tester_helper.h 39.2 KB
Newer Older
L
luotao1 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <gtest/gtest.h>
Y
Yan Chunwei 已提交
18

L
luotao1 已提交
19
#include <algorithm>
20
#include <functional>
L
luotao1 已提交
21
#include <memory>
T
Tao Luo 已提交
22
#include <string>
L
luotao1 已提交
23
#include <thread>  // NOLINT
L
luotao1 已提交
24
#include <unordered_map>
25
#include <utility>
L
luotao1 已提交
26
#include <vector>
Y
Yiqun Liu 已提交
27 28 29
#ifdef WITH_GPERFTOOLS
#include <gperftools/profiler.h>
#endif
L
luotao1 已提交
30
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
31
#include "paddle/fluid/framework/scope.h"
L
luotao1 已提交
32 33 34
#include "paddle/fluid/inference/analysis/analyzer.h"
#include "paddle/fluid/inference/analysis/ut_helper.h"
#include "paddle/fluid/inference/api/analysis_predictor.h"
35
#include "paddle/fluid/inference/api/helper.h"
36
#include "paddle/fluid/inference/api/paddle_inference_api.h"
Y
Yan Chunwei 已提交
37
#include "paddle/fluid/inference/api/paddle_inference_pass.h"
38
#include "paddle/fluid/inference/tests/api/config_printer.h"
T
Tao Luo 已提交
39
#include "paddle/fluid/inference/tests/test_helper.h"
N
nhzlx 已提交
40
#include "paddle/fluid/inference/utils/benchmark.h"
L
luotao1 已提交
41 42
#include "paddle/fluid/platform/profiler.h"

N
nhzlx 已提交
43
DEFINE_string(model_name, "", "model name");
L
luotao1 已提交
44
DEFINE_string(infer_model, "", "model path");
45 46
DEFINE_string(fp32_model, "", "FP32 model path");
DEFINE_string(int8_model, "", "INT8 model path");
L
luotao1 已提交
47
DEFINE_string(infer_data, "", "data file");
T
Tao Luo 已提交
48
DEFINE_string(refer_result, "", "reference result for comparison");
49
DEFINE_int32(batch_size, 1, "batch size");
50
DEFINE_bool(ernie_large, false, "Test ernie large");
51 52
DEFINE_bool(with_accuracy_layer, true,
            "Calculate the accuracy while label is in the input");
53
DEFINE_bool(enable_fp32, true, "Enable FP32 type prediction");
54 55
DEFINE_bool(enable_bf16, false, "Enable BF16 type prediction");
DEFINE_bool(enable_int8, false, "Enable INT8 type prediction");
56 57 58
DEFINE_int32(warmup_batch_size, 100, "batch size for quantization warmup");
// setting iterations to 0 means processing the whole dataset
DEFINE_int32(iterations, 0, "number of batches to process");
L
luotao1 已提交
59 60 61
DEFINE_int32(repeat, 1, "Running the inference program repeat times.");
DEFINE_bool(test_all_data, false, "Test the all dataset in data file.");
DEFINE_int32(num_threads, 1, "Running the inference program in multi-threads.");
T
Tao Luo 已提交
62 63
DEFINE_bool(use_analysis, true,
            "Running the inference program in analysis mode.");
N
nhzlx 已提交
64 65
DEFINE_bool(record_benchmark, false,
            "Record benchmark after profiling the model");
L
luotao1 已提交
66
DEFINE_double(accuracy, 1e-3, "Result Accuracy.");
67
DEFINE_double(quantized_accuracy, 1e-2, "Result Quantized Accuracy.");
L
luotao1 已提交
68
DEFINE_bool(zero_copy, false, "Use ZeroCopy to speedup Feed/Fetch.");
69 70 71
DEFINE_bool(warmup, false,
            "Use warmup to calculate elapsed_time more accurately. "
            "To reduce CI time, it sets false in default.");
72
DEFINE_int32(warmup_iters, 1, "Number of batches to process during warmup.");
L
luotao1 已提交
73

74 75
DEFINE_bool(enable_profile, false, "Turn on profiler for fluid");
DEFINE_int32(cpu_num_threads, 1, "Number of threads for each paddle instance.");
76 77
DEFINE_bool(fuse_multi_gru, false,
            "Running the inference program with multi_gru_fuse_pass");
78

L
luotao1 已提交
79 80 81
namespace paddle {
namespace inference {

82 83
using paddle::framework::proto::VarType;

84 85 86 87 88 89 90 91 92 93 94 95 96
template <typename T>
constexpr paddle::PaddleDType GetPaddleDType();

template <>
constexpr paddle::PaddleDType GetPaddleDType<int64_t>() {
  return paddle::PaddleDType::INT64;
}

template <>
constexpr paddle::PaddleDType GetPaddleDType<float>() {
  return paddle::PaddleDType::FLOAT32;
}

97
void PrintConfig(const PaddlePredictor::Config *config, bool use_analysis) {
98
  const auto *analysis_config =
99
      reinterpret_cast<const AnalysisConfig *>(config);
100
  if (use_analysis) {
101
    LOG(INFO) << *analysis_config;
102 103
    return;
  }
104
  LOG(INFO) << analysis_config->ToNativeConfig();
105
}
Y
Yan Chunwei 已提交
106

107 108 109 110 111 112 113 114
void CheckError(float data_ref, float data) {
  if (std::abs(data_ref) > 1) {
    CHECK_LE(std::abs((data_ref - data) / data_ref), FLAGS_accuracy);
  } else {
    CHECK_LE(std::abs(data_ref - data), FLAGS_accuracy);
  }
}

115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
class Barrier {
 public:
  explicit Barrier(std::size_t count) : _count(count) {}
  void Wait() {
    std::unique_lock<std::mutex> lock(_mutex);
    if (--_count) {
      _cv.wait(lock, [this] { return _count == 0; });
    } else {
      _cv.notify_all();
    }
  }

 private:
  std::mutex _mutex;
  std::condition_variable _cv;
  std::size_t _count;
};

133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
template <typename T>
class TensorReader {
 public:
  TensorReader(std::ifstream &file, size_t beginning_offset,
               std::vector<int> shape, std::string name)
      : file_(file), position_(beginning_offset), shape_(shape), name_(name) {
    numel_ = std::accumulate(shape_.begin(), shape_.end(), size_t{1},
                             std::multiplies<size_t>());
  }

