nce_op.h 15.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
W
wanghaoshuang 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
W
wanghaoshuang 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
W
wanghaoshuang 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
W
wanghaoshuang 已提交
14 15 16

#pragma once

W
wanghaoshuang 已提交
17
#include <math.h>
T
tangwei12 已提交
18
#include <iterator>
W
wanghaoshuang 已提交
19
#include <random>
20
#include <set>
T
tangwei12 已提交
21
#include <string>
22
#include <vector>
Y
Yi Wang 已提交
23 24
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
25
#include "paddle/fluid/framework/selected_rows.h"
26
#include "paddle/fluid/operators/math/sampler.h"
W
wanghaoshuang 已提交
27
#include "unsupported/Eigen/CXX11/Tensor"
28

T
tangwei12 已提交
29 30 31 32
#ifdef PADDLE_WITH_DISTRIBUTE
#include "paddle/fluid/operators/distributed/parameter_prefetch.h"
#endif

W
wanghaoshuang 已提交
33 34 35
namespace paddle {
namespace operators {

36
using Tensor = framework::Tensor;
37 38
using LoDTensor = framework::LoDTensor;
using SelectedRows = framework::SelectedRows;
39
using Sampler = math::Sampler;
40
using DDim = framework::DDim;
W
wanghaoshuang 已提交
41 42 43 44 45

template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;

Q
QI JUN 已提交
46
template <typename DeviceContext, typename T>
47 48
void PrepareSamples(const framework::ExecutionContext &context,
                    Sampler *sampler) {
W
wanghaoshuang 已提交
49
  auto label = context.Input<Tensor>("Label");
50
  const int64_t *label_data = label->data<int64_t>();
W
wanghaoshuang 已提交
51
  auto label_dims = label->dims();
W
wanghaoshuang 已提交
52
  // for unitest
W
wanghaoshuang 已提交
53 54
  std::vector<int> custom_neg_classes =
      context.Attr<std::vector<int>>("custom_neg_classes");
W
wanghaoshuang 已提交
55 56 57

  auto sample_labels = context.Output<Tensor>("SampleLabels");
  auto sample_labels_dims = sample_labels->dims();
58
  int64_t *sample_labels_data =
W
wanghaoshuang 已提交
59
      sample_labels->mutable_data<int64_t>(context.GetPlace());
W
wanghaoshuang 已提交
60 61

  int num_label = label_dims.size() == 2 ? label_dims[1] : 1;
W
wanghaoshuang 已提交
62
  int index = 0;
63
  for (int64_t i = 0; i < label_dims[0]; ++i) {
W
wanghaoshuang 已提交
64 65
    int j = 0;
    for (; j < num_label; ++j) {
W
wanghaoshuang 已提交
66
      sample_labels_data[index++] = label_data[i * num_label + j];
W
wanghaoshuang 已提交
67
    }
W
wanghaoshuang 已提交
68 69
    if (custom_neg_classes.size() > 0) {
      for (auto label : custom_neg_classes) {
W
wanghaoshuang 已提交
70 71 72 73
        sample_labels_data[index++] = label;
      }
    } else {
      for (; j < sample_labels_dims[1]; ++j) {
W
wanghaoshuang 已提交
74
        // TODO(wanghaoshuang): support more distribution sampling
75
        sample_labels_data[index++] = sampler->Sample();
W
wanghaoshuang 已提交
76
      }
W
wanghaoshuang 已提交
77 78 79 80
    }
  }
}

Q
QI JUN 已提交
81
template <typename DeviceContext, typename T>
W
wanghaoshuang 已提交
82 83
class NCEKernel : public framework::OpKernel<T> {
 public:
84
  void Compute(const framework::ExecutionContext &context) const override {
85 86 87 88 89
    int sampler_type = context.Attr<int>("sampler");
    int seed = context.Attr<int>("seed");
    int num_total_classes = context.Attr<int>("num_total_classes");
    int num_neg_samples = context.Attr<int>("num_neg_samples");

90
    Sampler *sampler;
91 92 93 94 95 96 97 98 99 100
    switch (sampler_type) {
      case 0: {
        sampler = new math::UniformSampler(num_total_classes - 1, seed);
        break;
      }
      case 1: {
        sampler = new math::LogUniformSampler(num_total_classes - 1, seed);
        break;
      }
      case 2: {
101 102 103 104 105 106 107 108 109 110 111 112 113
        auto dist_probs = context.Input<Tensor>("CustomDistProbs");
        auto dist_alias = context.Input<Tensor>("CustomDistAlias");
        auto dist_alias_probs = context.Input<Tensor>("CustomDistAliasProbs");

