partial_program.py 41.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from copy import deepcopy

17
import numpy as np
18

19
import paddle
20
from paddle import _legacy_C_ops
21
from paddle.amp.auto_cast import _in_amp_guard, _in_pure_fp16_guard
22
from paddle.fluid import backward, core, framework, program_guard
23
from paddle.fluid.compiler import BuildStrategy
24 25 26 27 28 29 30 31 32 33 34
from paddle.fluid.dygraph import layers
from paddle.fluid.dygraph.base import switch_to_static_graph
from paddle.fluid.executor import (
    _is_dy2st_enable_standalone_executor,
    _is_enable_standalone_executor,
)
from paddle.fluid.framework import _apply_pass
from paddle.fluid.layers.utils import _hash_with_id, flatten, pack_sequence_as

from . import logging_utils
from .return_transformer import RETURN_NO_VALUE_MAGIC_NUM
35

36 37
__all__ = []

38

39
class NestSequence:
40 41 42 43 44 45 46
    """
    A wrapper class that easily to flatten and restore the nest structure of
    given sequence.
    """

    def __init__(self, raw_input, need_check=False):
        self.__raw_input = raw_input
47
        self.__input_list = self.tolist()
48 49 50 51 52 53 54 55 56 57 58 59 60
        self.__var_ids = self._get_var_ids()
        self._check_non_variable(need_check)

    def tolist(self):
        """
        Flattens the nested sequences into single list.
        """
        return flatten(self.__raw_input)

    def restore(self, value_list):
        """
        Restores the nested sequence from value list.
        """
61
        assert len(self.__input_list) == len(value_list)
62 63 64 65
        return pack_sequence_as(self.__raw_input, value_list)

    def _get_var_ids(self):
        var_ids = []
66
        for idx, var in enumerate(self.__input_list):
67
            if isinstance(
68 69
                var, (framework.Variable, core.VarBase, core.eager.Tensor)
            ):
70 71 72 73 74 75 76 77 78 79
                var_ids.append(idx)

        return var_ids

    def _check_non_variable(self, need_check):
        """
        Raises warning if output of traced function contains non-tensor type values.
        """
        if need_check:
            warning_types = set()
80
            for var in self.__input_list:
81
                if not isinstance(
82 83
                    var, (framework.Variable, core.VarBase, core.eager.Tensor)
                ):
84 85
                    warning_types.add(type(var))
            if warning_types:
86
                logging_utils.warn(
87 88
                    "Output of traced function contains non-tensor type values: {}. "
                    "Currently, We don't support to update them while training and will return "
89 90 91 92
                    "what we first saw. Please try to return them as tensor.".format(
                        list(warning_types)
                    )
                )
93 94 95 96 97 98

    @property
    def var_ids(self):
        return self.__var_ids

    def __getitem__(self, item):
99
        return self.__input_list[item]
100

101

102
class LazyInitialized:
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
    """
    Descriptor to implement lazy initialization of property.
    """

    def __init__(self, function):
        self.function = function

    def __get__(self, instance, cls):
        val = self.function(instance)
        setattr(instance, self.function.__name__, val)
        return val


def _change_is_test_status(program, is_test):
    # change all `is_test` attributes
    for block in program.blocks:
        for op in block.ops:
            if op.has_attr('is_test'):
                op._set_attr('is_test', is_test)
    return program


125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
class ProgramInfo:
    """
    A helper class to recoder Program information
    """

    def __init__(self, mode='infer'):
        self.op_size = {
            'fp32': -1,
            'amp': -1,
            'fp16': -1,
        }
        assert mode in ['train', 'infer']
        self.mode = mode


140
class PartialProgramLayer:
141
    """
H
hjyp 已提交
142
    PartialProgramLayer wraps all the ops from layers decorated by `@to_static`
143 144 145
    and execute them as a static subgraph.

    .. note::
146 147 148
        **1. This is a very low level API. Users should not use this API
             directly. Please use `partial_program_from(concrete_program)`
             to create it.
149 150 151 152
        **2. LoDTensorArray is not currently supported in the output.

    Args:
        main_program(Program): The main program that contains ops need to be executed.
H
hjyp 已提交
153 154
        inputs(list[Variable]): The input list of the decorated function by `@to_static`.
        outputs(list[Variable]): The output list of the decorated function by `@to_static`.
155 156 157
        parameters(list[VarBase]|None): All trainable parameters included in the program. Default None.

