test_recognize_digits.py 10.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Y
Yang Yu 已提交
2 3 4 5 6 7 8 9 10 11 12 13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

15
import paddle.fluid.core as core
16
import math
武毅 已提交
17
import os
18 19 20 21 22 23 24 25
import sys
import unittest

import numpy

import paddle
import paddle.fluid as fluid
from paddle.fluid.layers.device import get_places
Y
Yang Yu 已提交
26

P
pangyoki 已提交
27 28
paddle.enable_static()

Y
Yang Yu 已提交
29 30 31 32 33 34
BATCH_SIZE = 64


def loss_net(hidden, label):
    prediction = fluid.layers.fc(input=hidden, size=10, act='softmax')
    loss = fluid.layers.cross_entropy(input=prediction, label=label)
35
    avg_loss = paddle.mean(loss)
L
Liu Yiqun 已提交
36 37
    acc = fluid.layers.accuracy(input=prediction, label=label)
    return prediction, avg_loss, acc
Y
Yang Yu 已提交
38 39 40 41 42 43 44 45 46


def mlp(img, label):
    hidden = fluid.layers.fc(input=img, size=200, act='tanh')
    hidden = fluid.layers.fc(input=hidden, size=200, act='tanh')
    return loss_net(hidden, label)


def conv_net(img, label):
47 48 49 50 51 52
    conv_pool_1 = fluid.nets.simple_img_conv_pool(input=img,
                                                  filter_size=5,
                                                  num_filters=20,
                                                  pool_size=2,
                                                  pool_stride=2,
                                                  act="relu")
Y
Yang Yang(Tony) 已提交
53
    conv_pool_1 = fluid.layers.batch_norm(conv_pool_1)
54 55 56 57 58 59
    conv_pool_2 = fluid.nets.simple_img_conv_pool(input=conv_pool_1,
                                                  filter_size=5,
                                                  num_filters=50,
                                                  pool_size=2,
                                                  pool_stride=2,
                                                  act="relu")
Y
Yang Yu 已提交
60 61 62
    return loss_net(conv_pool_2, label)


63 64 65 66
def train(nn_type,
          use_cuda,
          parallel,
          save_dirname=None,
X
Xin Pan 已提交
67
          save_full_dirname=None,
68
          model_filename=None,
武毅 已提交
69 70
          params_filename=None,
          is_local=True):
71 72
    if use_cuda and not fluid.core.is_compiled_with_cuda():
        return
Y
Yang Yu 已提交
73 74 75
    img = fluid.layers.data(name='img', shape=[1, 28, 28], dtype='float32')
    label = fluid.layers.data(name='label', shape=[1], dtype='int64')

76
    if nn_type == 'mlp':
Y
Yang Yu 已提交
77 78 79 80
        net_conf = mlp
    else:
        net_conf = conv_net

81
    if parallel:
X
Xin Pan 已提交
82
        raise NotImplementedError()
Y
Yang Yu 已提交
83
    else:
L
Liu Yiqun 已提交
84
        prediction, avg_loss, acc = net_conf(img, label)
Y
Yang Yu 已提交
85

86
    test_program = fluid.default_main_program().clone(for_test=True)
Y
Yang Yu 已提交
87

X
Xin Pan 已提交
88
    optimizer = fluid.optimizer.Adam(learning_rate=0.001)
W
Wu Yi 已提交
89
    optimizer.minimize(avg_loss)
Y
Yang Yu 已提交
90

91
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
Y
Yang Yu 已提交
92 93 94

    exe = fluid.Executor(place)

95 96 97 98 99
    train_reader = paddle.batch(paddle.reader.shuffle(
        paddle.dataset.mnist.train(), buf_size=500),
                                batch_size=BATCH_SIZE)
    test_reader = paddle.batch(paddle.dataset.mnist.test(),
                               batch_size=BATCH_SIZE)
Y
Yang Yu 已提交
100 101
    feeder = fluid.DataFeeder(feed_list=[img, label], place=place)