        PADDLE_ENFORCE_EQ(dist_probs->numel(), num_total_classes);
        PADDLE_ENFORCE_EQ(dist_alias->numel(), num_total_classes);
        PADDLE_ENFORCE_EQ(dist_alias_probs->numel(), num_total_classes);

        const float *probs_data = dist_probs->data<float>();
        const int *alias_data = dist_alias->data<int>();
        const float *alias_probs_data = dist_alias_probs->data<float>();
        sampler = new math::CustomSampler(num_total_classes - 1, probs_data,
                                          alias_data, alias_probs_data, seed);
114 115 116 117 118 119
        break;
      }
      default: { PADDLE_THROW("Unsupported SamplerType."); }
    }

    PrepareSamples<DeviceContext, T>(context, sampler);
W
wanghaoshuang 已提交
120
    auto sample_labels = context.Output<Tensor>("SampleLabels");
121
    const int64_t *sample_labels_data = sample_labels->data<int64_t>();
122 123 124 125 126

    for (int x = 0; x < sample_labels->numel(); x++) {
      PADDLE_ENFORCE_GE(sample_labels_data[x], 0, "nce sample label %d", x);
    }

W
wanghaoshuang 已提交
127
    auto sample_out = context.Output<Tensor>("SampleLogits");
128
    T *sample_out_data = sample_out->mutable_data<T>(context.GetPlace());
W
wanghaoshuang 已提交
129 130
    auto label = context.Input<Tensor>("Label");
    auto sample_weight = context.Input<Tensor>("SampleWeight");
131
    const T *sample_weight_data = nullptr;
W
wanghaoshuang 已提交
132 133 134
    if (sample_weight != nullptr) {
      sample_weight_data = sample_weight->data<T>();
    }
W
wanghaoshuang 已提交
135
    auto out = context.Output<Tensor>("Cost");
136
    T *out_data = out->mutable_data<T>(context.GetPlace());
137
    int64_t num_true_class = 1;
W
wanghaoshuang 已提交
138 139 140
    if (label != nullptr) {
      num_true_class = label->dims()[1];
    }
141 142
    int64_t sampled_labels_num = sample_labels->dims()[1];
    //    T b = 1. / num_total_classes * num_neg_samples;
W
wanghaoshuang 已提交
143
    // forward bias
W
wanghaoshuang 已提交
144
    auto bias = context.Input<Tensor>("Bias");
W
wanghaoshuang 已提交
145
    if (bias != nullptr) {
146
      const T *bias_data = bias->data<T>();
147
      for (int64_t i = 0; i < sample_labels->numel(); ++i) {
W
wanghaoshuang 已提交
148 149 150
        sample_out_data[i] = bias_data[sample_labels_data[i]];
      }
    } else {
151
      for (int64_t i = 0; i < sample_labels->numel(); ++i) {
W
wanghaoshuang 已提交
152 153 154 155
        sample_out_data[i] = 0;
      }
    }
    // forward mul
W
wanghaoshuang 已提交
156
    auto input_mat = EigenMatrix<T>::From(*(context.Input<Tensor>("Input")));
T
tangwei12 已提交
157 158

    // for remote prefetch
159
    auto remote_prefetch = context.Attr<bool>("remote_prefetch");
T
tangwei12 已提交
160 161
    auto epmap = context.Attr<std::vector<std::string>>("epmap");

162
    if (remote_prefetch && !epmap.empty()) {
T
tangwei12 已提交
163 164 165 166 167 168 169 170 171 172 173
      // if epmap is not empty, then the parameter will be fetched from remote
      // parameter
      // server

      std::vector<int64_t> labels;
      for (int64_t i = 0; i < sample_labels->numel(); ++i) {
        labels.push_back(sample_labels_data[i]);
      }
      std::set<T> st(labels.begin(), labels.end());
      labels.assign(st.begin(), st.end());

T
tangwei12 已提交
174 175
      framework::Scope &local_scope = context.scope().NewScope();

Q
Qiao Longfei 已提交
176 177
      auto height_sections =
          context.Attr<std::vector<int64_t>>("height_sections");
T
tangwei12 已提交
178 179
      auto table_names = context.Attr<std::vector<std::string>>("table_names");

