affine_grid_op.cc 10.6 KB
Newer Older
W
whs 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/affine_grid_op.h"
16
#include <memory>
W
whs 已提交
17
#include <string>
18
#include <vector>
W
whs 已提交
19
#include "paddle/fluid/framework/op_registry.h"
W
whs 已提交
20
#include "paddle/fluid/framework/op_version_registry.h"
W
whs 已提交
21 22 23
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/cudnn_helper.h"
#endif
24 25 26
#ifdef PADDLE_WITH_HIP
#include "paddle/fluid/platform/miopen_helper.h"
#endif
W
whs 已提交
27 28 29 30 31 32 33 34

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

template <typename T>
struct Linspace<paddle::platform::CPUDeviceContext, T> {
35 36
  void operator()(T start, T end, int count, bool align_corners,
                  framework::Tensor* numbers,
37 38
                  const framework::ExecutionContext& ctx) {
    T* number_data = numbers->mutable_data<T>({count}, platform::CPUPlace());
W
whs 已提交
39
    T slice = (end - start) / (T)(count - 1);
40 41 42 43
    if (!align_corners) {
      slice = (end - start) / (T)count;
      start *= (T)(count - 1) / (T)count;
    }
W
whs 已提交
44 45 46 47 48 49 50 51 52 53
    for (int i = 0; i < count; ++i) {
      number_data[i] = start + (T)i * slice;
    }
  }
};

class AffineGridOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
54 55 56 57 58 59
    PADDLE_ENFORCE_EQ(ctx->HasInput("Theta"), true,
                      platform::errors::NotFound(
                          "The input 'Theta' of AffineGridOp is not found."));
    PADDLE_ENFORCE_EQ(ctx->HasOutput("Output"), true,
                      platform::errors::NotFound(
                          "The output 'Output' of AffineGridOp is not found."));
W
whs 已提交
60
    auto theta_dims = ctx->GetInputDim("Theta");
61 62 63 64 65 66
    PADDLE_ENFORCE_EQ(
        theta_dims.size(), 3,
        platform::errors::InvalidArgument(
            "The input Theta's dimensions size should be 3. But received "
            "Theta's demensions size=[%d],  Theta's dimensions=[%s].",
            theta_dims.size(), theta_dims));
W
whs 已提交
67 68 69

    auto output_shape = ctx->Attrs().Get<std::vector<int>>("output_shape");
    if (output_shape.size() == 0) {
70 71 72 73 74
      PADDLE_ENFORCE_EQ(
          ctx->HasInput("OutputShape"), true,
          platform::errors::NotFound(
              "The input 'OutputShape' of AffineGridOp should not be null if "
              "'output_shape' is not configured."));
W
whs 已提交
75
      auto output_shape_dims = ctx->GetInputDim("OutputShape");
76 77 78 79 80 81 82
      PADDLE_ENFORCE_EQ(
          output_shape_dims.size(), 1,
          platform::errors::InvalidArgument(
              "The dimesions size of input OutputShape in AffineGridOp should "
              "be 1. But received OutputShape's  dimesions size=[%d], "
              "OutputShape's  dimesions=[%s]",
              output_shape_dims.size(), output_shape_dims));
W
whs 已提交
83
    } else {
84 85 86 87 88 89
      PADDLE_ENFORCE_EQ(
          output_shape.size(), 4,
          platform::errors::InvalidArgument(
              "The size of attribute 'output_shape' in AffineGridOp should be "
              "4. But received output_shape's size=[%d].",
              output_shape.size()));
W
whs 已提交
90 91
    }

92 93 94 95 96 97 98 99 100 101 102 103 104
    PADDLE_ENFORCE_EQ(
        theta_dims[1], 2,
        platform::errors::InvalidArgument(
            "The second dimesion of input 'theta' in AffineGridOp should be 2. "
            "But received second dimesion=[%d], dimesions=[%s]",
            theta_dims[1], theta_dims));
    PADDLE_ENFORCE_EQ(
        theta_dims[2], 3,
        platform::errors::InvalidArgument(
            "The third dimesion of input 'theta' in AffineGridOp should be 3. "
            "But received third dimesion=[%d], dimesions=[%s]",
            theta_dims[2], theta_dims));

W
whs 已提交
105 106 107 108 109 110 111 112 113 114
    // N * H * W * 2
    ctx->SetOutputDim("Output",
                      framework::make_ddim({theta_dims[0], -1, -1, 2}));
    ctx->ShareLoD("Theta", "Output");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    framework::LibraryType library{framework::LibraryType::kPlain};
115
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
W
whs 已提交
116 117 118 119
    if (platform::CanCUDNNBeUsed(ctx)) {
      library = framework::LibraryType::kCUDNN;
    }
#endif
120
    auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "Theta");
W
whs 已提交
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
    return framework::OpKernelType(data_type, ctx.GetPlace(),
                                   framework::DataLayout::kAnyLayout, library);
  }
};

class AffineGridOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput(
        "Theta",
        "(Tensor) A batch of affine transform parameters with shape [N, 2, 3]. "
        "It is used to transform coordinate (x_0, y_0) to coordinate (x_1, "
        "y_1).");
    AddInput("OutputShape",
             "(Tensor) The shape of target image with format [N, C, H, W].")
        .AsDispensable();
    AddOutput("Output", "(Tensor) Output Tensor with shape [N, H, W, 2].");
    AddAttr<bool>(
        "use_cudnn",
        "(bool, default false) Only used in cudnn kernel, need install cudnn")
141 142
        .SetDefault(true)
        .AsExtra();
143 144 145 146
    AddAttr<bool>("align_corners",
                  "(bool, default false) Whether to align the corners of input"
                  "and ouput.")
        .SetDefault(true);
W
whs 已提交
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
    AddAttr<std::vector<int>>(
        "output_shape",
        "The target output image shape with format [N, C, H, W].")
        .SetDefault(std::vector<int>());

    AddComment(R"DOC(
    It generates a grid of (x,y) coordinates using the parameters of the
    affine transformation that correspond to a set of points where the input
    feature map should be sampled to produce the transformed output feature map.