    Returns:
158
        Layer: A Layer object that run all ops internally in static graph mode.
159 160
    """

161 162 163
    def __init__(
        self, main_program, inputs, outputs, parameters=None, **kwargs
    ):
164
        super().__init__()
165 166
        self._inputs = NestSequence(inputs)
        self._outputs = NestSequence(outputs, need_check=True)
167
        self._params = parameters if parameters is not None else []
168

169 170 171
        self._build_strategy = kwargs.get('build_strategy', BuildStrategy())
        assert isinstance(self._build_strategy, BuildStrategy)

172
        self._origin_main_program = self._verify_program(main_program)
173 174 175
        self._cuda_graph_vec = self._create_cuda_graph_vec()
        self._cuda_graph_capture_mode = ""
        self._cuda_graph_pool_id = 0
176
        # Set default mode to train
177
        self.training = True
178
        self._infer_info = ProgramInfo(mode='infer')
179

180 181 182 183
        custom_white_list, custom_black_list = None, None
        tracer = framework._dygraph_tracer()
        if tracer:
            custom_white_list, custom_black_list = tracer._get_amp_op_list()
184
        # For AMP training
185
        self._amp_list = paddle.static.amp.fp16_lists.AutoMixedPrecisionLists(
186
            custom_white_list=custom_white_list,
187 188
            custom_black_list=custom_black_list,
        )
189

190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
        # program_id -> list(scope)
        self._scope_cache = {}

    def _get_scope(self, program_id=None, use_scope_cache=False):
        if use_scope_cache:
            if program_id not in self._scope_cache:
                scope = core.Scope()
                self._scope_cache[program_id] = [scope]
                return scope
            else:
                for scope in self._scope_cache[program_id]:
                    if scope._can_reuesd:
                        return scope
                scope = core.Scope()
                self._scope_cache[program_id].append(scope)
                return scope
        else:
            return core.Scope()

209 210 211 212
    @LazyInitialized
    def _double_grads(self):
        return self._get_double_grads(self._origin_main_program)

213 214 215 216 217 218 219
    # whole
    @switch_to_static_graph
    def _create_program(self, is_infer_mode=False):
        if is_infer_mode:
            return self._origin_main_program.clone(for_test=is_infer_mode)
        else:
            train_program = self._append_backward_desc(
220 221
                self._origin_main_program
            )
222 223 224
            # Note: Only set grad type once after initializing train program. So we put it here.
            self._set_grad_type(self._params, train_program)
            return train_program
225

226 227 228 229
    @switch_to_static_graph
    def _create_amp_program(self, is_infer_mode=False):
        amp_program = self._origin_main_program.clone(for_test=is_infer_mode)
        with program_guard(amp_program):
230 231 232
            paddle.static.amp.fp16_utils.rewrite_program(
                amp_program, self._amp_list
            )
233 234 235 236 237 238
        if is_infer_mode:
            return amp_program
        else:
            train_amp_program = self._append_backward_desc(amp_program)
            self._set_grad_type(self._params, train_amp_program)
            return train_amp_program
239

240 241 242
    @switch_to_static_graph
    def _create_pure_fp16_program(self, is_infer_mode=False):
        pure_fp16_program = self._origin_main_program.clone(
243 244
            for_test=is_infer_mode
        )
245
        with program_guard(pure_fp16_program):
246
            paddle.static.amp.fp16_utils.cast_model_to_fp16(
247 248
                pure_fp16_program, self._amp_list, use_fp16_guard=False
            )
249 250 251 252
        if is_infer_mode:
            return pure_fp16_program
        else:
            train_pure_fp16_program = self._append_backward_desc(
253 254
                pure_fp16_program
            )
255 256
            self._set_grad_type(self._params, train_pure_fp16_program)
            return train_pure_fp16_program
257

258
    @switch_to_static_graph
259
    def _create_forward_backward_train_program(self):
260
        whole_program = self._train_program
261 262
        forward_end_op_index = self._infer_info.op_size['fp32']
        assert forward_end_op_index >= 0
263 264 265
        return self._get_forward_backward_program_form(
            whole_program, forward_end_op_index
        )
266

267 268
    @switch_to_static_graph
    def _create_forward_backward_train_amp_program(self):
269
        whole_program = self._train_amp_program
270 271
        forward_end_op_index = self._infer_info.op_size['amp']
        assert forward_end_op_index >= 0
272 273 274
        return self._get_forward_backward_program_form(
            whole_program, forward_end_op_index
        )
275 276 277

    @switch_to_static_graph
    def _create_forward_backward_train_pure_fp16_program(self):
278
        whole_program = self._train_pure_fp16_program
279 280
        forward_end_op_index = self._infer_info.op_size['fp16']
        assert forward_end_op_index >= 0
281 282 283
        return self._get_forward_backward_program_form(
            whole_program, forward_end_op_index
        )
284 285

    @LazyInitialized
286 287
    def _train_program(self):
        return self._create_program()
288

289
    @LazyInitialized
290
    def _infer_program(self):
291 292 293 294 295
        program = self._create_program(is_infer_mode=True)
        self._infer_info.op_size['fp32'] = program.desc.block(0).op_size()
        return self._build_infer_program(
            program, self._infer_info.op_size['fp32']
        )
296

297 298 299 300 301 302
    @LazyInitialized
    def _train_amp_program(self):
        return self._create_amp_program()

    @LazyInitialized
    def _infer_amp_program(self):
303 304 305 306 307
        program = self._create_amp_program(is_infer_mode=True)
        self._infer_info.op_size['amp'] = program.desc.block(0).op_size()
        return self._build_infer_program(
            program, self._infer_info.op_size['amp']
        )
308 309 310

    @LazyInitialized
    def _train_pure_fp16_program(self):
311
        return self._create_pure_fp16_program()
312