T
tangwei12 已提交
180
      auto *ids = local_scope.Var("Ids@Prefetch");
T
tangwei12 已提交
181 182 183 184 185 186 187 188
      auto *x_tensor = ids->GetMutable<framework::LoDTensor>();
      x_tensor->mutable_data<int64_t>(
          framework::make_ddim({static_cast<int64_t>(labels.size()), 1}),
          context.GetPlace());
      // copy.
      std::memcpy(x_tensor->data<int64_t>(), labels.data(),
                  labels.size() * sizeof(int64_t));

T
tangwei12 已提交
189 190 191 192 193 194 195
      std::vector<int> w_dims = paddle::framework::vectorize2int(
          context.Input<Tensor>("Weight")->dims());
      w_dims[0] = static_cast<int>(labels.size());

      auto *w_tensor = local_scope.Var("Weight@Prefetch")
                           ->GetMutable<framework::LoDTensor>();
      w_tensor->Resize(framework::make_ddim(w_dims));
T
tangwei12 已提交
196 197

#ifdef PADDLE_WITH_DISTRIBUTE
T
tangwei12 已提交
198 199 200
      operators::distributed::prefetch("Ids@Prefetch", "Weight@Prefetch",
                                       table_names, epmap, height_sections,
                                       context, local_scope);
T
tangwei12 已提交
201 202 203 204
#else
      PADDLE_THROW(
          "paddle is not compiled with distribute support, can not do "
          "parameter prefetch!");
T
tangwei12 已提交
205
#endif
T
tangwei12 已提交
206

T
tangwei12 已提交
207
      auto weight_mat = EigenMatrix<T>::From(
T
tangwei12 已提交
208
          (local_scope.Var("Weight@Prefetch")->Get<framework::LoDTensor>()));
T
tangwei12 已提交
209 210 211 212 213 214 215 216 217 218 219 220
      for (int64_t i = 0; i < sample_labels->numel(); ++i) {
        std::vector<int64_t>::iterator it =
            std::find(labels.begin(), labels.end(), sample_labels_data[i]);
        int idx = std::distance(labels.begin(), it);

        Eigen::Tensor<T, 0, Eigen::RowMajor, Eigen::DenseIndex> result =
            (input_mat.chip(static_cast<int>(i / sample_labels->dims()[1]), 0) *
             weight_mat.chip(idx, 0))
                .sum();
        sample_out_data[i] += result(0);
        sample_out_data[i] = (1. / (1. + exp(-sample_out_data[i])));
      }
T
tangwei12 已提交
221
      context.scope().DeleteScope(&local_scope);
T
tangwei12 已提交
222 223 224 225 226 227 228 229 230 231 232
    } else {
      auto weight_mat =
          EigenMatrix<T>::From(*(context.Input<Tensor>("Weight")));
      for (int64_t i = 0; i < sample_labels->numel(); ++i) {
        Eigen::Tensor<T, 0, Eigen::RowMajor, Eigen::DenseIndex> result =
            (input_mat.chip(static_cast<int>(i / sample_labels->dims()[1]), 0) *
             weight_mat.chip(sample_labels_data[i], 0))
                .sum();
        sample_out_data[i] += result(0);
        sample_out_data[i] = (1. / (1. + exp(-sample_out_data[i])));
      }
W
wanghaoshuang 已提交
233
    }
T
tangwei12 已提交
234

W
wanghaoshuang 已提交
235
    // forward cost
236
    for (int64_t i = 0; i < sample_labels->dims()[0]; ++i) {
W
wanghaoshuang 已提交
237 238
      out_data[i] = 0;
      T w = sample_weight == nullptr ? 1. : sample_weight_data[i];
239 240 241 242 243
      for (int64_t j = 0; j < sampled_labels_num; ++j) {
        int64_t target = sample_labels_data[i * sampled_labels_num + j];
        T o = sample_out_data[i * sampled_labels_num + j];
        float b = sampler->Probability(target) * num_neg_samples;
        T cost = (j < num_true_class) ? -log(o / (o + b)) : -log(b / (o + b));
W
wanghaoshuang 已提交
244 245 246
        out_data[i] += w * cost;
      }
    }
247
    delete sampler;
W
wanghaoshuang 已提交
248 249 250
  }
};

