affine_grid_op.cc 10.5 KB
Newer Older
W
whs 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/affine_grid_op.h"
16
#include <memory>
W
whs 已提交
17
#include <string>
18
#include <vector>
W
whs 已提交
19
#include "paddle/fluid/framework/op_registry.h"
W
whs 已提交
20
#include "paddle/fluid/framework/op_version_registry.h"
21
#include "paddle/fluid/platform/device/gpu/gpu_dnn.h"
W
whs 已提交
22 23 24 25 26 27 28 29

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

template <typename T>
struct Linspace<paddle::platform::CPUDeviceContext, T> {
30 31
  void operator()(T start, T end, int count, bool align_corners,
                  framework::Tensor* numbers,
32 33
                  const framework::ExecutionContext& ctx) {
    T* number_data = numbers->mutable_data<T>({count}, platform::CPUPlace());
W
whs 已提交
34
    T slice = (end - start) / (T)(count - 1);
35 36 37 38
    if (!align_corners) {
      slice = (end - start) / (T)count;
      start *= (T)(count - 1) / (T)count;
    }
W
whs 已提交
39 40 41 42 43 44 45 46 47 48
    for (int i = 0; i < count; ++i) {
      number_data[i] = start + (T)i * slice;
    }
  }
};

class AffineGridOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
49 50 51 52 53 54
    PADDLE_ENFORCE_EQ(ctx->HasInput("Theta"), true,
                      platform::errors::NotFound(
                          "The input 'Theta' of AffineGridOp is not found."));
    PADDLE_ENFORCE_EQ(ctx->HasOutput("Output"), true,
                      platform::errors::NotFound(
                          "The output 'Output' of AffineGridOp is not found."));
W
whs 已提交
55
    auto theta_dims = ctx->GetInputDim("Theta");
56 57 58 59 60 61
    PADDLE_ENFORCE_EQ(
        theta_dims.size(), 3,
        platform::errors::InvalidArgument(
            "The input Theta's dimensions size should be 3. But received "
            "Theta's demensions size=[%d],  Theta's dimensions=[%s].",
            theta_dims.size(), theta_dims));
W
whs 已提交
62 63 64

    auto output_shape = ctx->Attrs().Get<std::vector<int>>("output_shape");
    if (output_shape.size() == 0) {
65 66 67 68 69
      PADDLE_ENFORCE_EQ(
          ctx->HasInput("OutputShape"), true,
          platform::errors::NotFound(
              "The input 'OutputShape' of AffineGridOp should not be null if "
              "'output_shape' is not configured."));
W
whs 已提交
70
      auto output_shape_dims = ctx->GetInputDim("OutputShape");
71 72 73 74 75 76 77
      PADDLE_ENFORCE_EQ(
          output_shape_dims.size(), 1,
          platform::errors::InvalidArgument(
              "The dimesions size of input OutputShape in AffineGridOp should "
              "be 1. But received OutputShape's  dimesions size=[%d], "
              "OutputShape's  dimesions=[%s]",
              output_shape_dims.size(), output_shape_dims));
W
whs 已提交
78
    } else {
79 80 81 82 83 84
      PADDLE_ENFORCE_EQ(
          output_shape.size(), 4,
          platform::errors::InvalidArgument(
              "The size of attribute 'output_shape' in AffineGridOp should be "
              "4. But received output_shape's size=[%d].",
              output_shape.size()));
W
whs 已提交
85 86
    }

87 88 89 90 91 92 93 94 95 96 97 98 99
    PADDLE_ENFORCE_EQ(
        theta_dims[1], 2,
        platform::errors::InvalidArgument(
            "The second dimesion of input 'theta' in AffineGridOp should be 2. "
            "But received second dimesion=[%d], dimesions=[%s]",
            theta_dims[1], theta_dims));
    PADDLE_ENFORCE_EQ(
        theta_dims[2], 3,
        platform::errors::InvalidArgument(
            "The third dimesion of input 'theta' in AffineGridOp should be 3. "
            "But received third dimesion=[%d], dimesions=[%s]",
            theta_dims[2], theta_dims));

W
whs 已提交
100
    // N * H * W * 2
101
    ctx->SetOutputDim("Output", pten::make_ddim({theta_dims[0], -1, -1, 2}));
W
whs 已提交
102 103 104 105 106 107 108
    ctx->ShareLoD("Theta", "Output");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    framework::LibraryType library{framework::LibraryType::kPlain};
109
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
W
whs 已提交
110 111 112 113
    if (platform::CanCUDNNBeUsed(ctx)) {
      library = framework::LibraryType::kCUDNN;
    }
#endif
114
    auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "Theta");
W
whs 已提交
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
    return framework::OpKernelType(data_type, ctx.GetPlace(),
                                   framework::DataLayout::kAnyLayout, library);
  }
};

class AffineGridOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput(
        "Theta",
        "(Tensor) A batch of affine transform parameters with shape [N, 2, 3]. "
        "It is used to transform coordinate (x_0, y_0) to coordinate (x_1, "
        "y_1).");
    AddInput("OutputShape",
             "(Tensor) The shape of target image with format [N, C, H, W].")
        .AsDispensable();
    AddOutput("Output", "(Tensor) Output Tensor with shape [N, H, W, 2].");
    AddAttr<bool>(
        "use_cudnn",
        "(bool, default false) Only used in cudnn kernel, need install cudnn")
135 136
        .SetDefault(true)
        .AsExtra();
137 138 139 140
    AddAttr<bool>("align_corners",
                  "(bool, default false) Whether to align the corners of input"
                  "and ouput.")
        .SetDefault(true);
W
whs 已提交
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
    AddAttr<std::vector<int>>(
        "output_shape",
        "The target output image shape with format [N, C, H, W].")
        .SetDefault(std::vector<int>());

    AddComment(R"DOC(
    It generates a grid of (x,y) coordinates using the parameters of the
    affine transformation that correspond to a set of points where the input
    feature map should be sampled to produce the transformed output feature map.

