)
72 73 74 75
    accuracy_out = fluid.layers.accuracy(input=prediction, label=label, k=5)
    return loss


76 77 78 79 80 81 82 83
def cond_net(use_feed=None):
    x = fluid.layers.data(name="x", shape=[4], dtype='float32')
    label = fluid.layers.data('label', shape=[1], dtype='int64')
    prediction = fluid.layers.fc(input=x, size=1, act=None)

    def loss1(pred, label):
        x = fluid.layers.data(name="x", shape=[4], dtype='float32')
        loss = fluid.layers.cross_entropy(input=pred, label=label)
84
        avg_loss = paddle.mean(loss, name='mean_cross_entropy_loss')
85 86 87 88
        return avg_loss

    def loss2(pred, label):
        loss = fluid.layers.softmax_with_cross_entropy(logits=pred, label=label)
89
        avg_loss = paddle.mean(loss, name='mean_softmax_loss')
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
        return avg_loss

    two = fluid.layers.fill_constant([1], 'int32', 2)
    pred = (two == 0)
    avg_loss = fluid.layers.case([(pred, lambda: loss1(prediction, label))],
                                 lambda: loss2(prediction, label))
    return avg_loss


def optimization_in_cond_net(with_optimize=False):
    x = fluid.layers.data(name="x", shape=[4], dtype='float32')
    label = fluid.layers.data('label', shape=[1], dtype='int64')
    prediction = fluid.layers.fc(input=x, size=1, act=None)

    def loss1(opt, pred, label, with_optimize):
        x = fluid.layers.data(name="x", shape=[4], dtype='float32')
        loss = fluid.layers.cross_entropy(input=pred, label=label)
107
        avg_loss = paddle.mean(loss, name='mean_cross_entropy_loss')
108 109 110 111 112 113
        if with_optimize:
            opt.minimize(avg_loss)
        return avg_loss

    def loss2(opt, pred, label, with_optimize):
        loss = fluid.layers.softmax_with_cross_entropy(logits=pred, label=label)
114
        avg_loss = paddle.mean(loss, name='mean_softmax_loss')
115 116 117 118 119 120 121 122 123 124 125 126 127
        if with_optimize:
            opt.minimize(avg_loss)
        return avg_loss

    sgd = fluid.optimizer.SGD(learning_rate=0.1)
    two = fluid.layers.fill_constant([1], 'int32', 2)
    pred = (two == 0)
    avg_loss = fluid.layers.case(
        [(pred, lambda: loss1(sgd, prediction, label, with_optimize))],
        lambda: loss2(sgd, prediction, label, with_optimize))
    return avg_loss


128
class TestProgramPruneBackward(unittest.TestCase):
129

130 131
    def program_compare(self, program_a, program_b):
        assert isinstance(
132 133
            program_a, fluid.framework.Program
        ), "The first argument should be fluid.framework.Program."
134
        assert isinstance(
135 136
            program_b, fluid.framework.Program
        ), "The second argument should be fluid.framework Program."
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156

        self.assertEqual(len(program_a.blocks), len(program_b.blocks))
        for idx in range(len(program_a.blocks)):
            block_a = program_a.blocks[idx]
            block_b = program_b.blocks[idx]
            self.assertEqual(len(block_a.ops), len(block_b.ops))
            self.assertEqual(len(block_a.vars), len(block_b.vars))
            for op_idx in range(len(block_a.ops)):
                self.assertEqual(block_a.ops[op_idx].type,
                                 block_b.ops[op_idx].type)
            for var_key in list(block_a.vars.keys()):
                self.assertTrue(block_b.has_var(var_key))

    def check_prune_correctness(self, method, feed_dict, optimizer):
        loss = method(use_feed=False)

        main_program = fluid.default_main_program()
        test_prog_orig = main_program.clone(for_test=True)
        optimizer().minimize(loss)
        test_prog_prune = main_program.clone(for_test=True)
157

158 159
        self.program_compare(test_prog_orig, test_prog_prune)

160 161 162
        places = [core.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(core.CUDAPlace(0))
163

164 165 166 167 168 169 170 171 172 173 174
        for place in places:
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())

            loss_data_prune, = exe.run(test_prog_prune,
                                       feed=feed_dict,
                                       fetch_list=[loss.name])
            loss_data_orig, = exe.run(test_prog_orig,
                                      feed=feed_dict,
                                      fetch_list=[loss.name])
            self.assertEqual(loss_data_orig, loss_data_prune)
175 176

    def test_simple_fc_net(self):
177

178 179 180 181 182 183 184 185
        def optimizer():
            optimizer = fluid.optimizer.SGD(
                learning_rate=0.001,
                regularization=fluid.regularizer.L2Decay(1e-4))
            return optimizer

        with self.program_scope_guard():
            img, label = init_data()
186 187 188 189 190 191
            self.check_prune_correctness(method=simple_fc_net,
                                         feed_dict={
                                             "image": img,
                                             "label": label
                                         },
                                         optimizer=optimizer)
192