Q
QI JUN 已提交
251
template <typename DeviceContext, typename T>
W
wanghaoshuang 已提交
252 253
class NCEGradKernel : public framework::OpKernel<T> {
 public:
254
  void Compute(const framework::ExecutionContext &context) const override {
W
wanghaoshuang 已提交
255
    auto d_out = context.Input<Tensor>(framework::GradVarName("Cost"));
256
    const T *d_out_data = d_out->data<T>();
W
wanghaoshuang 已提交
257 258
    auto label = context.Input<Tensor>("Label");
    auto sample_out = context.Input<Tensor>("SampleLogits");
259
    const T *sample_out_data = sample_out->data<T>();
W
wanghaoshuang 已提交
260
    auto sample_labels = context.Input<Tensor>("SampleLabels");
261
    const int64_t *sample_labels_data = sample_labels->data<int64_t>();
W
wanghaoshuang 已提交
262
    auto sample_weight = context.Input<Tensor>("SampleWeight");
263
    const T *sample_weight_data = nullptr;
W
wanghaoshuang 已提交
264 265 266
    if (sample_weight != nullptr) {
      sample_weight_data = sample_weight->data<T>();
    }
W
wanghaoshuang 已提交
267 268
    int num_neg_samples = context.Attr<int>("num_neg_samples");
    int num_total_classes = context.Attr<int>("num_total_classes");
W
wanghaoshuang 已提交
269 270 271 272
    int num_true_class = 1;
    if (label != nullptr) {
      num_true_class = label->dims()[1];
    }
273 274 275

    int sampler_type = context.Attr<int>("sampler");
    int seed = context.Attr<int>("seed");
276
    Sampler *sampler;
277 278 279 280 281 282 283 284 285 286
    switch (sampler_type) {
      case 0: {
        sampler = new math::UniformSampler(num_total_classes - 1, seed);
        break;
      }
      case 1: {
        sampler = new math::LogUniformSampler(num_total_classes - 1, seed);
        break;
      }
      case 2: {
287 288 289 290 291 292 293 294 295 296 297 298 299
        auto dist_probs = context.Input<Tensor>("CustomDistProbs");
        auto dist_alias = context.Input<Tensor>("CustomDistAlias");
        auto dist_alias_probs = context.Input<Tensor>("CustomDistAliasProbs");

        PADDLE_ENFORCE_EQ(dist_probs->numel(), num_total_classes);
        PADDLE_ENFORCE_EQ(dist_alias->numel(), num_total_classes);
        PADDLE_ENFORCE_EQ(dist_alias_probs->numel(), num_total_classes);

        const float *probs_data = dist_probs->data<float>();
        const int *alias_data = dist_alias->data<int>();
        const float *alias_probs_data = dist_alias_probs->data<float>();
        sampler = new math::CustomSampler(num_total_classes - 1, probs_data,
                                          alias_data, alias_probs_data, seed);
300 301 302 303 304 305
        break;
      }
      default: { PADDLE_THROW("Unsupported SamplerType."); }
    }

    //    T b = 1. / num_total_classes * num_neg_samples;
W
wanghaoshuang 已提交
306
    Tensor sample_grad;  // tmp tensor
307
    T *sample_grad_data =
W
wanghaoshuang 已提交
308 309
        sample_grad.mutable_data<T>(sample_labels->dims(), context.GetPlace());
    // backward cost
310
    for (int64_t i = 0; i < sample_labels->numel(); ++i) {
311 312 313
      int64_t label_idx = i % sample_labels->dims()[1];
      int64_t sample_idx = i / sample_labels->dims()[1];
      float b = sampler->Probability(sample_labels_data[i]) * num_neg_samples;
W
wanghaoshuang 已提交
314
      T o = sample_out_data[i];
315 316
      T w = sample_weight == nullptr ? 1 : sample_weight_data[sample_idx];
      sample_grad_data[i] = label_idx < num_true_class
W
wanghaoshuang 已提交
317 318
                                ? w * (b / (o + b)) * (o - 1)
                                : w * (o * (1 - o) / (o + b));
319
      sample_grad_data[i] *= d_out_data[sample_idx];
W
wanghaoshuang 已提交
320
    }
321

