test_program_prune_backward.py 12.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest

import contextlib
import numpy as np
import paddle.fluid as fluid
import paddle.fluid.core as core
from simple_nets import init_data, simple_fc_net, fc_with_batchnorm
import seresnext_net
from test_parallel_executor_transformer import transformer, get_feed_data_reader
from fake_reader import fake_imdb_reader


def lstm_net(use_feed):
    dict_dim = 5147
    emb_dim = 128
    hid_dim = 128
    hid_dim2 = 96
    class_dim = 2
    emb_lr = 30.0
    data = fluid.layers.data(
        name="words", shape=[1], dtype="int64", lod_level=1)
    label = fluid.layers.data(name="label", shape=[1], dtype="int64")
    emb = fluid.layers.embedding(
        input=data,
        size=[dict_dim, emb_dim],
        param_attr=fluid.ParamAttr(learning_rate=emb_lr))
    fc0 = fluid.layers.fc(input=emb, size=hid_dim * 4)
    lstm_h, c = fluid.layers.dynamic_lstm(
        input=fc0, size=hid_dim * 4, is_reverse=False)
    lstm_max = fluid.layers.sequence_pool(input=lstm_h, pool_type='max')
    lstm_max_tanh = fluid.layers.tanh(lstm_max)
    fc1 = fluid.layers.fc(input=lstm_max_tanh, size=hid_dim2, act='tanh')
    prediction = fluid.layers.fc(input=fc1, size=class_dim, act='softmax')
    cost = fluid.layers.cross_entropy(input=prediction, label=label)
    avg_cost = fluid.layers.mean(x=cost)
    return avg_cost


55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
def simple_fc_net_with_accuracy(use_feed):
    img = fluid.layers.data(name='image', shape=[784], dtype='float32')
    label = fluid.layers.data(name='label', shape=[1], dtype='int64')

    hidden = img
    for _ in range(4):
        hidden = fluid.layers.fc(
            hidden,
            size=200,
            act='relu',
            bias_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=1.0)))
    prediction = fluid.layers.fc(hidden, size=10, act='softmax')
    loss = fluid.layers.cross_entropy(input=prediction, label=label)
    loss = fluid.layers.mean(loss)
    accuracy_out = fluid.layers.accuracy(input=prediction, label=label, k=5)
    return loss


74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
def cond_net(use_feed=None):
    x = fluid.layers.data(name="x", shape=[4], dtype='float32')
    label = fluid.layers.data('label', shape=[1], dtype='int64')
    prediction = fluid.layers.fc(input=x, size=1, act=None)

    def loss1(pred, label):
        x = fluid.layers.data(name="x", shape=[4], dtype='float32')
        loss = fluid.layers.cross_entropy(input=pred, label=label)
        avg_loss = fluid.layers.mean(loss, name='mean_cross_entropy_loss')
        return avg_loss

    def loss2(pred, label):
        loss = fluid.layers.softmax_with_cross_entropy(logits=pred, label=label)
        avg_loss = fluid.layers.mean(loss, name='mean_softmax_loss')
        return avg_loss

    two = fluid.layers.fill_constant([1], 'int32', 2)
    pred = (two == 0)
    avg_loss = fluid.layers.case([(pred, lambda: loss1(prediction, label))],
                                 lambda: loss2(prediction, label))
    return avg_loss


def optimization_in_cond_net(with_optimize=False):
    x = fluid.layers.data(name="x", shape=[4], dtype='float32')
    label = fluid.layers.data('label', shape=[1], dtype='int64')
    prediction = fluid.layers.fc(input=x, size=1, act=None)

    def loss1(opt, pred, label, with_optimize):
        x = fluid.layers.data(name="x", shape=[4], dtype='float32')
        loss = fluid.layers.cross_entropy(input=pred, label=label)
        avg_loss = fluid.layers.mean(loss, name='mean_cross_entropy_loss')
        if with_optimize:
            opt.minimize(avg_loss)
        return avg_loss

    def loss2(opt, pred, label, with_optimize):
        loss = fluid.layers.softmax_with_cross_entropy(logits=pred, label=label)
        avg_loss = fluid.layers.mean(loss, name='mean_softmax_loss')
        if with_optimize:
            opt.minimize(avg_loss)
        return avg_loss

    sgd = fluid.optimizer.SGD(learning_rate=0.1)
    two = fluid.layers.fill_constant([1], 'int32', 2)
    pred = (two == 0)
    avg_loss = fluid.layers.case(
        [(pred, lambda: loss1(sgd, prediction, label, with_optimize))],
        lambda: loss2(sgd, prediction, label, with_optimize))
    return avg_loss


126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
class TestProgramPruneBackward(unittest.TestCase):
    def program_compare(self, program_a, program_b):
        assert isinstance(
            program_a, fluid.framework.
            Program), "The first argument should be fluid.framework.Program."
        assert isinstance(
            program_b, fluid.framework.
            Program), "The second argument should be fluid.framework Program."

        self.assertEqual(len(program_a.blocks), len(program_b.blocks))
        for idx in range(len(program_a.blocks)):
            block_a = program_a.blocks[idx]
            block_b = program_b.blocks[idx]
            self.assertEqual(len(block_a.ops), len(block_b.ops))
            self.assertEqual(len(block_a.vars), len(block_b.vars))
            for op_idx in range(len(block_a.ops)):
                self.assertEqual(block_a.ops[op_idx].type,
                                 block_b.ops[op_idx].type)
            for var_key in list(block_a.vars.keys()):
                self.assertTrue(block_b.has_var(var_key))

    def check_prune_correctness(self, method, feed_dict, optimizer):
        loss = method(use_feed=False)

        main_program = fluid.default_main_program()
        test_prog_orig = main_program.clone(for_test=True)
        optimizer().minimize(loss)
        test_prog_prune = main_program.clone(for_test=True)
154