武毅 已提交
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
    def train_loop(main_program):
        exe.run(fluid.default_startup_program())

        PASS_NUM = 100
        for pass_id in range(PASS_NUM):
            for batch_id, data in enumerate(train_reader()):
                # train a mini-batch, fetch nothing
                exe.run(main_program, feed=feeder.feed(data))
                if (batch_id + 1) % 10 == 0:
                    acc_set = []
                    avg_loss_set = []
                    for test_data in test_reader():
                        acc_np, avg_loss_np = exe.run(
                            program=test_program,
                            feed=feeder.feed(test_data),
                            fetch_list=[acc, avg_loss])
                        acc_set.append(float(acc_np))
                        avg_loss_set.append(float(avg_loss_np))
                    # get test acc and loss
                    acc_val = numpy.array(acc_set).mean()
                    avg_loss_val = numpy.array(avg_loss_set).mean()
Q
Qi Li 已提交
123 124
                    if float(acc_val) > 0.2 or pass_id == (PASS_NUM - 1):
                        # Smaller value to increase CI speed
武毅 已提交
125 126 127 128 129 130
                        if save_dirname is not None:
                            fluid.io.save_inference_model(
                                save_dirname, ["img"], [prediction],
                                exe,
                                model_filename=model_filename,
                                params_filename=params_filename)
X
Xin Pan 已提交
131 132
                        if save_full_dirname is not None:
                            fluid.io.save_inference_model(
X
Xin Pan 已提交
133
                                save_full_dirname, [], [],
X
Xin Pan 已提交
134 135 136 137
                                exe,
                                model_filename=model_filename,
                                params_filename=params_filename,
                                export_for_deployment=False)
武毅 已提交
138 139
                        return
                    else:
140
                        print(
141 142 143
                            'PassID {0:1}, BatchID {1:04}, Test Loss {2:2.2}, Acc {3:2.2}'
                            .format(pass_id, batch_id + 1, float(avg_loss_val),
                                    float(acc_val)))
武毅 已提交
144 145 146 147 148 149 150
                        if math.isnan(float(avg_loss_val)):
                            sys.exit("got NaN loss, training failed.")
        raise AssertionError("Loss of recognize digits is too large")

    if is_local:
        train_loop(fluid.default_main_program())
    else:
G
gongweibao 已提交
151 152
        port = os.getenv("PADDLE_PSERVER_PORT", "6174")
        pserver_ips = os.getenv("PADDLE_PSERVER_IPS")  # ip,ip...
武毅 已提交
153 154 155 156
        eplist = []
        for ip in pserver_ips.split(","):
            eplist.append(':'.join([ip, port]))
        pserver_endpoints = ",".join(eplist)  # ip:port,ip:port...
G
gongweibao 已提交
157
        trainers = int(os.getenv("PADDLE_TRAINERS"))
武毅 已提交
158
        current_endpoint = os.getenv("POD_IP") + ":" + port
G
gongweibao 已提交
159 160
        trainer_id = int(os.getenv("PADDLE_TRAINER_ID"))
        training_role = os.getenv("PADDLE_TRAINING_ROLE", "TRAINER")
武毅 已提交
161
        t = fluid.DistributeTranspiler()
Y
Yancey1989 已提交
162
        t.transpile(trainer_id, pservers=pserver_endpoints, trainers=trainers)
武毅 已提交
163 164 165 166 167 168 169 170
        if training_role == "PSERVER":
            pserver_prog = t.get_pserver_program(current_endpoint)
            pserver_startup = t.get_startup_program(current_endpoint,
                                                    pserver_prog)
            exe.run(pserver_startup)
            exe.run(pserver_prog)
        elif training_role == "TRAINER":
            train_loop(t.get_trainer_program())
Y
Yang Yu 已提交
171 172


173 174 175 176
def infer(use_cuda,
          save_dirname=None,
          model_filename=None,
          params_filename=None):
L
Liu Yiqun 已提交
177 178 179
    if save_dirname is None:
        return