  PaddleTensor NextBatch() {
    PaddleTensor tensor;
    tensor.name = name_;
    tensor.shape = shape_;
    tensor.dtype = GetPaddleDType<T>();
    tensor.data.Resize(numel_ * sizeof(T));

    file_.seekg(position_);
    file_.read(static_cast<char *>(tensor.data.data()), numel_ * sizeof(T));
    position_ = file_.tellg();

    if (file_.eof()) LOG(ERROR) << name_ << ": reached end of stream";
    if (file_.fail())
      throw std::runtime_error(name_ + ": failed reading file.");

    return tensor;
  }

 protected:
  std::ifstream &file_;
  size_t position_;
  std::vector<int> shape_;
  std::string name_;
  size_t numel_;
};

std::shared_ptr<std::vector<PaddleTensor>> GetWarmupData(
    const std::vector<std::vector<PaddleTensor>> &test_data,
    int num_images = FLAGS_warmup_batch_size) {
  int test_data_batch_size = test_data[0][0].shape[0];
  auto iterations = test_data.size();
  auto all_test_data_size = iterations * test_data_batch_size;
  PADDLE_ENFORCE_LE(static_cast<size_t>(num_images), all_test_data_size,
                    platform::errors::InvalidArgument(
                        "The requested quantization warmup data size must be "
                        "lower or equal to the test data size. But received"
                        "warmup size is %d and test data size is %d. Please "
                        "use --warmup_batch_size parameter to set smaller "
                        "warmup batch size.",
                        num_images, all_test_data_size));

  PaddleTensor images;
  images.name = "image";
  images.shape = {num_images, 3, 224, 224};
  images.dtype = PaddleDType::FLOAT32;
  images.data.Resize(sizeof(float) * num_images * 3 * 224 * 224);

  PaddleTensor labels;
  labels.name = "label";
  labels.shape = {num_images, 1};
  labels.dtype = PaddleDType::INT64;
  labels.data.Resize(sizeof(int64_t) * num_images);

  for (int i = 0; i < num_images; i++) {
    auto batch = i / test_data_batch_size;
    auto element_in_batch = i % test_data_batch_size;
    std::copy_n(static_cast<float *>(test_data[batch][0].data.data()) +
                    element_in_batch * 3 * 224 * 224,
                3 * 224 * 224,
                static_cast<float *>(images.data.data()) + i * 3 * 224 * 224);

    std::copy_n(static_cast<int64_t *>(test_data[batch][1].data.data()) +
                    element_in_batch,
                1, static_cast<int64_t *>(labels.data.data()) + i);
  }

  auto warmup_data = std::make_shared<std::vector<PaddleTensor>>(2);
  (*warmup_data)[0] = std::move(images);
  (*warmup_data)[1] = std::move(labels);
  return warmup_data;
}

void SetInputs(std::vector<std::vector<PaddleTensor>> *inputs,
               int32_t batch_size = FLAGS_batch_size) {
  std::ifstream file(FLAGS_infer_data, std::ios::binary);
  if (!file) {
    FAIL() << "Couldn't open file: " << FLAGS_infer_data;
  }

  int64_t total_images{0};
  file.read(reinterpret_cast<char *>(&total_images), sizeof(total_images));
  LOG(INFO) << "Total images in file: " << total_images;

  std::vector<int> image_batch_shape{batch_size, 3, 224, 224};
  std::vector<int> label_batch_shape{batch_size, 1};
  auto images_offset_in_file = static_cast<size_t>(file.tellg());
  auto labels_offset_in_file =
      images_offset_in_file + sizeof(float) * total_images * 3 * 224 * 224;

  TensorReader<float> image_reader(file, images_offset_in_file,
                                   image_batch_shape, "image");
  TensorReader<int64_t> label_reader(file, labels_offset_in_file,
                                     label_batch_shape, "label");

  auto iterations_max = total_images / batch_size;
  auto iterations = iterations_max;
  if (FLAGS_iterations > 0 && FLAGS_iterations < iterations_max) {
    iterations = FLAGS_iterations;
  }
  for (auto i = 0; i < iterations; i++) {
    auto images = image_reader.NextBatch();
    auto labels = label_reader.NextBatch();
    inputs->emplace_back(
        std::vector<PaddleTensor>{std::move(images), std::move(labels)});
  }
}

250
// Compare result between two PaddleTensor
L
luotao1 已提交
251
void CompareResult(const std::vector<PaddleTensor> &outputs,
T
tensor-tang 已提交
252
                   const std::vector<PaddleTensor> &ref_outputs) {
T
Tao Luo 已提交
253
  EXPECT_GT(outputs.size(), 0UL);
T
tensor-tang 已提交
254
  EXPECT_EQ(outputs.size(), ref_outputs.size());
L
luotao1 已提交
255 256
  for (size_t i = 0; i < outputs.size(); i++) {
    auto &out = outputs[i];
T
tensor-tang 已提交
257
    auto &ref_out = ref_outputs[i];
258 259
    size_t size = VecReduceToInt(out.shape);
    size_t ref_size = VecReduceToInt(ref_out.shape);
260
    EXPECT_GT(size, 0UL);
T
tensor-tang 已提交
261 262
    EXPECT_EQ(size, ref_size);
    EXPECT_EQ(out.dtype, ref_out.dtype);
263 264 265 266 267 268 269 270 271 272 273

#define COMPARE(paddle_type, type, func)                        \
  case paddle_type: {                                           \
    type *pdata = static_cast<type *>(out.data.data());         \
    type *pdata_ref = static_cast<type *>(ref_out.data.data()); \
    for (size_t j = 0; j < size; ++j) {                         \
      func(pdata_ref[j], pdata[j]);                             \
    }                                                           \
    break;                                                      \
  }

T
tensor-tang 已提交
274
    switch (out.dtype) {
275 276 277 278 279 280 281 282 283
      COMPARE(PaddleDType::INT64, int64_t, EXPECT_EQ);
      COMPARE(PaddleDType::FLOAT32, float, CheckError);
      COMPARE(PaddleDType::INT32, int32_t, EXPECT_EQ);
      COMPARE(PaddleDType::UINT8, uint8_t, EXPECT_EQ);
      COMPARE(PaddleDType::INT8, int8_t, EXPECT_EQ);
      default:
        PADDLE_THROW(platform::errors::InvalidArgument(
            "VarMessageToVarType: Unsupported dtype %d",
            static_cast<int>(out.dtype)));
L
luotao1 已提交
284
    }
285
#undef COMPARE
L
luotao1 已提交
286 287 288
  }
}