155 156
        self.program_compare(test_prog_orig, test_prog_prune)

157 158 159
        places = [core.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(core.CUDAPlace(0))
160

161 162 163 164 165 166 167 168 169 170 171
        for place in places:
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())

            loss_data_prune, = exe.run(test_prog_prune,
                                       feed=feed_dict,
                                       fetch_list=[loss.name])
            loss_data_orig, = exe.run(test_prog_orig,
                                      feed=feed_dict,
                                      fetch_list=[loss.name])
            self.assertEqual(loss_data_orig, loss_data_prune)
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187

    def test_simple_fc_net(self):
        def optimizer():
            optimizer = fluid.optimizer.SGD(
                learning_rate=0.001,
                regularization=fluid.regularizer.L2Decay(1e-4))
            return optimizer

        with self.program_scope_guard():
            img, label = init_data()
            self.check_prune_correctness(
                method=simple_fc_net,
                feed_dict={"image": img,
                           "label": label},
                optimizer=optimizer)

188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
    def test_simple_fc_net_with_accuracy(self):
        def optimizer():
            optimizer = fluid.optimizer.SGD(
                learning_rate=0.001,
                regularization=fluid.regularizer.L2Decay(1e-4))
            return optimizer

        with self.program_scope_guard():
            img, label = init_data()
            self.check_prune_correctness(
                method=simple_fc_net_with_accuracy,
                feed_dict={"image": img,
                           "label": label},
                optimizer=optimizer)

203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
    def test_batchnorm_fc(self):
        def optimizer():
            optimizer = fluid.optimizer.SGD(
                learning_rate=0.001,
                regularization=fluid.regularizer.L2Decay(1e-4))
            return optimizer

        with self.program_scope_guard():
            img, label = init_data()
            self.check_prune_correctness(
                method=fc_with_batchnorm,
                feed_dict={"image": img,
                           "label": label},
                optimizer=optimizer)

    def test_seresnet(self):
        with self.program_scope_guard():
            self.check_prune_correctness(
                method=seresnext_net.model,
                feed_dict=seresnext_net.feed_dict(use_cuda=False),
                optimizer=seresnext_net.optimizer)

    def test_transformer(self):
        def optimizer():
            optimizer = fluid.optimizer.Adam(
                learning_rate=0.001,
                regularization=fluid.regularizer.L2Decay(1e-4))
            return optimizer

        with self.program_scope_guard():
            # the program argument is used to distinguish Program and CompiledProgram
            feed_dict = get_feed_data_reader().get_next(
                fluid.Executor(core.CPUPlace()), fluid.default_main_program())
            self.check_prune_correctness(
                method=transformer, feed_dict=feed_dict, optimizer=optimizer)

    def test_lstm(self):
        def optimizer():
            optimizer = fluid.optimizer.Adagrad(
                learning_rate=0.001,
                regularization=fluid.regularizer.L2Decay(1e-4))
            return optimizer

        with self.program_scope_guard():
            word_dict_size = 5147
            reader = fake_imdb_reader(word_dict_size, 1)
            data = fluid.layers.data(
                name="words", shape=[1], dtype="int64", lod_level=1)
            label = fluid.layers.data(name="label", shape=[1], dtype="int64")
            feeder = fluid.DataFeeder(
                feed_list=[data, label], place=core.CPUPlace())
            feed_data = feeder.feed(reader())
            self.check_prune_correctness(
                method=lstm_net, feed_dict=feed_data, optimizer=optimizer)

258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
    def test_cond(self):
        def optimizer():
            optimizer = fluid.optimizer.SGD(learning_rate=0.01)
            return optimizer

        with self.program_scope_guard():
            x_in = np.random.random(size=(10, 4)).astype('float32')
            label_in = np.random.randint(1, size=(10, 1)).astype('int64')
            feed_dict = {'x': x_in, 'label': label_in}
            self.check_prune_correctness(
                method=cond_net, feed_dict=feed_dict, optimizer=optimizer)

    def test_optimization_in_cond(self):
        x_in = np.random.random(size=(10, 4)).astype('float32')
        label_in = np.random.randint(1, size=(10, 1)).astype('int64')
        feed_dict = {'x': x_in, 'label': label_in}
        with self.program_scope_guard():
            loss = optimization_in_cond_net(False)
            main_program = fluid.default_main_program()
            test_prog_orig = main_program.clone(for_test=True)
            place = core.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            loss_data_orig, = exe.run(test_prog_orig,
                                      feed=feed_dict,
                                      fetch_list=[loss.name])

        with self.program_scope_guard():
            loss = optimization_in_cond_net(True)
            main_program = fluid.default_main_program()
            test_prog_prune = main_program.clone(for_test=True)

            place = core.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            loss_data_prune, = exe.run(test_prog_prune,
                                       feed=feed_dict,
                                       fetch_list=[loss.name])

        self.program_compare(test_prog_orig, test_prog_prune)
        self.assertEqual(loss_data_orig, loss_data_prune)

300 301 302 303 304 305 306
    @contextlib.contextmanager
    def program_scope_guard(self):
        prog = fluid.Program()
        startup_prog = fluid.Program()
        scope = fluid.core.Scope()
        with fluid.scope_guard(scope):
            with fluid.program_guard(prog, startup_prog):
307 308
                with fluid.unique_name.guard():
                    yield
309 310 311 312


if __name__ == '__main__':
    unittest.main()