affine_grid_op.cc 10.0 KB
Newer Older
W
whs 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/affine_grid_op.h"
16
#include <memory>
W
whs 已提交
17
#include <string>
18
#include <vector>
W
whs 已提交
19 20 21 22 23 24 25 26 27 28 29 30
#include "paddle/fluid/framework/op_registry.h"
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/cudnn_helper.h"
#endif

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

template <typename T>
struct Linspace<paddle::platform::CPUDeviceContext, T> {
31 32
  void operator()(T start, T end, int count, bool align_corners,
                  framework::Tensor* numbers,
33 34
                  const framework::ExecutionContext& ctx) {
    T* number_data = numbers->mutable_data<T>({count}, platform::CPUPlace());
W
whs 已提交
35
    T slice = (end - start) / (T)(count - 1);
36 37 38 39
    if (!align_corners) {
      slice = (end - start) / (T)count;
      start *= (T)(count - 1) / (T)count;
    }
W
whs 已提交
40 41 42 43 44 45 46 47 48 49
    for (int i = 0; i < count; ++i) {
      number_data[i] = start + (T)i * slice;
    }
  }
};

class AffineGridOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
50 51 52 53 54 55
    PADDLE_ENFORCE_EQ(ctx->HasInput("Theta"), true,
                      platform::errors::NotFound(
                          "The input 'Theta' of AffineGridOp is not found."));
    PADDLE_ENFORCE_EQ(ctx->HasOutput("Output"), true,
                      platform::errors::NotFound(
                          "The output 'Output' of AffineGridOp is not found."));
W
whs 已提交
56
    auto theta_dims = ctx->GetInputDim("Theta");
57 58 59 60 61 62
    PADDLE_ENFORCE_EQ(
        theta_dims.size(), 3,
        platform::errors::InvalidArgument(
            "The input Theta's dimensions size should be 3. But received "
            "Theta's demensions size=[%d],  Theta's dimensions=[%s].",
            theta_dims.size(), theta_dims));
W
whs 已提交
63 64 65

    auto output_shape = ctx->Attrs().Get<std::vector<int>>("output_shape");
    if (output_shape.size() == 0) {
66 67 68 69 70
      PADDLE_ENFORCE_EQ(
          ctx->HasInput("OutputShape"), true,
          platform::errors::NotFound(
              "The input 'OutputShape' of AffineGridOp should not be null if "
              "'output_shape' is not configured."));
W
whs 已提交
71
      auto output_shape_dims = ctx->GetInputDim("OutputShape");
72 73 74 75 76 77 78
      PADDLE_ENFORCE_EQ(
          output_shape_dims.size(), 1,
          platform::errors::InvalidArgument(
              "The dimesions size of input OutputShape in AffineGridOp should "
              "be 1. But received OutputShape's  dimesions size=[%d], "
              "OutputShape's  dimesions=[%s]",
              output_shape_dims.size(), output_shape_dims));
W
whs 已提交
79
    } else {
80 81 82 83 84 85
      PADDLE_ENFORCE_EQ(
          output_shape.size(), 4,
          platform::errors::InvalidArgument(
              "The size of attribute 'output_shape' in AffineGridOp should be "
              "4. But received output_shape's size=[%d].",
              output_shape.size()));
W
whs 已提交
86 87
    }

88 89 90 91 92 93 94 95 96 97 98 99 100
    PADDLE_ENFORCE_EQ(
        theta_dims[1], 2,
        platform::errors::InvalidArgument(
            "The second dimesion of input 'theta' in AffineGridOp should be 2. "
            "But received second dimesion=[%d], dimesions=[%s]",
            theta_dims[1], theta_dims));
    PADDLE_ENFORCE_EQ(
        theta_dims[2], 3,
        platform::errors::InvalidArgument(
            "The third dimesion of input 'theta' in AffineGridOp should be 3. "
            "But received third dimesion=[%d], dimesions=[%s]",
            theta_dims[2], theta_dims));

W
whs 已提交
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
    // N * H * W * 2
    ctx->SetOutputDim("Output",
                      framework::make_ddim({theta_dims[0], -1, -1, 2}));
    ctx->ShareLoD("Theta", "Output");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    framework::LibraryType library{framework::LibraryType::kPlain};
#ifdef PADDLE_WITH_CUDA
    if (platform::CanCUDNNBeUsed(ctx)) {
      library = framework::LibraryType::kCUDNN;
    }
#endif
116
    auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "Theta");
W
whs 已提交
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
    return framework::OpKernelType(data_type, ctx.GetPlace(),
                                   framework::DataLayout::kAnyLayout, library);
  }
};

class AffineGridOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput(
        "Theta",
        "(Tensor) A batch of affine transform parameters with shape [N, 2, 3]. "
        "It is used to transform coordinate (x_0, y_0) to coordinate (x_1, "
        "y_1).");
    AddInput("OutputShape",
             "(Tensor) The shape of target image with format [N, C, H, W].")
        .AsDispensable();
    AddOutput("Output", "(Tensor) Output Tensor with shape [N, H, W, 2].");
    AddAttr<bool>(
        "use_cudnn",
        "(bool, default false) Only used in cudnn kernel, need install cudnn")
        .SetDefault(true);
138 139 140 141
    AddAttr<bool>("align_corners",
                  "(bool, default false) Whether to align the corners of input"
                  "and ouput.")
        .SetDefault(true);
W
whs 已提交
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
    AddAttr<std::vector<int>>(
        "output_shape",
        "The target output image shape with format [N, C, H, W].")
        .SetDefault(std::vector<int>());

    AddComment(R"DOC(
    It generates a grid of (x,y) coordinates using the parameters of the
    affine transformation that correspond to a set of points where the input
    feature map should be sampled to produce the transformed output feature map.