289 290 291 292 293 294 295 296 297 298 299 300
// Compare result between a PaddleTensor and a ZeroCopyTensor
void CompareResult(const std::vector<PaddleTensor> &outputs,
                   const std::vector<ZeroCopyTensor> &ref_outputs) {
  EXPECT_GT(outputs.size(), 0UL);
  EXPECT_EQ(outputs.size(), ref_outputs.size());
  for (size_t i = 0; i < outputs.size(); i++) {
    auto &out = outputs[i];
    auto &ref_out = ref_outputs[i];
    size_t size = VecReduceToInt(out.shape);
    EXPECT_GT(size, 0UL);
    int ref_size = 0;  // this is the number of elements not memory size
    PaddlePlace place;
301 302 303 304 305 306 307 308 309 310 311 312

#define COMPARE(paddle_type, type, func)                     \
  case paddle_type: {                                        \
    type *pdata = static_cast<type *>(out.data.data());      \
    type *pdata_ref = ref_out.data<type>(&place, &ref_size); \
    EXPECT_EQ(size, static_cast<size_t>(ref_size));          \
    for (size_t j = 0; j < size; ++j) {                      \
      func(pdata_ref[j], pdata[j]);                          \
    }                                                        \
    break;                                                   \
  }

313
    switch (out.dtype) {
314 315 316 317 318 319 320 321 322
      COMPARE(PaddleDType::INT64, int64_t, EXPECT_EQ);
      COMPARE(PaddleDType::FLOAT32, float, CheckError);
      COMPARE(PaddleDType::INT32, int32_t, EXPECT_EQ);
      COMPARE(PaddleDType::UINT8, uint8_t, EXPECT_EQ);
      COMPARE(PaddleDType::INT8, int8_t, EXPECT_EQ);
      default:
        PADDLE_THROW(platform::errors::InvalidArgument(
            "VarMessageToVarType: Unsupported dtype %d",
            static_cast<int>(out.dtype)));
323
    }
324
#undef COMPARE
325 326 327
  }
}

328
std::unique_ptr<PaddlePredictor> CreateTestPredictor(
329
    const PaddlePredictor::Config *config, bool use_analysis = true) {
330
  const auto *analysis_config =
331
      reinterpret_cast<const AnalysisConfig *>(config);
T
Tao Luo 已提交
332
  if (use_analysis) {
333
    return CreatePaddlePredictor<AnalysisConfig>(*analysis_config);
T
Tao Luo 已提交
334
  }
335 336
  auto native_config = analysis_config->ToNativeConfig();
  return CreatePaddlePredictor<NativeConfig>(native_config);
T
Tao Luo 已提交
337 338
}

339
size_t GetSize(const PaddleTensor &out) { return VecReduceToInt(out.shape); }
T
Tao Luo 已提交
340

341
std::unordered_map<std::string, int> GetFuseStatis(PaddlePredictor *predictor,
T
Tao Luo 已提交
342
                                                   int *num_ops) {
343
  std::unordered_map<std::string, int> res;
344
  auto *analysis_predictor = static_cast<AnalysisPredictor *>(predictor);
345 346 347 348 349 350
  auto *fusion_status =
      analysis_predictor->analysis_argument().fusion_statis_ptr();
  if (!fusion_status) {
    return res;
  }
  for (auto &item : *fusion_status) {
T
Tao Luo 已提交
351 352 353 354
    LOG(INFO) << "fused " << item.first << " " << item.second;
  }
  int num = 0;
  for (auto &node :
355 356
       analysis_predictor->analysis_argument().main_graph().Nodes()) {
    if (node->IsOp()) {
T
Tao Luo 已提交
357 358 359 360
      ++num;
    }
  }
  *num_ops = num;
361
  return *fusion_status;
T
Tao Luo 已提交
362 363
}

T
Tao Luo 已提交
364
void SetFakeImageInput(std::vector<std::vector<PaddleTensor>> *inputs,
365 366
                       const std::string &dirname, bool is_combined = true,
                       std::string model_filename = "model",
T
tensor-tang 已提交
367
                       std::string params_filename = "params",
N
nhzlx 已提交
368 369
                       const std::vector<std::string> *feed_names = nullptr,
                       const int continuous_inuput_index = 0) {
T
Tao Luo 已提交
370
  // Set fake_image_data
371 372 373 374 375
  PADDLE_ENFORCE_EQ(FLAGS_test_all_data, 0,
                    platform::errors::InvalidArgument(
                        "In SetFakeImageInput, expected test_all_data = false, "
                        "but now test_all_data=",
                        FLAGS_test_all_data));
376 377 378 379 380 381 382 383 384 385 386
  std::vector<std::vector<int64_t>> feed_target_shapes = GetFeedTargetShapes(
      dirname, is_combined, model_filename, params_filename);
  std::ostringstream os;
  for (size_t i = 0; i < feed_target_shapes.size(); ++i) {
    os << "feed target " << i << ": {" << feed_target_shapes[i][0];
    for (size_t j = 1; j < feed_target_shapes[i].size(); ++j) {
      os << ", " << feed_target_shapes[i][j];
    }
    os << "}\n";
  }
  LOG(INFO) << os.str();
T
tensor-tang 已提交
387
  if (feed_names) {
388 389 390 391 392 393 394
    PADDLE_ENFORCE_EQ(
        feed_names->size(), feed_target_shapes.size(),
        platform::errors::InvalidArgument(
            "The size of feeds_names and size of "
            "feed_target_shapes must be equal, but now feeds_names "
            "size is %d and feed_target_shapes size is %d",
            feed_names->size(), feed_target_shapes.size()));
T
tensor-tang 已提交
395 396 397 398 399 400 401 402 403 404 405 406 407 408
  }
  std::vector<PaddleTensor> input_slots(feed_target_shapes.size());
  for (size_t i = 0; i < feed_target_shapes.size(); ++i) {
    const auto &feed_shape = feed_target_shapes[i];
    auto &input = input_slots[i];
    std::vector<int> shape({FLAGS_batch_size});
    for (size_t s = 1; s < feed_shape.size(); ++s) {
      shape.push_back(static_cast<int>(feed_shape[s]));
    }
    if (feed_names) {
      input.name = (*feed_names)[i];
    }
    input.shape = shape;
    input.dtype = PaddleDType::FLOAT32;
409
    size_t len = std::accumulate(shape.begin(), shape.end(), size_t{1},
T
tensor-tang 已提交
410 411 412 413 414 415
                                 [](int a, int b) { return a * b; });
    input.data.Resize(len * sizeof(float));
    input.lod.assign({{0, static_cast<size_t>(FLAGS_batch_size)}});
    float *input_data = static_cast<float *>(input.data.data());
    // fill input data, for profile easily, do not use random data here.
    for (size_t j = 0; j < len; ++j) {
N
nhzlx 已提交
416 417
      *(input_data + j) =
          static_cast<float>((j + continuous_inuput_index) % len) / len;
T
tensor-tang 已提交
418
    }
T
Tao Luo 已提交
419 420 421 422
  }
  (*inputs).emplace_back(input_slots);
}