180
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
L
Liu Yiqun 已提交
181 182
    exe = fluid.Executor(place)

183 184 185 186 187 188
    inference_scope = fluid.core.Scope()
    with fluid.scope_guard(inference_scope):
        # Use fluid.io.load_inference_model to obtain the inference program desc,
        # the feed_target_names (the names of variables that will be feeded
        # data using feed operators), and the fetch_targets (variables that
        # we want to obtain data from using fetch operators).
189
        [inference_program, feed_target_names,
190 191 192
         fetch_targets] = fluid.io.load_inference_model(save_dirname, exe,
                                                        model_filename,
                                                        params_filename)
193 194 195 196 197 198 199 200 201 202 203 204

        # The input's dimension of conv should be 4-D or 5-D.
        # Use normilized image pixels as input data, which should be in the range [-1.0, 1.0].
        batch_size = 1
        tensor_img = numpy.random.uniform(
            -1.0, 1.0, [batch_size, 1, 28, 28]).astype("float32")

        # Construct feed as a dictionary of {feed_target_name: feed_target_data}
        # and results will contain a list of data corresponding to fetch_targets.
        results = exe.run(inference_program,
                          feed={feed_target_names[0]: tensor_img},
                          fetch_list=fetch_targets)
205
        print("infer results: ", results[0])
L
Liu Yiqun 已提交
206 207


208
def main(use_cuda, parallel, nn_type, combine):
209
    save_dirname = None
X
Xin Pan 已提交
210
    save_full_dirname = None
211 212
    model_filename = None
    params_filename = None
213 214
    if not use_cuda and not parallel:
        save_dirname = "recognize_digits_" + nn_type + ".inference.model"
X
Xin Pan 已提交
215
        save_full_dirname = "recognize_digits_" + nn_type + ".train.model"
216
        if combine == True:
217 218
            model_filename = "__model_combined__"
            params_filename = "__params_combined__"
219

武毅 已提交
220
    # call train() with is_local argument to run distributed train
221 222 223 224 225 226 227 228 229 230 231
    train(nn_type=nn_type,
          use_cuda=use_cuda,
          parallel=parallel,
          save_dirname=save_dirname,
          save_full_dirname=save_full_dirname,
          model_filename=model_filename,
          params_filename=params_filename)
    infer(use_cuda=use_cuda,
          save_dirname=save_dirname,
          model_filename=model_filename,
          params_filename=params_filename)
232 233 234 235 236 237


class TestRecognizeDigits(unittest.TestCase):
    pass


238
def inject_test_method(use_cuda, parallel, nn_type, combine):
239

240 241 242 243 244 245
    def __impl__(self):
        prog = fluid.Program()
        startup_prog = fluid.Program()
        scope = fluid.core.Scope()
        with fluid.scope_guard(scope):
            with fluid.program_guard(prog, startup_prog):
246
                main(use_cuda, parallel, nn_type, combine)
247

248 249 250
    fn = 'test_{0}_{1}_{2}_{3}'.format(nn_type, 'cuda' if use_cuda else 'cpu',
                                       'parallel' if parallel else 'normal',
                                       'combine' if combine else 'separate')
251 252 253 254 255 256

    setattr(TestRecognizeDigits, fn, __impl__)


def inject_all_tests():
    for use_cuda in (False, True):
257 258
        if use_cuda and not core.is_compiled_with_cuda():
            continue
X
fix  
Xin Pan 已提交
259
        for parallel in (False, ):
260
            for nn_type in ('mlp', 'conv'):
261 262
                inject_test_method(use_cuda, parallel, nn_type, True)

263
    # Two unit-test for saving parameters as separate files
264
    inject_test_method(False, False, 'mlp', False)
265
    inject_test_method(False, False, 'conv', False)
266 267 268 269 270 271


inject_all_tests()

if __name__ == '__main__':
    unittest.main()