test_program_prune_backward.py 6.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest

import contextlib
import numpy as np
import paddle.fluid as fluid
import paddle.fluid.core as core
from simple_nets import init_data, simple_fc_net, fc_with_batchnorm
import seresnext_net
from test_parallel_executor_transformer import transformer, get_feed_data_reader
from fake_reader import fake_imdb_reader


def lstm_net(use_feed):
    dict_dim = 5147
    emb_dim = 128
    hid_dim = 128
    hid_dim2 = 96
    class_dim = 2
    emb_lr = 30.0
    data = fluid.layers.data(
        name="words", shape=[1], dtype="int64", lod_level=1)
    label = fluid.layers.data(name="label", shape=[1], dtype="int64")
    emb = fluid.layers.embedding(
        input=data,
        size=[dict_dim, emb_dim],
        param_attr=fluid.ParamAttr(learning_rate=emb_lr))
    fc0 = fluid.layers.fc(input=emb, size=hid_dim * 4)
    lstm_h, c = fluid.layers.dynamic_lstm(
        input=fc0, size=hid_dim * 4, is_reverse=False)
    lstm_max = fluid.layers.sequence_pool(input=lstm_h, pool_type='max')
    lstm_max_tanh = fluid.layers.tanh(lstm_max)
    fc1 = fluid.layers.fc(input=lstm_max_tanh, size=hid_dim2, act='tanh')
    prediction = fluid.layers.fc(input=fc1, size=class_dim, act='softmax')
    cost = fluid.layers.cross_entropy(input=prediction, label=label)
    avg_cost = fluid.layers.mean(x=cost)
    return avg_cost


class TestProgramPruneBackward(unittest.TestCase):
    def program_compare(self, program_a, program_b):
        assert isinstance(
            program_a, fluid.framework.
            Program), "The first argument should be fluid.framework.Program."
        assert isinstance(
            program_b, fluid.framework.
            Program), "The second argument should be fluid.framework Program."

        self.assertEqual(len(program_a.blocks), len(program_b.blocks))
        for idx in range(len(program_a.blocks)):
            block_a = program_a.blocks[idx]
            block_b = program_b.blocks[idx]
            self.assertEqual(len(block_a.ops), len(block_b.ops))
            self.assertEqual(len(block_a.vars), len(block_b.vars))
            for op_idx in range(len(block_a.ops)):
                self.assertEqual(block_a.ops[op_idx].type,
                                 block_b.ops[op_idx].type)
            for var_key in list(block_a.vars.keys()):
                self.assertTrue(block_b.has_var(var_key))

    def check_prune_correctness(self, method, feed_dict, optimizer):
        loss = method(use_feed=False)

        main_program = fluid.default_main_program()
        test_prog_orig = main_program.clone(for_test=True)
        optimizer().minimize(loss)
        test_prog_prune = main_program.clone(for_test=True)
        self.program_compare(test_prog_orig, test_prog_prune)

        place = core.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())

        loss_data_prune, = exe.run(test_prog_prune,
                                   feed=feed_dict,
                                   fetch_list=[loss.name])
        loss_data_orig, = exe.run(test_prog_orig,
                                  feed=feed_dict,
                                  fetch_list=[loss.name])
        self.assertEqual(loss_data_orig, loss_data_prune)

    def test_simple_fc_net(self):
        def optimizer():
            optimizer = fluid.optimizer.SGD(
                learning_rate=0.001,
                regularization=fluid.regularizer.L2Decay(1e-4))
            return optimizer

        with self.program_scope_guard():
            img, label = init_data()
            self.check_prune_correctness(
                method=simple_fc_net,
                feed_dict={"image": img,
                           "label": label},
                optimizer=optimizer)

    def test_batchnorm_fc(self):
        def optimizer():
            optimizer = fluid.optimizer.SGD(
                learning_rate=0.001,
                regularization=fluid.regularizer.L2Decay(1e-4))
            return optimizer

        with self.program_scope_guard():
            img, label = init_data()
            self.check_prune_correctness(
                method=fc_with_batchnorm,
                feed_dict={"image": img,
                           "label": label},
                optimizer=optimizer)

    def test_seresnet(self):
        with self.program_scope_guard():
            self.check_prune_correctness(
                method=seresnext_net.model,
                feed_dict=seresnext_net.feed_dict(use_cuda=False),
                optimizer=seresnext_net.optimizer)

    def test_transformer(self):
        def optimizer():
            optimizer = fluid.optimizer.Adam(
                learning_rate=0.001,
                regularization=fluid.regularizer.L2Decay(1e-4))
            return optimizer

        with self.program_scope_guard():
            # the program argument is used to distinguish Program and CompiledProgram
            feed_dict = get_feed_data_reader().get_next(
                fluid.Executor(core.CPUPlace()), fluid.default_main_program())
            self.check_prune_correctness(
                method=transformer, feed_dict=feed_dict, optimizer=optimizer)

    def test_lstm(self):
        def optimizer():
            optimizer = fluid.optimizer.Adagrad(
                learning_rate=0.001,
                regularization=fluid.regularizer.L2Decay(1e-4))
            return optimizer

        with self.program_scope_guard():
            word_dict_size = 5147
            reader = fake_imdb_reader(word_dict_size, 1)
            data = fluid.layers.data(
                name="words", shape=[1], dtype="int64", lod_level=1)
            label = fluid.layers.data(name="label", shape=[1], dtype="int64")
            feeder = fluid.DataFeeder(
                feed_list=[data, label], place=core.CPUPlace())
            feed_data = feeder.feed(reader())
            self.check_prune_correctness(
                method=lstm_net, feed_dict=feed_data, optimizer=optimizer)

    @contextlib.contextmanager
    def program_scope_guard(self):
        prog = fluid.Program()
        startup_prog = fluid.Program()
        scope = fluid.core.Scope()
        with fluid.scope_guard(scope):
            with fluid.program_guard(prog, startup_prog):
                yield


if __name__ == '__main__':
    unittest.main()