    Given:
        Theta = [[[x_11, x_12, x_13]
                  [x_14, x_15, x_16]]
                 [[x_21, x_22, x_23]
                  [x_24, x_25, x_26]]]
    
        OutputShape = [2, 3, 5, 5]

    Step 1:

        Generate relative coordinates according to OutputShape.
        The values of relative coordinates are in the interval between -1 and 1.
        The shape of the relative coordinates is [2, H, W] as below:
    
        C = [[[-1.  -1.  -1.  -1.  -1. ]
              [-0.5 -0.5 -0.5 -0.5 -0.5]
              [ 0.   0.   0.   0.   0. ]
              [ 0.5  0.5  0.5  0.5  0.5]
              [ 1.   1.   1.   1.   1. ]] 
             [[-1.  -0.5  0.   0.5  1. ]
              [-1.  -0.5  0.   0.5  1. ]
              [-1.  -0.5  0.   0.5  1. ]
              [-1.  -0.5  0.   0.5  1. ]
              [-1.  -0.5  0.   0.5  1. ]]]
175 176
        C[0] is the coordinates in height axis and  C[1] is the coordinates in
        width axis.
W
whs 已提交
177 178
    
    Step2:
179 180
        Tanspose and reshape C to shape [H * W, 2] and append ones to last
        dimension. The we get:
W
whs 已提交
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
        C_ = [[-1.  -1.   1. ]
              [-0.5 -1.   1. ]
              [ 0.  -1.   1. ]
              [ 0.5 -1.   1. ]
              [ 1.  -1.   1. ]
              [-1.  -0.5  1. ]
              [-0.5 -0.5  1. ]
              [ 0.  -0.5  1. ]
              [ 0.5 -0.5  1. ]
              [ 1.  -0.5  1. ]
              [-1.   0.   1. ]
              [-0.5  0.   1. ]
              [ 0.   0.   1. ]
              [ 0.5  0.   1. ]
              [ 1.   0.   1. ]
              [-1.   0.5  1. ]
              [-0.5  0.5  1. ]
              [ 0.   0.5  1. ]
              [ 0.5  0.5  1. ]
              [ 1.   0.5  1. ]
              [-1.   1.   1. ]
              [-0.5  1.   1. ]
              [ 0.   1.   1. ]
              [ 0.5  1.   1. ]
              [ 1.   1.   1. ]]
    Step3:
        Compute output by equation $$Output[i] = C_ * Theta[i]^T$$
    )DOC");
  }
};

class AffineGridOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
    if (ctx->HasOutput(framework::GradVarName("Theta"))) {
217 218 219
      auto output_dims = ctx->GetInputDim(framework::GradVarName("Output"));
      ctx->SetOutputDim(framework::GradVarName("Theta"),
                        {output_dims[0], 2, 3});
W
whs 已提交
220 221 222 223 224 225 226
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    framework::LibraryType library_{framework::LibraryType::kPlain};
227
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
W
whs 已提交
228 229 230 231
    if (platform::CanCUDNNBeUsed(ctx)) {
      library_ = framework::LibraryType::kCUDNN;
    }
#endif
232 233 234 235
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Output")),
                                   ctx.GetPlace(),
                                   framework::DataLayout::kAnyLayout, library_);
W
whs 已提交
236 237 238
  }
};

H
hong 已提交
239 240
template <typename T>
class AffineGridGradMaker : public framework::SingleGradOpMaker<T> {
W
whs 已提交
241
 public:
H
hong 已提交
242
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
W
whs 已提交
243 244

 protected:
245
  void Apply(GradOpPtr<T> op) const override {
W
whs 已提交
246
    op->SetType("affine_grid_grad");
H
hong 已提交
247 248
    op->SetInput("OutputShape", this->Input("OutputShape"));
    op->SetInput(framework::GradVarName("Output"), this->OutputGrad("Output"));
W
whs 已提交
249

H
hong 已提交
250
    op->SetAttrMap(this->Attrs());
W
whs 已提交
251

H
hong 已提交
252
    op->SetOutput(framework::GradVarName("Theta"), this->InputGrad("Theta"));
W
whs 已提交
253 254 255 256 257 258 259 260
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(affine_grid, ops::AffineGridOp, ops::AffineGridOpMaker,
H
hong 已提交
261 262
                  ops::AffineGridGradMaker<paddle::framework::OpDesc>,
                  ops::AffineGridGradMaker<paddle::imperative::OpBase>);
W
whs 已提交
263 264 265 266 267 268 269 270 271 272
REGISTER_OPERATOR(affine_grid_grad, ops::AffineGridOpGrad);

REGISTER_OP_CPU_KERNEL(
    affine_grid,
    ops::AffineGridOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::AffineGridOpKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    affine_grid_grad,
    ops::AffineGridGradOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::AffineGridGradOpKernel<paddle::platform::CPUDeviceContext, double>);
W
whs 已提交
273 274 275 276 277 278 279 280

REGISTER_OP_VERSION(affine_grid)
    .AddCheckpoint(
        R"ROC(
               Compatible upgrade of affine_grid, add a new attribute [align_corners])ROC",
        paddle::framework::compatible::OpVersionDesc().NewAttr(
            "align_corners",
            "Whether to align the corners of input and output.", true));