313
    @LazyInitialized
314
    def _infer_pure_fp16_program(self):
315 316 317 318 319
        program = self._create_pure_fp16_program(is_infer_mode=True)
        self._infer_info.op_size['fp16'] = program.desc.block(0).op_size()
        return self._build_infer_program(
            program, self._infer_info.op_size['fp16']
        )
320

321
    @LazyInitialized
322 323 324
    def _train_forward_backward_program(self):
        program = self._create_forward_backward_train_program()
        return program
325 326

    @LazyInitialized
327 328 329 330
    def _train_amp_forward_backward_program(self):
        program = self._create_forward_backward_train_amp_program()
        return program

331 332 333 334
    @LazyInitialized
    def _empty_backward_program_for_eval(self):
        return paddle.static.Program()

335 336 337 338 339
    @LazyInitialized
    def _train_pure_fp16_forward_backward_program(self):
        program = self._create_forward_backward_train_pure_fp16_program()
        return program

340 341
    @LazyInitialized
    def _train_program_id(self):
342
        program_id = _hash_with_id(self._train_program, self)
343 344 345
        core._set_cached_executor_build_strategy(
            program_id, self._build_strategy
        )
346
        return program_id
347

348 349 350 351
    @LazyInitialized
    def _infer_program_id(self):
        return _hash_with_id(self._infer_program, self)

352 353 354
    @LazyInitialized
    def _train_amp_program_id(self):
        program_id = _hash_with_id(self._train_amp_program, self)
355 356 357
        core._set_cached_executor_build_strategy(
            program_id, self._build_strategy
        )
358 359
        return program_id

360 361 362 363
    @LazyInitialized
    def _infer_amp_program_id(self):
        return _hash_with_id(self._infer_amp_program, self)

364 365 366
    @LazyInitialized
    def _train_pure_fp16_program_id(self):
        program_id = _hash_with_id(self._train_pure_fp16_program, self)
367 368 369
        core._set_cached_executor_build_strategy(
            program_id, self._build_strategy
        )
370 371
        return program_id

372 373 374 375
    @LazyInitialized
    def _infer_pure_fp16_program_id(self):
        return _hash_with_id(self._infer_pure_fp16_program, self)

376 377 378 379 380 381 382 383
    @LazyInitialized
    def _param_grad_names(self):
        names = []
        # NOTE: `names` and `self._params` must be in the same order so that
        # the param grad name can be set correctly in the run_program.
        for param in self._params:
            candidate = [
                var_name
384
                for var_name in self._train_program.block(0).vars.keys()
385 386 387 388 389 390 391 392 393 394 395 396
                if var_name.endswith(param.name + '@GRAD')
            ]
            if candidate:
                names.append(
                    max(candidate, key=lambda name: name.count('grad/'))
                )
            else:
                names.append(param.name + '@GRAD')
        return names

    @LazyInitialized
    def _out_grad_names(self):
397 398 399
        """
        Parse Out@GARD name from original train and infer program.
        """
400
        names = []
401 402 403
        origin_infer_program = self._create_program(is_infer_mode=True)
        origin_train_program = self._train_program
        fwd_end_op_index = len(origin_infer_program.block(0).ops)
404 405 406 407
        for i in range(
            fwd_end_op_index + 1,
            min(
                fwd_end_op_index + 2 * len(self._outputs.var_ids),
408
                len(origin_train_program.block(0).ops),
409 410 411
            ),
            2,
        ):
412
            op = origin_train_program.block(0).ops[i]
413 414 415
            if op.type == 'fill_constant':
                var_name = op.output('Out')[0]
                names.append(var_name)
416

417 418
        return names

419
    @property
420 421 422 423 424 425 426 427 428 429 430 431 432 433
    def program(self):
        """
        Return current train or eval program.
        """
        if self.training:
            return self.train_program
        else:
            return self.infer_program

    @property
    def program_id(self):
        """
        Return current train or eval program hash id.
        """
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
        if self.training:
            if _in_amp_guard():
                return self._train_amp_program_id
            elif _in_pure_fp16_guard():
                return self._train_pure_fp16_program_id
            else:
                return self._train_program_id
        else:
            if _in_amp_guard():
                return self._infer_amp_program_id
            elif _in_pure_fp16_guard():
                return self._infer_pure_fp16_program_id
            else:
                return self._infer_program_id

449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
    @property
    def train_program(self):
        if _in_amp_guard():
            return self._train_amp_program
        elif _in_pure_fp16_guard():
            return self._train_pure_fp16_program
        else:
            return self._train_program

    @property
    def infer_program(self):
        if _in_amp_guard():
            return self._infer_amp_program
        elif _in_pure_fp16_guard():
            return self._infer_pure_fp16_program
        else:
            return self._infer_program

    @property
    def forward_program(self):
        if self.training:
            if _in_amp_guard():
                progs = self._train_amp_forward_backward_program
            elif _in_pure_fp16_guard():
                progs = self._train_pure_fp16_forward_backward_program
            else:
                progs = self._train_forward_backward_program
            return progs[0]
        else:
            return self.infer_program

    @property
    def backward_program(self):
        if self.training:
            if _in_amp_guard():
                progs = self._train_amp_forward_backward_program
            elif _in_pure_fp16_guard():
                progs = self._train_pure_fp16_forward_backward_program
            else:
                progs = self._train_forward_backward_program
            return progs[1]
        else:
            """
            Can't just return paddle.static.Program(), because self.backward_program is a property,
            whenever we call this method, a tmp Program() object is created and is gc immediatly
            after executed the following line in PartialProgramLayer.__call__.