322 323 324 325 326 327 328 329 330 331
    // get d_bias
    auto d_bias = context.Output<Tensor>(framework::GradVarName("Bias"));
    if (d_bias != nullptr) {
      T *d_bias_data = d_bias->mutable_data<T>(context.GetPlace());
      std::fill(d_bias_data, d_bias_data + d_bias->numel(), 0.0);
      for (int64_t i = 0; i < sample_labels->numel(); ++i) {
        d_bias_data[sample_labels_data[i]] += sample_grad_data[i];
      }
    }

332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
    bool is_sparse = context.Attr<bool>("is_sparse");

    if (!is_sparse) {
      // get d_w
      auto d_w = context.Output<Tensor>(framework::GradVarName("Weight"));
      if (d_w != nullptr) {
        auto d_w_data = d_w->mutable_data<T>(context.GetPlace());
        std::fill(d_w_data, d_w_data + d_w->numel(), 0.0);
        auto d_w_matrix = EigenMatrix<T>::From(*d_w);
        auto x_matrix = EigenMatrix<T>::From(*(context.Input<Tensor>("Input")));
        for (int64_t i = 0; i < sample_labels->numel(); ++i) {
          d_w_matrix.chip(sample_labels_data[i], 0) +=
              x_matrix.chip(static_cast<int>(i / sample_labels->dims()[1]), 0) *
              sample_grad_data[i];
        }
      }
    } else {
      std::vector<int64_t> labels;
350
      for (int64_t i = 0; i < sample_labels->numel(); ++i) {
351
        labels.push_back(sample_labels_data[i]);
W
wanghaoshuang 已提交
352
      }
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
      std::set<T> st(labels.begin(), labels.end());
      labels.assign(st.begin(), st.end());

      auto *table_var = context.InputVar("Weight");
      DDim table_dim;
      if (table_var->IsType<LoDTensor>()) {
        table_dim = context.Input<LoDTensor>("Weight")->dims();
      } else if (table_var->IsType<SelectedRows>()) {
        auto *table_t = context.Input<SelectedRows>("Weight");
        table_dim = table_t->value().dims();
      } else {
        PADDLE_THROW(
            "The parameter Weight of a NCE_OP "
            "must be either LoDTensor or SelectedRows");
      }

      auto d_w = context.Output<SelectedRows>(framework::GradVarName("Weight"));

      d_w->set_rows(labels);
      d_w->set_height(table_dim[0]);

      auto *d_table_value = d_w->mutable_value();
      d_table_value->Resize(
          {static_cast<int64_t>(labels.size()), table_dim[1]});
      auto d_w_data = d_table_value->mutable_data<T>(context.GetPlace());
      std::fill(d_w_data, d_w_data + d_table_value->numel(), 0.0);

      auto d_w_matrix = EigenMatrix<T>::From(*d_table_value);
W
wanghaoshuang 已提交
381
      auto x_matrix = EigenMatrix<T>::From(*(context.Input<Tensor>("Input")));
382
      for (int64_t i = 0; i < sample_labels->numel(); ++i) {
383
        d_w_matrix.chip(d_w->Index(sample_labels_data[i]), 0) +=
384
            x_matrix.chip(static_cast<int>(i / sample_labels->dims()[1]), 0) *
W
wanghaoshuang 已提交
385 386 387
            sample_grad_data[i];
      }
    }
388

W
wanghaoshuang 已提交
389
    // get d_x
W
wanghaoshuang 已提交
390
    auto d_x = context.Output<Tensor>(framework::GradVarName("Input"));
W
wanghaoshuang 已提交
391
    if (d_x != nullptr) {
392
      auto *d_x_data = d_x->mutable_data<T>(context.GetPlace());
Y
Yang Yu 已提交
393
      std::fill(d_x_data, d_x_data + d_x->numel(), 0.0);
W
wanghaoshuang 已提交
394
      auto d_x_matrix = EigenMatrix<T>::From(*d_x);
W
wanghaoshuang 已提交
395
      auto w_matrix = EigenMatrix<T>::From(*(context.Input<Tensor>("Weight")));
396
      for (int64_t i = 0; i < sample_labels->numel(); ++i) {
397
        d_x_matrix.chip(static_cast<int>(i / sample_labels->dims()[1]), 0) +=
W
wanghaoshuang 已提交
398 399 400
            w_matrix.chip(sample_labels_data[i], 0) * sample_grad_data[i];
      }
    }
401

402
    delete sampler;
W
wanghaoshuang 已提交
403 404 405 406
  }
};
}  // namespace operators
}  // namespace paddle