423 424 425 426 427 428 429 430 431 432 433 434
void GetInputPerBatch(const std::vector<std::vector<int64_t>> &in,
                      std::vector<std::vector<int64_t>> *out,
                      std::vector<size_t> *lod, size_t batch_iter,
                      size_t batch_end) {
  lod->clear();
  lod->push_back(0);
  for (auto it = in.begin() + batch_iter; it < in.begin() + batch_end; it++) {
    out->push_back(*it);
    lod->push_back(lod->back() + (*it).size());  // calculate lod
  }
}

L
luotao1 已提交
435 436 437 438 439 440 441 442 443 444 445
void ConvertPaddleTensorToZeroCopyTensor(
    PaddlePredictor *predictor, const std::vector<PaddleTensor> &inputs) {
  for (size_t i = 0; i < inputs.size(); i++) {
    auto input = inputs[i];
    auto tensor = predictor->GetInputTensor(input.name);
    tensor->Reshape(input.shape);
    tensor->SetLoD({input.lod});
    if (input.dtype == PaddleDType::INT64) {
      ZeroCopyTensorAssignData<int64_t>(tensor.get(), input.data);
    } else if (input.dtype == PaddleDType::FLOAT32) {
      ZeroCopyTensorAssignData<float>(tensor.get(), input.data);
L
luotao1 已提交
446 447
    } else if (input.dtype == PaddleDType::INT32) {
      ZeroCopyTensorAssignData<int32_t>(tensor.get(), input.data);
448 449
    } else if (input.dtype == PaddleDType::UINT8) {
      ZeroCopyTensorAssignData<uint8_t>(tensor.get(), input.data);
L
luotao1 已提交
450 451 452 453 454
    } else {
      LOG(ERROR) << "unsupported feed type " << input.dtype;
    }
  }
}
455

L
luotao1 已提交
456 457
void PredictionWarmUp(PaddlePredictor *predictor,
                      const std::vector<std::vector<PaddleTensor>> &inputs,
458
                      std::vector<std::vector<PaddleTensor>> *outputs,
459 460
                      int num_threads, int tid,
                      const VarType::Type data_type = VarType::FP32) {
L
luotao1 已提交
461 462 463 464 465
  int batch_size = FLAGS_batch_size;
  LOG(INFO) << "Running thread " << tid << ", warm up run...";
  if (FLAGS_zero_copy) {
    ConvertPaddleTensorToZeroCopyTensor(predictor, inputs[0]);
  }
466 467
  int iterations = 1;
  if (FLAGS_warmup_iters > 1)
468 469
    iterations =
        (std::min)(FLAGS_warmup_iters, static_cast<int>(inputs.size()));
470
  outputs->resize(iterations);
L
luotao1 已提交
471
  Timer warmup_timer;
472
  double elapsed_time = 0;
L
luotao1 已提交
473
  if (!FLAGS_zero_copy) {
474 475 476 477 478
    for (int i = 0; i < iterations; ++i) {
      warmup_timer.tic();
      predictor->Run(inputs[i], &(*outputs)[i], batch_size);
      elapsed_time += warmup_timer.toc();
    }
L
luotao1 已提交
479
  } else {
480 481 482 483 484
    for (int i = 0; i < iterations; ++i) {
      warmup_timer.tic();
      predictor->ZeroCopyRun();
      elapsed_time += warmup_timer.toc();
    }
485
  }
486 487 488
  auto batch_latency = elapsed_time / iterations;
  PrintTime(batch_size, 1, num_threads, tid, batch_latency, iterations,
            data_type);
489
  if (FLAGS_enable_profile) {
L
luotao1 已提交
490 491 492
    paddle::platform::ResetProfiler();
  }
}
493

L
luotao1 已提交
494 495
void PredictionRun(PaddlePredictor *predictor,
                   const std::vector<std::vector<PaddleTensor>> &inputs,
496
                   std::vector<std::vector<PaddleTensor>> *outputs,
497
                   int num_threads, int tid,
498 499
                   const VarType::Type data_type = VarType::FP32,
                   float *sample_latency = nullptr) {
L
luotao1 已提交
500
  int num_times = FLAGS_repeat;
501
  int iterations = inputs.size();  // process the whole dataset ...
502 503
  if (FLAGS_iterations > 0 &&
      FLAGS_iterations < static_cast<int64_t>(inputs.size()))
504 505 506 507 508
    iterations =
        FLAGS_iterations;  // ... unless the number of iterations is set
  outputs->resize(iterations);
  LOG(INFO) << "Thread " << tid << ", number of threads " << num_threads
            << ", run " << num_times << " times...";
L
luotao1 已提交
509 510
  Timer run_timer;
  double elapsed_time = 0;
Y
Yiqun Liu 已提交
511
#ifdef WITH_GPERFTOOLS
L
luotao1 已提交
512
  ProfilerStart("paddle_inference.prof");
Y
Yiqun Liu 已提交
513
#endif
514
  int predicted_num = 0;
L
luotao1 已提交
515
  if (!FLAGS_zero_copy) {
516
    for (int i = 0; i < iterations; i++) {
517
      run_timer.tic();
L
luotao1 已提交
518
      for (int j = 0; j < num_times; j++) {
519
        predictor->Run(inputs[i], &(*outputs)[i], FLAGS_batch_size);
520
      }
521 522 523 524 525 526
      elapsed_time += run_timer.toc();

      predicted_num += FLAGS_batch_size;
      if (predicted_num % 100 == 0) {
        LOG(INFO) << predicted_num << " samples";
      }
L
luotao1 已提交
527
    }
L
luotao1 已提交
528
  } else {
529
    for (int i = 0; i < iterations; i++) {
L
luotao1 已提交
530 531 532 533 534 535
      ConvertPaddleTensorToZeroCopyTensor(predictor, inputs[i]);
      run_timer.tic();
      for (int j = 0; j < num_times; j++) {
        predictor->ZeroCopyRun();
      }
      elapsed_time += run_timer.toc();
536 537 538 539 540

      predicted_num += FLAGS_batch_size;
      if (predicted_num % 100 == 0) {
        LOG(INFO) << predicted_num << " samples";
      }
L
luotao1 已提交
541 542
    }
  }
543