193
    def test_simple_fc_net_with_accuracy(self):
194

195 196 197 198 199 200 201 202
        def optimizer():
            optimizer = fluid.optimizer.SGD(
                learning_rate=0.001,
                regularization=fluid.regularizer.L2Decay(1e-4))
            return optimizer

        with self.program_scope_guard():
            img, label = init_data()
203 204 205 206 207 208
            self.check_prune_correctness(method=simple_fc_net_with_accuracy,
                                         feed_dict={
                                             "image": img,
                                             "label": label
                                         },
                                         optimizer=optimizer)
209

210
    def test_batchnorm_fc(self):
211

212 213 214 215 216 217 218 219
        def optimizer():
            optimizer = fluid.optimizer.SGD(
                learning_rate=0.001,
                regularization=fluid.regularizer.L2Decay(1e-4))
            return optimizer

        with self.program_scope_guard():
            img, label = init_data()
220 221 222 223 224 225
            self.check_prune_correctness(method=fc_with_batchnorm,
                                         feed_dict={
                                             "image": img,
                                             "label": label
                                         },
                                         optimizer=optimizer)
226 227 228 229 230

    def test_seresnet(self):
        with self.program_scope_guard():
            self.check_prune_correctness(
                method=seresnext_net.model,
231
                feed_dict=seresnext_net.feed_dict(use_device=DeviceType.CPU),
232 233 234
                optimizer=seresnext_net.optimizer)

    def test_transformer(self):
235

236 237 238 239 240 241 242 243 244 245
        def optimizer():
            optimizer = fluid.optimizer.Adam(
                learning_rate=0.001,
                regularization=fluid.regularizer.L2Decay(1e-4))
            return optimizer

        with self.program_scope_guard():
            # the program argument is used to distinguish Program and CompiledProgram
            feed_dict = get_feed_data_reader().get_next(
                fluid.Executor(core.CPUPlace()), fluid.default_main_program())
246 247 248
            self.check_prune_correctness(method=transformer,
                                         feed_dict=feed_dict,
                                         optimizer=optimizer)
249 250

    def test_lstm(self):
251

252 253 254 255 256 257 258 259 260
        def optimizer():
            optimizer = fluid.optimizer.Adagrad(
                learning_rate=0.001,
                regularization=fluid.regularizer.L2Decay(1e-4))
            return optimizer

        with self.program_scope_guard():
            word_dict_size = 5147
            reader = fake_imdb_reader(word_dict_size, 1)
261 262 263 264
            data = fluid.layers.data(name="words",
                                     shape=[1],
                                     dtype="int64",
                                     lod_level=1)
265
            label = fluid.layers.data(name="label", shape=[1], dtype="int64")
266 267
            feeder = fluid.DataFeeder(feed_list=[data, label],
                                      place=core.CPUPlace())
268
            feed_data = feeder.feed(reader())
269 270 271
            self.check_prune_correctness(method=lstm_net,
                                         feed_dict=feed_data,
                                         optimizer=optimizer)
272

273
    def test_cond(self):
274

275 276 277 278 279 280 281 282
        def optimizer():
            optimizer = fluid.optimizer.SGD(learning_rate=0.01)
            return optimizer

        with self.program_scope_guard():
            x_in = np.random.random(size=(10, 4)).astype('float32')
            label_in = np.random.randint(1, size=(10, 1)).astype('int64')
            feed_dict = {'x': x_in, 'label': label_in}
283 284 285
            self.check_prune_correctness(method=cond_net,
                                         feed_dict=feed_dict,
                                         optimizer=optimizer)
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316

    def test_optimization_in_cond(self):
        x_in = np.random.random(size=(10, 4)).astype('float32')
        label_in = np.random.randint(1, size=(10, 1)).astype('int64')
        feed_dict = {'x': x_in, 'label': label_in}
        with self.program_scope_guard():
            loss = optimization_in_cond_net(False)
            main_program = fluid.default_main_program()
            test_prog_orig = main_program.clone(for_test=True)
            place = core.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            loss_data_orig, = exe.run(test_prog_orig,
                                      feed=feed_dict,
                                      fetch_list=[loss.name])

        with self.program_scope_guard():
            loss = optimization_in_cond_net(True)
            main_program = fluid.default_main_program()
            test_prog_prune = main_program.clone(for_test=True)

            place = core.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            loss_data_prune, = exe.run(test_prog_prune,
                                       feed=feed_dict,
                                       fetch_list=[loss.name])

        self.program_compare(test_prog_orig, test_prog_prune)
        self.assertEqual(loss_data_orig, loss_data_prune)

317 318 319 320 321 322 323
    @contextlib.contextmanager
    def program_scope_guard(self):
        prog = fluid.Program()
        startup_prog = fluid.Program()
        scope = fluid.core.Scope()
        with fluid.scope_guard(scope):
            with fluid.program_guard(prog, startup_prog):
324 325
                with fluid.unique_name.guard():
                    yield
326 327 328


if __name__ == '__main__':
H
hong 已提交
329
    paddle.enable_static()
330
    unittest.main()