    Given:
        Theta = [[[x_11, x_12, x_13]
                  [x_14, x_15, x_16]]
                 [[x_21, x_22, x_23]
                  [x_24, x_25, x_26]]]
    
        OutputShape = [2, 3, 5, 5]

    Step 1:

        Generate relative coordinates according to OutputShape.
        The values of relative coordinates are in the interval between -1 and 1.
        The shape of the relative coordinates is [2, H, W] as below:
    
        C = [[[-1.  -1.  -1.  -1.  -1. ]
              [-0.5 -0.5 -0.5 -0.5 -0.5]
              [ 0.   0.   0.   0.   0. ]
              [ 0.5  0.5  0.5  0.5  0.5]
              [ 1.   1.   1.   1.   1. ]] 
             [[-1.  -0.5  0.   0.5  1. ]
              [-1.  -0.5  0.   0.5  1. ]
              [-1.  -0.5  0.   0.5  1. ]
              [-1.  -0.5  0.   0.5  1. ]
              [-1.  -0.5  0.   0.5  1. ]]]
181 182
        C[0] is the coordinates in height axis and  C[1] is the coordinates in
        width axis.
W
whs 已提交
183 184
    
    Step2:
185 186
        Tanspose and reshape C to shape [H * W, 2] and append ones to last
        dimension. The we get:
W
whs 已提交
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
        C_ = [[-1.  -1.   1. ]
              [-0.5 -1.   1. ]
              [ 0.  -1.   1. ]
              [ 0.5 -1.   1. ]
              [ 1.  -1.   1. ]
              [-1.  -0.5  1. ]
              [-0.5 -0.5  1. ]
              [ 0.  -0.5  1. ]
              [ 0.5 -0.5  1. ]
              [ 1.  -0.5  1. ]
              [-1.   0.   1. ]
              [-0.5  0.   1. ]
              [ 0.   0.   1. ]
              [ 0.5  0.   1. ]
              [ 1.   0.   1. ]
              [-1.   0.5  1. ]
              [-0.5  0.5  1. ]
              [ 0.   0.5  1. ]
              [ 0.5  0.5  1. ]
              [ 1.   0.5  1. ]
              [-1.   1.   1. ]
              [-0.5  1.   1. ]
              [ 0.   1.   1. ]
              [ 0.5  1.   1. ]
              [ 1.   1.   1. ]]
    Step3:
        Compute output by equation $$Output[i] = C_ * Theta[i]^T$$
    )DOC");
  }
};

class AffineGridOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
    if (ctx->HasOutput(framework::GradVarName("Theta"))) {
223 224 225
      auto output_dims = ctx->GetInputDim(framework::GradVarName("Output"));
      ctx->SetOutputDim(framework::GradVarName("Theta"),
                        {output_dims[0], 2, 3});
W
whs 已提交
226 227 228 229 230 231 232
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    framework::LibraryType library_{framework::LibraryType::kPlain};
233
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
W
whs 已提交
234 235 236 237
    if (platform::CanCUDNNBeUsed(ctx)) {
      library_ = framework::LibraryType::kCUDNN;
    }
#endif
238 239 240 241
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Output")),
                                   ctx.GetPlace(),
                                   framework::DataLayout::kAnyLayout, library_);
W
whs 已提交
242 243 244
  }
};

H
hong 已提交
245 246
template <typename T>
class AffineGridGradMaker : public framework::SingleGradOpMaker<T> {
W
whs 已提交
247
 public:
H
hong 已提交
248
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
W
whs 已提交
249 250

 protected:
251
  void Apply(GradOpPtr<T> op) const override {
W
whs 已提交
252
    op->SetType("affine_grid_grad");
H
hong 已提交
253 254
    op->SetInput("OutputShape", this->Input("OutputShape"));
    op->SetInput(framework::GradVarName("Output"), this->OutputGrad("Output"));
W
whs 已提交
255

H
hong 已提交
256
    op->SetAttrMap(this->Attrs());
W
whs 已提交
257

H
hong 已提交
258
    op->SetOutput(framework::GradVarName("Theta"), this->InputGrad("Theta"));
W
whs 已提交
259 260 261 262 263 264 265 266
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(affine_grid, ops::AffineGridOp, ops::AffineGridOpMaker,
H
hong 已提交
267 268
                  ops::AffineGridGradMaker<paddle::framework::OpDesc>,
                  ops::AffineGridGradMaker<paddle::imperative::OpBase>);
W
whs 已提交
269 270 271 272 273 274 275 276 277 278
REGISTER_OPERATOR(affine_grid_grad, ops::AffineGridOpGrad);

REGISTER_OP_CPU_KERNEL(
    affine_grid,
    ops::AffineGridOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::AffineGridOpKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    affine_grid_grad,
    ops::AffineGridGradOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::AffineGridGradOpKernel<paddle::platform::CPUDeviceContext, double>);
W
whs 已提交
279 280 281 282 283 284 285 286

REGISTER_OP_VERSION(affine_grid)
    .AddCheckpoint(
        R"ROC(
               Compatible upgrade of affine_grid, add a new attribute [align_corners])ROC",
        paddle::framework::compatible::OpVersionDesc().NewAttr(
            "align_corners",
            "Whether to align the corners of input and output.", true));