            >>> self.backward_program.desc.block(0),

            When we access RunProgramAPI, it's possible to get an invalid backward_program address.
            """
            return self._empty_backward_program_for_eval

502 503 504 505 506 507 508 509 510 511 512 513
    def _verify_program(self, main_program):
        """
        Verify that the program parameter is initialized, prune some unused params,
        and remove redundant op callstack.
        """
        # 1. Check all params from main program can be found in self._params
        self._check_params_all_inited(main_program)
        # 2. Prune the parameters not used anywhere in the program.
        self._prune_unused_params(main_program)

        return main_program

514 515 516
    def prepare_gradient_aggregation(
        self, start_idx, main_program, target_program
    ):
517 518 519 520 521 522 523
        """
        Why we need add gradient aggregation operation ?
        In some cases, if non leaf nodes are used as output, gradient overwriting will occur, such as
        def forward(self, in):
            x = 2 * in  # <---- x is a non-leaf node in program.
            y = x + 3
            return x, y
524

525 526 527 528 529 530 531 532 533
        loss = forward(in)[0].sum()
        loss.backward()  # <----- x@grad will be overwrited by elementwise_add_grad Op
        """

        def _need_aggregation(var):
            """
            if exist a op whose inputs is var, then return True
            """
            if not isinstance(var, framework.Variable) or var.type not in [
534 535
                core.VarDesc.VarType.LOD_TENSOR,
                core.VarDesc.VarType.SELECTED_ROWS,
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
            ]:
                return False
            if var.dtype not in [paddle.float32, paddle.float64]:
                return False
            for op in main_program.block(0).ops:
                for in_arg in op.input_arg_names:
                    if in_arg == var.name:
                        return True
            return False

        def _insert_aggregation_ops_for_var(target_program, var):
            suffix = "@dy2static"
            var_grad_name = var.grad_name
            new_grad_name = var.name + suffix + "@GRAD"
            finded_ops = list(
                filter(
552 553 554 555 556 557 558 559 560 561
                    lambda x: x[0] >= start_idx
                    and any(
                        [
                            out_arg == var_grad_name
                            for out_arg in x[1].output_arg_names
                        ]
                    ),
                    enumerate(target_program.block(0).ops),
                )
            )
562 563 564 565 566 567

            # len(finded_ops) may equals zero when stop_gradient works.
            # len(finded_ops) may > 1, because we may have fill_constant op.
            if len(finded_ops) == 0:
                return None
            # step1: create a new var named var.name@GRAD
568 569 570 571 572 573
            target_program.block(0).create_var(
                name=new_grad_name,
                type=var.type,
                dtype=var.dtype,
                shape=var.shape,
            )
574 575 576 577 578 579 580 581 582 583
            # step2: rename the var.name@GRAD to var.name@GRAD@dy2static
            for idx, op in finded_ops:
                op._rename_input(var_grad_name, new_grad_name)
                op._rename_output(var_grad_name, new_grad_name)
            # step3: insert sum op to aggregate the gradient.
            #        var.name@GRAD = sum(var.name@dy2static@GRAD, var.name@GRAD)
            target_program.block(0)._insert_op(
                finded_ops[-1][0] + 1,
                type='sum',
                inputs={'X': [var_grad_name, new_grad_name]},
584 585
                outputs={"Out": var_grad_name},
            )
586 587 588
            return None

        to_processed_vars = list(
589 590
            filter(_need_aggregation, self._outputs.tolist())
        )
591 592 593
        for _var in to_processed_vars:
            _insert_aggregation_ops_for_var(target_program, _var)

594
    @switch_to_static_graph
595
    def _append_backward_desc(self, main_program):
596 597
        # make sure all status of is_test are False in train mode.
        program = _change_is_test_status(main_program.clone(), is_test=False)
598
        targets = []
599
        for out in self._outputs.tolist():
600 601 602
            if isinstance(out, framework.Variable):
                targets.append(program.global_block().var(out.name))

603
        if targets:
604 605
            backward.gradients(targets=targets, inputs=[])