Y
Yiqun Liu 已提交
544
#ifdef WITH_GPERFTOOLS
L
luotao1 已提交
545
  ProfilerStop();
Y
Yiqun Liu 已提交
546
#endif
N
nhzlx 已提交
547

548 549
  auto batch_latency = elapsed_time / (iterations * num_times);
  PrintTime(FLAGS_batch_size, num_times, num_threads, tid, batch_latency,
550
            iterations, data_type);
551 552 553 554

  if (sample_latency != nullptr)
    *sample_latency = batch_latency / FLAGS_batch_size;

L
luotao1 已提交
555 556 557
  if (FLAGS_record_benchmark) {
    Benchmark benchmark;
    benchmark.SetName(FLAGS_model_name);
558 559
    benchmark.SetBatchSize(FLAGS_batch_size);
    benchmark.SetLatency(batch_latency);
L
luotao1 已提交
560
    benchmark.PersistToFile("benchmark_record.txt");
L
luotao1 已提交
561 562 563
  }
}

L
luotao1 已提交
564 565 566
void TestOneThreadPrediction(
    const PaddlePredictor::Config *config,
    const std::vector<std::vector<PaddleTensor>> &inputs,
567
    std::vector<std::vector<PaddleTensor>> *outputs, bool use_analysis = true,
568 569
    const VarType::Type data_type = VarType::FP32,
    float *sample_latency = nullptr) {
L
luotao1 已提交
570
  auto predictor = CreateTestPredictor(config, use_analysis);
571
  if (FLAGS_warmup) {
572
    PredictionWarmUp(predictor.get(), inputs, outputs, 1, 0, data_type);
573
  }
574 575
  PredictionRun(predictor.get(), inputs, outputs, 1, 0, data_type,
                sample_latency);
L
luotao1 已提交
576 577
}

L
luotao1 已提交
578
void TestMultiThreadPrediction(
579
    const PaddlePredictor::Config *config,
580
    const std::vector<std::vector<PaddleTensor>> &inputs,
581
    std::vector<std::vector<PaddleTensor>> *outputs, int num_threads,
T
Tao Luo 已提交
582
    bool use_analysis = true) {
L
luotao1 已提交
583
  std::vector<std::thread> threads;
L
luotao1 已提交
584 585 586 587 588
  std::vector<std::unique_ptr<PaddlePredictor>> predictors;
  predictors.emplace_back(CreateTestPredictor(config, use_analysis));
  for (int tid = 1; tid < num_threads; tid++) {
    predictors.emplace_back(predictors.front()->Clone());
  }
589

L
luotao1 已提交
590 591 592 593
  for (int tid = 0; tid < num_threads; ++tid) {
    threads.emplace_back([&, tid]() {
      // Each thread should have local inputs and outputs.
      // The inputs of each thread are all the same.
594
      std::vector<std::vector<PaddleTensor>> outputs_tid;
L
luotao1 已提交
595
      auto &predictor = predictors[tid];
596 597 598 599
      if (FLAGS_warmup) {
        PredictionWarmUp(predictor.get(), inputs, &outputs_tid, num_threads,
                         tid);
      }
600
      PredictionRun(predictor.get(), inputs, &outputs_tid, num_threads, tid);
L
luotao1 已提交
601 602 603 604 605 606 607
    });
  }
  for (int i = 0; i < num_threads; ++i) {
    threads[i].join();
  }
}

608
void TestPrediction(const PaddlePredictor::Config *config,
609
                    const std::vector<std::vector<PaddleTensor>> &inputs,
610 611
                    std::vector<std::vector<PaddleTensor>> *outputs,
                    int num_threads, bool use_analysis = FLAGS_use_analysis) {
612
  PrintConfig(config, use_analysis);
L
luotao1 已提交
613
  if (num_threads == 1) {
T
Tao Luo 已提交
614
    TestOneThreadPrediction(config, inputs, outputs, use_analysis);
L
luotao1 已提交
615
  } else {
T
Tao Luo 已提交
616 617
    TestMultiThreadPrediction(config, inputs, outputs, num_threads,
                              use_analysis);
L
luotao1 已提交
618 619 620
  }
}

621 622 623
void SummarizeAccuracy(float avg_acc_ref, float avg_acc, int compared_idx) {
  std::string data_type_name = "INT8";
  if (FLAGS_enable_bf16) data_type_name = "BF16";
624 625 626 627 628 629 630 631 632 633 634 635 636 637
  PADDLE_ENFORCE_LE(
      compared_idx, 2,
      platform::errors::InvalidArgument(
          "The compared_idx should be <= 2. But received compared_idx = %d. "
          "For top1 accuracy, set compared_idx = 1; For top5 accuracy or mean "
          "Average Precision (mAP), set compared_idx = 2.",
          compared_idx));
  PADDLE_ENFORCE_GE(
      compared_idx, 1,
      platform::errors::InvalidArgument(
          "The compared_idx should be >= 1. But received compared_idx = %d. "
          "For top1 accuracy, set compared_idx = 1; For top5 accuracy or mean "
          "Average Precision (mAP), set compared_idx = 2.",
          compared_idx));
638
  std::string prefix = (compared_idx == 1) ? "top1_accuracy " : "mAP ";
639
  LOG(INFO) << "--- Accuracy summary --- ";
640 641
  LOG(INFO) << "Accepted " << prefix
            << "drop threshold: " << FLAGS_quantized_accuracy
642 643
            << ". (condition: (FP32_" << prefix << " - " << data_type_name
            << "_" << prefix << ") <= threshold)";
644
  LOG(INFO) << "FP32: avg " << prefix << std::fixed << std::setw(6)
645 646 647
            << std::setprecision(4) << avg_acc_ref;
  LOG(INFO) << data_type_name << ": avg " << prefix << std::fixed
            << std::setw(6) << std::setprecision(4) << avg_acc;
648 649
}