    Given:
        Theta = [[[x_11, x_12, x_13]
                  [x_14, x_15, x_16]]
                 [[x_21, x_22, x_23]
                  [x_24, x_25, x_26]]]
    
        OutputShape = [2, 3, 5, 5]

    Step 1:

        Generate relative coordinates according to OutputShape.
        The values of relative coordinates are in the interval between -1 and 1.
        The shape of the relative coordinates is [2, H, W] as below:
    
        C = [[[-1.  -1.  -1.  -1.  -1. ]
              [-0.5 -0.5 -0.5 -0.5 -0.5]
              [ 0.   0.   0.   0.   0. ]
              [ 0.5  0.5  0.5  0.5  0.5]
              [ 1.   1.   1.   1.   1. ]] 
             [[-1.  -0.5  0.   0.5  1. ]
              [-1.  -0.5  0.   0.5  1. ]
              [-1.  -0.5  0.   0.5  1. ]
              [-1.  -0.5  0.   0.5  1. ]
              [-1.  -0.5  0.   0.5  1. ]]]
176 177
        C[0] is the coordinates in height axis and  C[1] is the coordinates in
        width axis.
W
whs 已提交
178 179
    
    Step2:
180 181
        Tanspose and reshape C to shape [H * W, 2] and append ones to last
        dimension. The we get:
W
whs 已提交
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
        C_ = [[-1.  -1.   1. ]
              [-0.5 -1.   1. ]
              [ 0.  -1.   1. ]
              [ 0.5 -1.   1. ]
              [ 1.  -1.   1. ]
              [-1.  -0.5  1. ]
              [-0.5 -0.5  1. ]
              [ 0.  -0.5  1. ]
              [ 0.5 -0.5  1. ]
              [ 1.  -0.5  1. ]
              [-1.   0.   1. ]
              [-0.5  0.   1. ]
              [ 0.   0.   1. ]
              [ 0.5  0.   1. ]
              [ 1.   0.   1. ]
              [-1.   0.5  1. ]
              [-0.5  0.5  1. ]
              [ 0.   0.5  1. ]
              [ 0.5  0.5  1. ]
              [ 1.   0.5  1. ]
              [-1.   1.   1. ]
              [-0.5  1.   1. ]
              [ 0.   1.   1. ]
              [ 0.5  1.   1. ]
              [ 1.   1.   1. ]]
    Step3:
        Compute output by equation $$Output[i] = C_ * Theta[i]^T$$
    )DOC");
  }
};

class AffineGridOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
    if (ctx->HasOutput(framework::GradVarName("Theta"))) {
218 219 220
      auto output_dims = ctx->GetInputDim(framework::GradVarName("Output"));
      ctx->SetOutputDim(framework::GradVarName("Theta"),
                        {output_dims[0], 2, 3});
W
whs 已提交
221 222 223 224 225 226 227 228 229 230 231 232
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    framework::LibraryType library_{framework::LibraryType::kPlain};
#ifdef PADDLE_WITH_CUDA
    if (platform::CanCUDNNBeUsed(ctx)) {
      library_ = framework::LibraryType::kCUDNN;
    }
#endif
233 234 235 236
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Output")),
                                   ctx.GetPlace(),
                                   framework::DataLayout::kAnyLayout, library_);
W
whs 已提交
237 238 239
  }
};

H
hong 已提交
240 241
template <typename T>
class AffineGridGradMaker : public framework::SingleGradOpMaker<T> {
W
whs 已提交
242
 public:
H
hong 已提交
243
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
W
whs 已提交
244 245

 protected:
246
  void Apply(GradOpPtr<T> op) const override {
W
whs 已提交
247
    op->SetType("affine_grid_grad");
H
hong 已提交
248 249
    op->SetInput("OutputShape", this->Input("OutputShape"));
    op->SetInput(framework::GradVarName("Output"), this->OutputGrad("Output"));
W
whs 已提交
250

H
hong 已提交
251
    op->SetAttrMap(this->Attrs());
W
whs 已提交
252

H
hong 已提交
253
    op->SetOutput(framework::GradVarName("Theta"), this->InputGrad("Theta"));
W
whs 已提交
254 255 256 257 258 259 260 261
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(affine_grid, ops::AffineGridOp, ops::AffineGridOpMaker,
H
hong 已提交
262 263
                  ops::AffineGridGradMaker<paddle::framework::OpDesc>,
                  ops::AffineGridGradMaker<paddle::imperative::OpBase>);
W
whs 已提交
264 265 266 267 268 269 270 271 272 273
REGISTER_OPERATOR(affine_grid_grad, ops::AffineGridOpGrad);

REGISTER_OP_CPU_KERNEL(
    affine_grid,
    ops::AffineGridOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::AffineGridOpKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    affine_grid_grad,
    ops::AffineGridGradOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::AffineGridGradOpKernel<paddle::platform::CPUDeviceContext, double>);