606 607 608
        start_idx = len(main_program.block(0).ops) + 2 * len(
            self._outputs.tolist()
        )
609 610

        self.prepare_gradient_aggregation(start_idx, main_program, program)
611

612 613
        return program

614 615 616
    def _prune_unused_params(self, program):
        """
        Prune the parameters not used anywhere in the program.
H
hjyp 已提交
617
        The `@to_static` may only decorated a sub function which
618 619 620 621 622 623
        contains some unused parameters created in `__init__`.
        So prune these parameters to avoid unnecessary operations in
        `run_program_op`.
        """
        required_params = []
        for param in self._params:
624
            found_param = False
625
            for block in program.blocks:
626
                for op in block.ops:
627 628 629 630
                    if (
                        param.name in op.input_arg_names
                        or param.name in op.output_arg_names
                    ):
631 632 633 634
                        required_params.append(param)
                        found_param = True
                        break
                if found_param:
635 636 637 638
                    break

        self._params = required_params

639 640 641 642 643 644
    def _get_double_grads(self, program):
        double_grads = []
        for block in program.blocks:
            for name in block.vars:
                if "@GRAD" in name:
                    var_desc = block.vars[name].desc
J
Jiabin Yang 已提交
645
                    var_base = None
J
Jiabin Yang 已提交
646
                    if not framework._in_eager_mode_:
647 648 649 650 651 652 653
                        var_base = core.VarBase(
                            var_desc.dtype(),
                            var_desc.shape(),
                            var_desc.name(),
                            var_desc.type(),
                            False,
                        )
J
Jiabin Yang 已提交
654
                    else:
655 656 657 658 659 660 661
                        var_base = core.eager.Tensor(
                            var_desc.dtype(),
                            var_desc.shape(),
                            var_desc.name(),
                            var_desc.type(),
                            False,
                        )
662
                    double_grads.append(var_base)
663
        return self._valid_vars(double_grads)
664

665
    def _get_end_op_index(self):
666 667 668 669 670
        if _in_amp_guard():
            infer_program = self._infer_amp_program
        elif _in_pure_fp16_guard():
            infer_program = self._infer_pure_fp16_program
        else:
671
            infer_program = self._infer_program
672 673
        return infer_program.desc.block(0).op_size()

674 675
    def __call__(self, inputs):
        in_vars, out_vars = self._prepare(inputs)
676

677 678
        self._cast_fp16_if_pure_fp16(in_vars)

679
        attrs = [
680
            'global_block',
681 682 683 684 685 686 687 688 689
            self.program.desc.block(0),
            'start_op_index',
            0,
            'end_op_index',
            self._get_end_op_index(),
            'is_test',
            not self.training,
            'program_id',
            self.program_id,
690
        ]
691 692 693 694 695 696 697 698 699 700 701 702
        if self.training:
            # NOTE: In the case of higher-order gradient, the names of the parameter grads may be like
            # `grad/grad/grad/linear_0.w_0@GRAD` instead of simply `linear_0.w_0@GRAD`, so we get
            # the correct names of the parameter grads from program. And out grads are similar to above.
            attrs.extend(
                (
                    'param_grad_names',
                    self._param_grad_names,
                    'out_grad_names',
                    self._out_grad_names,
                )
            )
703 704
        if self._cuda_graph_capture_mode:
            attrs.extend(
705 706 707 708 709 710 711 712 713 714 715 716
                (
                    'cuda_graph_capture_mode',
                    self._cuda_graph_capture_mode,
                    'cuda_graph_pool_id',
                    self._cuda_graph_pool_id,
                )
            )

        use_interpretorcore = (
            _is_enable_standalone_executor()
            and _is_dy2st_enable_standalone_executor()
        )
717 718 719
        attrs.extend(('use_interpretorcore', use_interpretorcore))
        if use_interpretorcore:
            attrs.extend(
720 721 722 723 724 725 726
                (
                    'forward_global_block',
                    self.forward_program.desc.block(0),
                    'backward_global_block',
                    self.backward_program.desc.block(0),
                )
            )
727

728
            _legacy_C_ops.run_program(
729 730
                self._valid_vars(in_vars),
                self._valid_vars(self._params),
731
                self._valid_vars(out_vars),
732 733 734 735 736 737 738
                self._create_scope_vec(
                    program_id=self.program_id, use_scope_cache=True
                ),
                self._double_grads,
                self._cuda_graph_vec,
                *attrs
            )
739
        else:
740 741 742 743 744 745 746 747 748
            _legacy_C_ops.run_program(
                self._valid_vars(in_vars),
                self._valid_vars(self._params),
                self._valid_vars(out_vars),
                self._create_scope_vec(),
                self._double_grads,
                self._cuda_graph_vec,
                *attrs
            )
749 750
        restored_nest_out = self._restore_out(out_vars)
        return self._remove_no_value(restored_nest_out)
751

752 753 754 755
    def _cast_fp16_if_pure_fp16(self, in_vars):
        if _in_pure_fp16_guard():
            for i, var in enumerate(in_vars):
                name = var.name
756 757 758 759 760
                if (
                    self.program.global_block().has_var(name)
                    and self.program.global_block().var(name).dtype
                    == paddle.float16
                ):
761 762 763
                    in_vars[i] = var.astype('float16')
                    in_vars[i].name = name

764 765 766 767 768 769 770 771 772 773 774 775
    @switch_to_static_graph
    def _build_infer_program(self, infer_program, forward_end_op_index):
        forward_skip_vars = self._parse_skip_gc_vars(infer_program)
        builded_infer_program = add_build_strategy_for(
            infer_program,
            0,
            forward_end_op_index,
            self._build_strategy,
            forward_skip_vars,
        )
        self._apply_inplace_pass(builded_infer_program, None)
        return builded_infer_program
776