650 651 652 653 654 655 656 657
void SummarizePerformance(const char *title, float sample) {
  CHECK_GT(sample, 0.0);
  auto throughput = 1000.0 / sample;
  LOG(INFO) << title << ": avg fps: " << std::fixed << std::setw(6)
            << std::setprecision(4) << throughput << ", avg latency: " << sample
            << " ms";
}

658 659
void SummarizePerformance(const char *title_fp32, float sample_latency_fp32,
                          const char *title, float sample_latency) {
660 661 662
  if (FLAGS_enable_fp32) SummarizePerformance(title_fp32, sample_latency_fp32);
  if (FLAGS_enable_int8 || FLAGS_enable_bf16)
    SummarizePerformance(title, sample_latency);
663 664
}

665 666
float CompareAccuracyOne(
    const std::vector<std::vector<PaddleTensor>> &output_slots,
667
    int compared_idx) {
668 669 670 671
  PADDLE_ENFORCE_GT(output_slots.size(), 0,
                    platform::errors::InvalidArgument(
                        "The accuracy vector is empty. The accuracy vector "
                        "size should be bigger than 0"));
672

673 674 675 676 677 678 679
  float total_accs{0};

  for (size_t i = 0; i < output_slots.size(); ++i) {
    switch (compared_idx) {
      case 1:
        PADDLE_ENFORCE_GE(
            output_slots[i].size(), 2UL,
680 681 682 683
            platform::errors::InvalidArgument(
                "To achieve top 1 accuracy, output_slots size "
                "must be bigger than or equal to 2, but now the size is %d",
                output_slots[i].size()));
684 685 686
        break;
      case 2:
        PADDLE_ENFORCE_GE(
687 688 689 690 691 692
            output_slots[i].size(), 3UL,
            platform::errors::InvalidArgument(
                "To achieve top 5 accuracy or mean Average "
                "Precision (mAP), output_slots size must be "
                "bigger than or equal to 3, but now the size is %d",
                output_slots[i].size()));
693 694 695 696
        break;
      default:
        throw std::invalid_argument(
            "CompareAccuracy: compared_idx is out of range.");
697 698
    }

699
    if (output_slots[i][compared_idx].lod.size() > 0)
700
      throw std::invalid_argument("CompareAccuracy: output has nonempty LoD.");
701 702

    if (output_slots[i][compared_idx].dtype != paddle::PaddleDType::FLOAT32)
703
      throw std::invalid_argument(
704
          "CompareAccuracy: output is of a wrong type.");
705 706 707

    total_accs +=
        *static_cast<float *>(output_slots[i][compared_idx].data.data());
708
  }
709 710 711 712 713 714 715 716

  return total_accs / output_slots.size();
}

void CompareAccuracy(
    const std::vector<std::vector<PaddleTensor>> &output_slots_quant,
    const std::vector<std::vector<PaddleTensor>> &output_slots_ref,
    int compared_idx) {
717
  if ((FLAGS_enable_fp32 && (FLAGS_enable_int8 || FLAGS_enable_bf16)) &&
718 719 720 721 722 723 724
      (output_slots_quant.size() == 0 || output_slots_ref.size()) == 0)
    throw std::invalid_argument(
        "CompareAccuracy: output_slots vector is empty.");

  float avg_acc_quant = 0.0;
  float avg_acc_ref = 0.0;

725
  if (FLAGS_enable_int8 || FLAGS_enable_bf16)
726 727 728 729
    avg_acc_quant = CompareAccuracyOne(output_slots_quant, compared_idx);

  if (FLAGS_enable_fp32)
    avg_acc_ref = CompareAccuracyOne(output_slots_ref, compared_idx);
730

731
  SummarizeAccuracy(avg_acc_ref, avg_acc_quant, compared_idx);
732 733 734

  if (FLAGS_enable_fp32) CHECK_GT(avg_acc_ref, 0.0);

735
  if (FLAGS_enable_int8 || FLAGS_enable_bf16) CHECK_GT(avg_acc_quant, 0.0);
736

737
  if (FLAGS_enable_fp32 && (FLAGS_enable_int8 || FLAGS_enable_bf16))
738
    CHECK_LE(avg_acc_ref - avg_acc_quant, FLAGS_quantized_accuracy);
739 740
}

L
luotao1 已提交
741 742 743 744 745 746 747 748 749
void CompareDeterministic(
    const PaddlePredictor::Config *config,
    const std::vector<std::vector<PaddleTensor>> &inputs) {
  int batch_size = FLAGS_batch_size;
  int num_times = FLAGS_repeat;
  auto predictor = CreateTestPredictor(config, FLAGS_use_analysis);

  std::vector<PaddleTensor> warmup_outputs, outputs;
  // run num_times to Compare Deterministic Result.
750 751 752 753
  for (size_t j = 0; j < inputs.size(); j++) {
    // warmup run
    predictor->Run(inputs[j], &warmup_outputs, batch_size);
    for (int i = 0; i < num_times; i++) {
L
luotao1 已提交
754 755 756 757 758 759
      predictor->Run(inputs[j], &outputs, batch_size);
      CompareResult(outputs, warmup_outputs);
    }
  }
}

T
Tao Luo 已提交
760
void CompareNativeAndAnalysis(
761
    const PaddlePredictor::Config *config,
762
    const std::vector<std::vector<PaddleTensor>> &inputs) {
763
  PrintConfig(config, true);
764
  std::vector<std::vector<PaddleTensor>> native_outputs, analysis_outputs;
765
  TestOneThreadPrediction(config, inputs, &native_outputs, false);
T
Tao Luo 已提交
766
  TestOneThreadPrediction(config, inputs, &analysis_outputs, true);
767 768 769 770 771 772 773 774
  PADDLE_ENFORCE_GT(native_outputs.size(), 0,
                    platform::errors::InvalidArgument(
                        "The native outputs is empty. The native outputs "
                        "vector size must be bigger than 0"));
  PADDLE_ENFORCE_GT(analysis_outputs.size(), 0,
                    platform::errors::InvalidArgument(
                        "The analysis outputs is empty. The analysis outputs "
                        "vector size must be bigger than 0"));
775
  CompareResult(analysis_outputs.back(), native_outputs.back());
T
Tao Luo 已提交
776 777
}