777
    @switch_to_static_graph
778 779 780
    def _get_forward_backward_program_form(
        self, whole_program, forward_end_op_index
    ):
781 782
        # NOTE(dev): We apply build_strategy for backward firstly to
        # avoid skipping more gc variables.
783
        backward_start_op_index = forward_end_op_index + 2 * len(
784 785
            self._outputs.var_ids
        )
786
        backward_end_op_index = whole_program.desc.block(0).op_size()
787 788 789 790 791
        # For Backward process in CINN, all param@GRAD shoule be skipped for GC, because
        # they will be shared in scope and used by optimizer.
        backward_skip_vars = (
            self._parse_skip_gc_vars(whole_program) + self._param_grad_names
        )
792
        backward_builded_program = add_build_strategy_for(
793 794 795 796
            whole_program,
            backward_start_op_index,
            backward_end_op_index,
            self._build_strategy,
797 798 799 800 801 802 803 804 805 806 807 808
            backward_skip_vars,
        )

        forward_skip_vars = self._parse_skip_gc_vars(
            whole_program, backward_builded_program
        )
        forward_builded_program = add_build_strategy_for(
            whole_program,
            0,
            forward_end_op_index,
            self._build_strategy,
            forward_skip_vars,
809
        )
810

811 812 813
        self._apply_inplace_pass(
            forward_builded_program, backward_builded_program
        )
814 815 816 817 818 819
        return [forward_builded_program, backward_builded_program]

    def _apply_inplace_pass(self, forward_program, backward_program):
        attr_types = {
            "use_cuda": "bool",
            "mem_opt_skip_vars": "list[str]",
820
            "for_partial_block": "bool",
821 822 823 824
        }
        empty_startup_program = paddle.static.Program()
        use_cuda = True if core.is_compiled_with_cuda() else False
        # skip data var
825 826 827 828
        forward_mem_opt_skip_vars = self._parse_skip_gc_vars(
            forward_program, backward_program
        )
        backward_mem_opt_skip_vars = self._parse_skip_gc_vars(forward_program)
829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854
        if forward_program:
            attrs = {
                "use_cuda": use_cuda,
                "mem_opt_skip_vars": forward_mem_opt_skip_vars,
                "for_partial_block": True,
            }
            _apply_pass(
                forward_program,
                empty_startup_program,
                "buffer_shared_inplace_pass",
                attrs,
                attr_types,
            )
        if backward_program:
            attrs = {
                "use_cuda": use_cuda,
                "mem_opt_skip_vars": backward_mem_opt_skip_vars,
                "for_partial_block": True,
            }
            _apply_pass(
                backward_program,
                empty_startup_program,
                "buffer_shared_inplace_pass",
                attrs,
                attr_types,
            )
855

856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
    @LazyInitialized
    def _inout_var_names(self):
        """
        Returns Variable Names from self._inputs and self.outputs
        """
        var_names = []
        for var in self._inputs:
            if isinstance(var, paddle.fluid.framework.Variable):
                var_names.append(var.desc.name())
        for var in self._outputs:
            if isinstance(var, paddle.fluid.framework.Variable):
                var_names.append(var.desc.name())
        return var_names

    def _parse_skip_gc_vars(self, program, backward_program=None):
        """
        Parse variables that need to skip GC after execute it.
        If specify backward_program, it will keep the variables used in backward.
        """
        # skip data var, DO NOT ignore this deepcopy
        skip_vars = deepcopy(self._inout_var_names)
        for var_name, var in program.global_block().vars.items():
            if var.is_data:
                skip_vars.append(var_name)

        if backward_program:
            for var_name in core.parse_safe_eager_deletion_skip_vars(
883
                backward_program.desc, True
884 885 886 887
            ):
                skip_vars.append(var_name)
        return skip_vars

888 889 890 891 892
    def _prepare(self, inputs):
        """
        Prepare inputs, outputs, attrs.
        """
        assert isinstance(inputs, (tuple, list))
893 894
        # Flatten inputs with nested structure into single list.
        flatten_inputs = flatten(inputs)
895 896
        # Convert variable into VarBase and feed in training data.
        input_vars = []
897
        expected_place = framework._current_expected_place()
898
        for i, value in enumerate(flatten_inputs):
899
            if isinstance(value, np.ndarray):
J
Jiabin Yang 已提交
900
                var = None
J
Jiabin Yang 已提交
901
                if not framework._in_eager_mode_:
902 903 904 905 906 907 908
                    var = core.VarBase(
                        value=value,
                        name=self._inputs[i].desc.name(),
                        persistable=False,
                        place=expected_place,
                        zero_copy=True,
                    )
J
Jiabin Yang 已提交
909
                else:
910 911 912 913 914 915 916
                    var = core.eager.Tensor(
                        value=value,
                        name=self._inputs[i].desc.name(),
                        persistable=False,
                        place=expected_place,
                        zero_copy=True,
                    )
J
Jiabin Yang 已提交
917
            elif isinstance(value, (core.VarBase, core.eager.Tensor)):
918 919 920 921
                # NOTE(Aurelius84): If var is on CPUPlace, it will be transformed multi times
                # into CUDAPlace when it's as input of multi Ops. so we move it in advance
                # to avoid this problem.
                if value.stop_gradient and not value.place._equals(
922 923
                    expected_place
                ):
924 925
                    var = value._copy_to(expected_place, False)
                    var.stop_gradient = True
926 927
                else:
                    var = value
928
                var.name = self._inputs[i].desc.name()
929 930 931
            else:
                continue
            input_vars.append(var)
932

933 934 935
        # mapping from name(string) -> VarBase
        out_varbase_map = {}

936 937
        def create_out(var_id):
            var = self._outputs[var_id]
938
            assert isinstance(var, framework.Variable)
939
            var_desc = var.desc
J
Jiabin Yang 已提交
940
            varbase = None
941 942 943 944

            if var_desc.name() in out_varbase_map:
                return out_varbase_map[var_desc.name()]

J
Jiabin Yang 已提交
945
            if not framework._in_eager_mode_:
946 947 948 949 950 951 952
                var_base = core.VarBase(
                    var_desc.dtype(),
                    var_desc.shape(),
                    var_desc.name(),
                    var_desc.type(),
                    False,
                )
J
Jiabin Yang 已提交
953
            else:
954 955 956 957 958 959 960
                var_base = core.eager.Tensor(
                    var_desc.dtype(),
                    var_desc.shape(),
                    var_desc.name(),
                    var_desc.type(),
                    False,
                )
961
            var_base.stop_gradient = var.stop_gradient
962
            out_varbase_map[var_desc.name()] = var_base
963 964 965 966 967 968
            return var_base

        # Create VarBase to receive output data.
        out_vars = list(map(create_out, self._outputs.var_ids))

        return input_vars, out_vars
969

970
    def _create_scope_vec(self, program_id=None, use_scope_cache=False):
971
        # Hold forward variables
J
Jiabin Yang 已提交
972
        tmp_scope_vec = None
973 974 975
        inner_scope = self._get_scope(
            program_id=program_id, use_scope_cache=use_scope_cache
        )
J
Jiabin Yang 已提交
976
        if not framework._in_eager_mode_:
977 978 979 980 981 982 983
            tmp_scope_vec = core.VarBase(
                core.VarDesc.VarType.FP32,
                [],
                "program_out_scope",
                core.VarDesc.VarType.STEP_SCOPES,
                True,
            )
J
Jiabin Yang 已提交
984
            tmp_scope_vec.value().set_scope(inner_scope)
985 986
        else:
            tmp_scope_vec = [inner_scope]
987
        return tmp_scope_vec
988

989
    def _create_cuda_graph_vec(self):
990 991 992 993 994 995 996
        var = core.VarBase(
            core.VarDesc.VarType.FP32,
            [],
            "cuda_graph",
            core.VarDesc.VarType.RAW,
            True,
        )
997 998 999
        var.stop_gradient = True
        return var

1000 1001 1002 1003 1004 1005 1006 1007 1008
    def _restore_out(self, out_vars):
        """
        Restores same nested outputs by only replacing the Variable with VarBase.
        """

        flatten_outputs = self._outputs.tolist()
        for i, idx in enumerate(self._outputs.var_ids):
            flatten_outputs[idx] = out_vars[i]
        outs = self._outputs.restore(flatten_outputs)
1009
        if outs is not None and len(outs) == 1:
1010 1011 1012 1013
            outs = outs[0]

        return outs

1014 1015 1016 1017
    @switch_to_static_graph
    def _clone_for_test(self, main_program):
        return main_program.clone(for_test=True)

1018
    def _is_no_value(self, var):
1019 1020 1021
        if isinstance(var, (core.VarBase, core.eager.Tensor)) and var.shape == [
            1
        ]:
1022 1023
            # NOTE: .numpy() will insert MemcpySync operation, it hits performance.
            if var.numpy()[0] == RETURN_NO_VALUE_MAGIC_NUM:
1024 1025 1026 1027 1028 1029 1030
                return True
        return False

    def _remove_no_value(self, out_vars):
        """
        Removes invalid value for various-length return statement
        """
J
Jiabin Yang 已提交
1031
        if isinstance(out_vars, (core.VarBase, core.eager.Tensor)):
1032 1033 1034 1035 1036
            if self._is_no_value(out_vars):
                return None
            return out_vars
        elif isinstance(out_vars, (tuple, list)):
            if isinstance(out_vars, tuple):
1037 1038 1039
                res = tuple(
                    var for var in out_vars if not self._is_no_value(var)
                )
1040 1041 1042 1043
            else:
                # isinstance(out_vars, list)
                res = [var for var in out_vars if not self._is_no_value(var)]

1044
            has_removed = len(out_vars) > len(res)
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
            # len(out_vars) > len(res) means we have removed var. This is
            # preventing out_vars is empty or just one element at the beginning
            if len(res) == 0 and has_removed:
                return None
            elif len(res) == 1 and has_removed:
                return res[0]
            return res

        return out_vars

1055
    def _set_grad_type(self, params, train_program):
1056 1057 1058 1059 1060 1061 1062 1063
        # NOTE: if user set sparse gradient mode, the param's gradient
        # will be SelectedRows, not LoDTensor. But tracer will just
        # set param grad VarBase by forward VarBase(LoDTensor)
        # If we don't change grad_var type here, RunProgramOp need
        # transform SelectedRows to LoDTensor forcibly, it may not
        # be user wanted result.
        for param in params:
            grad_name = param.name + core.grad_var_suffix()
1064
            grad_var = train_program.desc.block(0).find_var(grad_name.encode())
1065 1066 1067 1068 1069
            # NOTE: cannot find var desc maybe no problem, such as in batch_norm
            if grad_var is None:
                continue
            param._set_grad_type(grad_var.type())