778
void CompareQuantizedAndAnalysis(
779
    const AnalysisConfig *config, const AnalysisConfig *qconfig,
780 781
    const std::vector<std::vector<PaddleTensor>> &inputs,
    const int compared_idx = 1) {
782 783 784 785 786 787
  PADDLE_ENFORCE_EQ(
      inputs[0][0].shape[0], FLAGS_batch_size,
      platform::errors::InvalidArgument(
          "Input data has to be packed batch by batch. The batchsize is set to "
          "%d, but the real input is packed with batchsize = %d",
          FLAGS_batch_size, inputs[0][0].shape[0]));
788 789 790 791 792 793 794
  LOG(INFO) << "FP32 & INT8 prediction run: batch_size " << FLAGS_batch_size
            << ", warmup batch size " << FLAGS_warmup_batch_size << ".";

  LOG(INFO) << "--- FP32 prediction start ---";
  auto *cfg = reinterpret_cast<const PaddlePredictor::Config *>(config);
  PrintConfig(cfg, true);
  std::vector<std::vector<PaddleTensor>> analysis_outputs;
795
  float sample_latency_fp32{-1};
796 797 798 799 800

  if (FLAGS_enable_fp32) {
    TestOneThreadPrediction(cfg, inputs, &analysis_outputs, true, VarType::FP32,
                            &sample_latency_fp32);
  }
801 802 803 804 805

  LOG(INFO) << "--- INT8 prediction start ---";
  auto *qcfg = reinterpret_cast<const PaddlePredictor::Config *>(qconfig);
  PrintConfig(qcfg, true);
  std::vector<std::vector<PaddleTensor>> quantized_outputs;
806
  float sample_latency_int8{-1};
807

808 809 810 811
  if (FLAGS_enable_int8) {
    TestOneThreadPrediction(qcfg, inputs, &quantized_outputs, true,
                            VarType::INT8, &sample_latency_int8);
  }
812 813
  SummarizePerformance("FP32", sample_latency_fp32, "INT8",
                       sample_latency_int8);
814

815
  CompareAccuracy(quantized_outputs, analysis_outputs, compared_idx);
816 817
}

818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
void CompareBFloat16AndAnalysis(
    const AnalysisConfig *config, const AnalysisConfig *qconfig,
    const std::vector<std::vector<PaddleTensor>> &inputs,
    const int compared_idx = 1) {
  PADDLE_ENFORCE_EQ(
      inputs[0][0].shape[0], FLAGS_batch_size,
      platform::errors::InvalidArgument(
          "Input data has to be packed batch by batch. The batchsize is set to "
          "%d, but the real input is packed with batchsize = %d",
          FLAGS_batch_size, inputs[0][0].shape[0]));
  LOG(INFO) << "FP32 & BF16 prediction run: batch_size " << FLAGS_batch_size;

  LOG(INFO) << "--- FP32 prediction start ---";
  auto *cfg = reinterpret_cast<const PaddlePredictor::Config *>(config);
  PrintConfig(cfg, true);
  std::vector<std::vector<PaddleTensor>> analysis_outputs;
  float sample_latency_fp32{-1};

  if (FLAGS_enable_fp32) {
    TestOneThreadPrediction(cfg, inputs, &analysis_outputs, true, VarType::FP32,
                            &sample_latency_fp32);
  }

  LOG(INFO) << "--- BF16 prediction start ---";
  auto *qcfg = reinterpret_cast<const PaddlePredictor::Config *>(qconfig);
  PrintConfig(qcfg, true);
  std::vector<std::vector<PaddleTensor>> bf16_outputs;
  float sample_latency_bf16{-1};

  if (FLAGS_enable_bf16) {
    TestOneThreadPrediction(qcfg, inputs, &bf16_outputs, true, VarType::FP32,
                            &sample_latency_bf16);
  }
  SummarizePerformance("FP32", sample_latency_fp32, "BF16",
                       sample_latency_bf16);

  CompareAccuracy(bf16_outputs, analysis_outputs, compared_idx);
}

857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892
void CompareAnalysisAndAnalysis(
    const AnalysisConfig *config1, const AnalysisConfig *config2,
    const std::vector<std::vector<PaddleTensor>> &inputs,
    const bool with_accuracy_layer = FLAGS_with_accuracy_layer,
    const int compared_idx = 1) {
  PADDLE_ENFORCE_EQ(
      inputs[0][0].shape[0], FLAGS_batch_size,
      platform::errors::InvalidArgument(
          "Input data has to be packed batch by batch. The batchsize is set to "
          "%d, but the real input is packed with batchsize = %d",
          FLAGS_batch_size, inputs[0][0].shape[0]));

  LOG(INFO) << "FP32 & INT8 prediction run: batch_size " << FLAGS_batch_size
            << ", warmup batch size " << FLAGS_warmup_batch_size << ".";

  LOG(INFO) << "--- FP32 prediction start ---";
  auto *cfg1 = reinterpret_cast<const PaddlePredictor::Config *>(config1);
  PrintConfig(cfg1, true);
  std::vector<std::vector<PaddleTensor>> analysis_outputs;
  float sample_latency_fp32{-1};

  if (FLAGS_enable_fp32) {
    TestOneThreadPrediction(cfg1, inputs, &analysis_outputs, true,
                            VarType::FP32, &sample_latency_fp32);
  }

  LOG(INFO) << "--- INT8 prediction start ---";
  auto *cfg2 = reinterpret_cast<const PaddlePredictor::Config *>(config2);
  PrintConfig(cfg2, true);
  std::vector<std::vector<PaddleTensor>> int8_outputs;
  float sample_latency_int8{-1};

  if (FLAGS_enable_int8) {
    TestOneThreadPrediction(cfg2, inputs, &int8_outputs, true, VarType::INT8,
                            &sample_latency_int8);
  }
893 894
  SummarizePerformance("FP32", sample_latency_fp32, "INT8",
                       sample_latency_int8);
895 896 897 898 899
  if (with_accuracy_layer) {
    CompareAccuracy(int8_outputs, analysis_outputs, compared_idx);
  }
}

N
nhzlx 已提交
900 901 902 903 904 905 906 907 908 909
void CompareNativeAndAnalysis(
    PaddlePredictor *native_pred, PaddlePredictor *analysis_pred,
    const std::vector<std::vector<PaddleTensor>> &inputs) {
  int batch_size = FLAGS_batch_size;
  std::vector<PaddleTensor> native_outputs, analysis_outputs;
  native_pred->Run(inputs[0], &native_outputs, batch_size);
  analysis_pred->Run(inputs[0], &analysis_outputs, batch_size);
  CompareResult(analysis_outputs, native_outputs);
}