1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
    def _remove_op_call_stack(self, main_program):
        """
        Remove op's python call stack with redundant low-level error messages related to
        transforamtions to avoid confusing users.
        """
        assert isinstance(main_program, framework.Program)
        for block in main_program.blocks:
            for op in block.ops:
                if op.has_attr("op_callstack"):
                    op._remove_attr("op_callstack")

        return main_program

1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
    def _check_params_all_inited(self, main_program):
        """
        Check all params from main program are already initialized, see details as follows:
            1. all parameters in self._params should be type `framework.ParamBase` which are created in dygraph.
            2. all parameters from transformed program can be found in self._params.
               Because they share same data with ParamBase of original dygraph.
        """
        if not isinstance(self._params, (list, tuple)):
            raise TypeError(
                "Type of self._params in PartialProgramLayer should be list or tuple, but received %s."
1093 1094
                % type(self._params)
            )
1095

1096 1097 1098
        param_and_buffer_names_set = set()
        for i, var in enumerate(self._params):
            # self._params constains parameters and buffers with persistable=True.
J
Jiabin Yang 已提交
1099
            if not isinstance(var, (core.VarBase, core.eager.Tensor)):
1100
                raise TypeError(
1101 1102 1103 1104
                    'Type of self._params[{}] in PartialProgramLayer should be Parameter or Variable, but received {}.'.format(
                        i, type(var)
                    )
                )
1105
            param_and_buffer_names_set.add(var.name)
1106 1107

        for block in main_program.blocks:
1108
            for name, var in block.vars.items():
1109
                if isinstance(var, framework.Parameter):
1110
                    if name not in param_and_buffer_names_set:
1111
                        raise ValueError(
1112 1113 1114 1115 1116 1117
                            "\n\tWe don't support to define layer with parameters in the function decorated by `@to_static`."
                            "\n\tBut we found parameter(%s) was created in the decorated function."
                            "\n"
                            "\n\tRevise suggestion: "
                            "\n\t\t1. Please ensure all your sublayers are inheritted from nn.Layer."
                            "\n\t\t2. Please use nn.ParameterList and nn.LayerList as container instead of using a native Python container such as List"
1118 1119
                            % name
                        )
1120

1121
    def _valid_vars(self, vars):
1122
        return vars if vars else None
1123

1124

1125
def _create_fake_var():
1126
    """
1127
    Create a fake_var (force on CPU) to handle empty input or output
1128
    """
J
Jiabin Yang 已提交
1129
    if not framework._in_eager_mode_:
J
Jiabin Yang 已提交
1130
        return [
1131 1132 1133 1134 1135 1136 1137
            core.VarBase(
                core.VarDesc.VarType.FP32,
                [],
                "Fake_var",
                core.VarDesc.VarType.RAW,
                False,
            )
J
Jiabin Yang 已提交
1138 1139
        ]
    else:
1140
        return [
1141 1142 1143 1144 1145 1146 1147
            core.eager.Tensor(
                core.VarDesc.VarType.FP32,
                [],
                "Fake_var",
                core.VarDesc.VarType.RAW,
                False,
            )
1148
        ]
1149 1150 1151 1152 1153 1154 1155


def partial_program_from(concrete_program):
    inputs = concrete_program.inputs
    if inputs and isinstance(inputs[0], layers.Layer):
        inputs = inputs[1:]

1156 1157 1158 1159 1160 1161 1162
    return PartialProgramLayer(
        concrete_program.main_program,
        inputs,
        concrete_program.outputs,
        concrete_program.parameters,
        **concrete_program.kwargs
    )
1163 1164 1165


@switch_to_static_graph
1166
def add_build_strategy_for(
1167
    program, start_op_index, end_op_index, build_strategy=None, skip_vars=None
1168 1169
):
    if start_op_index < end_op_index:
1170 1171
        compiled_program = paddle.static.CompiledProgram(
            core.Graph(program.desc, start_op_index, end_op_index),
1172 1173
            build_strategy=build_strategy,
        )
1174 1175 1176
        if skip_vars:
            # TODO(Aurelius84): Need to unify name with C++, such as kSkipVarNames.
            compiled_program._graph.set("skip_gc_vars", set(skip_vars))
1177 1178 1179
        compiled_program._compile(
            core.Scope(), framework._current_expected_place()
        )
1180 1181 1182 1183 1184 1185 1186
        ir_graph = framework.IrGraph(compiled_program._graph)
        builded_program = ir_graph.to_program()
        if hasattr(compiled_program._program, 'lr_sheduler'):
            builded_program.lr_sheduler = compiled_program._program.lr_sheduler
    else:
        builded_program = program
    return builded_program