910
void CompareAnalysisAndZeroCopy(
911
    PaddlePredictor::Config *config, PaddlePredictor::Config *config1,
912 913 914 915 916 917 918 919 920
    const std::vector<std::vector<PaddleTensor>> &inputs,
    const std::vector<std::string> &outputs_name) {
  int batch_size = FLAGS_batch_size;
  // analysis
  std::vector<PaddleTensor> analysis_outputs;
  auto predictor = CreateTestPredictor(config, true);
  predictor->Run(inputs[0], &analysis_outputs, batch_size);
  // analysis + zero_copy
  std::vector<ZeroCopyTensor> zerocopy_outputs;
921 922
  reinterpret_cast<AnalysisConfig *>(config1)->SwitchUseFeedFetchOps(false);
  predictor = CreateTestPredictor(config1, true);
923 924 925 926 927 928
  ConvertPaddleTensorToZeroCopyTensor(predictor.get(), inputs[0]);
  predictor->ZeroCopyRun();
  for (size_t i = 0; i < outputs_name.size(); i++) {
    ZeroCopyTensor zerocopy_output =
        *predictor->GetOutputTensor(outputs_name[i]).get();
    zerocopy_outputs.emplace_back(zerocopy_output);
L
luotao1 已提交
929
    LOG(INFO) << "ZeroCopy output: " << DescribeZeroCopyTensor(zerocopy_output);
930 931 932 933 934
  }
  // compare
  CompareResult(analysis_outputs, zerocopy_outputs);
}

935 936 937 938 939 940 941
void SaveOptimModel(AnalysisConfig *cfg, const std::string &dstPath) {
  auto predictor = CreateTestPredictor(
      reinterpret_cast<const PaddlePredictor::Config *>(cfg),
      FLAGS_use_analysis);
  (static_cast<AnalysisPredictor *>(predictor.get()))->SaveOptimModel(dstPath);
}

L
luotao1 已提交
942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
template <typename T>
std::string LoDTensorSummary(const framework::LoDTensor &tensor) {
  std::stringstream ss;
  ss << "\n---- tensor ---" << '\n';
  ss << "lod: [";
  for (const auto &level : tensor.lod()) {
    ss << "[ ";
    for (auto i : level) {
      ss << i << ", ";
    }
    ss << "]";
  }
  ss << "]\n";

  ss << "shape: [";
  int size = 1;
  for (int i = 0; i < tensor.dims().size(); i++) {
    int dim = tensor.dims()[i];
    ss << dim << ", ";
    size *= dim;
  }
  ss << "]\n";

  ss << "data: ";
  for (int i = 0; i < std::min(20, size); i++) {
    ss << tensor.data<T>()[i] << " ";
  }
  ss << "\n";

  return ss.str();
}

static bool CompareLoD(const framework::LoD &a, const framework::LoD &b) {
  if (a.size() != b.size()) {
    LOG(ERROR) << string::Sprintf("lod size not match %d != %d", a.size(),
                                  b.size());
    return false;
  }
  for (size_t i = 0; i < a.size(); i++) {
    auto &al = a[i];
    auto &bl = b[i];
    if (al.size() != bl.size()) {
      LOG(ERROR) << string::Sprintf("level size %d != %d", al.size(),
                                    bl.size());
      return false;
    }
  }
  return true;
}

static bool CompareShape(const std::vector<int64_t> &a,
                         const std::vector<int64_t> &b) {
  if (a.size() != b.size()) {
    LOG(ERROR) << string::Sprintf("shape size not match %d != %d", a.size(),
                                  b.size());
    return false;
  }
  for (size_t i = 0; i < a.size(); i++) {
    if (a[i] != b[i]) {
      LOG(ERROR) << string::Sprintf("shape %d-th element not match %d != %d", i,
                                    a[i], b[i]);
      return false;
    }
  }
  return true;
}

static bool CompareTensorData(const framework::LoDTensor &a,
                              const framework::LoDTensor &b) {
1011 1012
  auto a_shape = pten::vectorize(a.dims());
  auto b_shape = pten::vectorize(b.dims());
1013
  size_t a_size = std::accumulate(a_shape.begin(), a_shape.end(), size_t{1},
L
luotao1 已提交
1014
                                  [](int a, int b) { return a * b; });
1015
  size_t b_size = std::accumulate(b_shape.begin(), b_shape.end(), size_t{1},
L
luotao1 已提交
1016 1017 1018 1019 1020 1021 1022
                                  [](int a, int b) { return a * b; });
  if (a_size != b_size) {
    LOG(ERROR) << string::Sprintf("tensor data size not match, %d != %d",
                                  a_size, b_size);
  }

  for (size_t i = 0; i < a_size; i++) {
1023
    if (framework::TransToProtoVarType(a.dtype()) == VarType::FP32) {
L
luotao1 已提交
1024 1025 1026 1027 1028 1029 1030 1031
      const auto *a_data = a.data<float>();
      const auto *b_data = b.data<float>();
      if (std::abs(a_data[i] - b_data[i]) > 1e-3) {
        LOG(ERROR) << string::Sprintf(
            "tensor data %d-th element not match, %f != %f", i, a_data[i],
            b_data[i]);
        return false;
      }
1032
    } else if (framework::TransToProtoVarType(a.dtype()) == VarType::INT64) {
L
luotao1 已提交
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
      const auto *a_data = a.data<int64_t>();
      const auto *b_data = b.data<int64_t>();
      if (std::abs(a_data[i] - b_data[i]) > 1e-3) {
        LOG(ERROR) << string::Sprintf(
            "tensor data %d-th element not match, %f != %f", i, a_data[i],
            b_data[i]);
        return false;
      }
    }
  }

  return true;
}

static bool CompareTensor(const framework::LoDTensor &a,
                          const framework::LoDTensor &b) {
  if (!CompareLoD(a.lod(), b.lod())) {
    return false;
  }
1052
  if (!CompareShape(pten::vectorize(a.dims()), pten::vectorize(b.dims()))) {
L
luotao1 已提交
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
    return false;
  }

  if (!CompareTensorData(a, b)) {
    return false;
  }

  return true;
}

L
luotao1 已提交
1063 1064
}  // namespace inference
}  // namespace paddle