ut_helper.h 7.3 KB
Newer Older
F
flame 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

17
#include <gtest/gtest.h>
F
flame 已提交
18
#include <map>
F
flame 已提交
19 20 21 22 23 24
#include <memory>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <vector>

25
#include "paddle/fluid/framework/block_desc.h"
F
flame 已提交
26 27 28
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/tensor_util.h"
29
#include "paddle/fluid/inference/anakin/convert/op_converter.h"
F
flame 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
#include "paddle/fluid/inference/anakin/engine.h"
#include "paddle/fluid/inference/analysis/helper.h"
#include "paddle/fluid/inference/utils/singleton.h"
#include "paddle/fluid/platform/enforce.h"

using anakin::graph::GraphGlobalMem;
using anakin::AK_FLOAT;
using anakin::Precision;
using anakin::saber::NV;
using anakin::saber::X86;
using anakin::saber::Shape;
using anakin::PBlock;
using anakin::PTuple;

namespace paddle {
namespace inference {
namespace anakin {

/*
 * Get a random float value between [low, high]
 */
float random(float low, float high) {
  static std::random_device rd;
  static std::mt19937 mt(rd());
  std::uniform_real_distribution<double> dist(low, high);
  return dist(mt);
}

void RandomizeTensor(framework::LoDTensor* tensor, const platform::Place& place,
                     const platform::DeviceContext& ctx) {
  auto dims = tensor->dims();
  size_t num_elements = analysis::AccuDims(dims, dims.size());
  PADDLE_ENFORCE_GT(num_elements, 0);

  platform::CPUPlace cpu_place;
  framework::LoDTensor temp_tensor;
  temp_tensor.Resize(dims);
  auto* temp_data = temp_tensor.mutable_data<float>(cpu_place);

  for (size_t i = 0; i < num_elements; i++) {
    *(temp_data + i) = random(0., 1.);
  }

  TensorCopySync(temp_tensor, place, tensor);
}

/*
 * Help to validate the correctness between Fluid Op and the corresponding
 * anakin
 * layer.
 */
class AnakinConvertValidation {
  using AnakinNvEngineT = AnakinEngine<NV, Precision::FP32>;

 public:
  AnakinConvertValidation() = delete;

  AnakinConvertValidation(const std::unordered_set<std::string>& parameters,
N
nhzlx 已提交
88
                          framework::Scope* scope)
F
flame 已提交
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
      : parameters_(parameters), scope_(scope), place_(0) {
    PADDLE_ENFORCE_EQ(cudaStreamCreate(&stream_), 0);
    engine_.reset(new AnakinEngine<NV, Precision::FP32>(true));
  }

  // Declare a Variable as input with random initialization.
  void DeclInputVar(const std::string& name,
                    const std::vector<int> tensor_dims) {
    DeclVar(name, tensor_dims);
    // should decalre anakin input here.
  }

  void DeclParamVar(const std::string& name, const std::vector<int> dim_vec) {
    DeclVar(name, dim_vec);
  }

  void DeclOutputVar(const std::string& name, const std::vector<int> dim_vec) {
    DeclVar(name, dim_vec);
    // should declare anakin output here.
  }

  void DeclVar(const std::string& name, const std::vector<int> dim_vec) {
    platform::CUDADeviceContext ctx(place_);
N
nhzlx 已提交
112
    auto* x = scope_->Var(name);
F
flame 已提交
113 114 115
    auto* x_tensor = x->GetMutable<framework::LoDTensor>();
    x_tensor->Resize(framework::make_ddim(dim_vec));
    RandomizeTensor(x_tensor, place_, ctx);
116 117 118 119 120 121 122 123 124 125 126

    std::vector<int64_t> dim_vec_int64;
    for (auto& ele : dim_vec) {
      dim_vec_int64.push_back(static_cast<int64_t>(ele));
    }

    // Add var_desc to block_desc
    auto* block_desc = program_desc_.MutableBlock(framework::kRootBlockIndex);

    auto* var_desc = block_desc->Var(name);
    var_desc->SetShape(dim_vec_int64);
F
flame 已提交
127 128 129 130 131 132 133
  }

  void SetOp(const framework::proto::OpDesc& desc) {
    op_ = framework::OpRegistry::CreateOp(desc);
    op_desc_.reset(new framework::OpDesc(desc, nullptr));
    // should init anakin engine here.

134
    auto& block_desc = program_desc_.Block(framework::kRootBlockIndex);
F
flame 已提交
135
    Singleton<AnakinOpConverter>::Global().ConvertOp(
136 137
        desc, block_desc, parameters_, *scope_, engine_.get(),
        true /*test_mode*/);
F
flame 已提交
138
    engine_->Freeze();
139 140

    std::map<std::string, std::vector<int>> temp_max_input_shape;
F
flame 已提交
141 142
    for (const auto& input : op_desc_->InputArgumentNames()) {
      if (parameters_.count(input)) continue;
N
nhzlx 已提交
143
      auto& t = inference::analysis::GetFromScope<framework::LoDTensor>(*scope_,
F
flame 已提交
144 145
                                                                        input);
      auto t_shape = framework::vectorize2int(t.dims());
146 147 148
      while (t_shape.size() < 4) {
        t_shape.push_back(1);
      }
F
flame 已提交
149
      engine_->SetInputShape(input, t_shape);
150
      temp_max_input_shape[input] = t_shape;
F
flame 已提交
151
    }
152
    engine_->SetMaxInputShape(temp_max_input_shape);
F
flame 已提交
153
    engine_->Optimize();
F
flame 已提交
154
    engine_->InitGraph();
F
flame 已提交
155 156 157 158 159 160 161 162 163
  }

  // We use the set 'neglected_output' here, because some Ops like batch norm,
  // the outputs specified in the op des are only used during training,
  // so we should neglect those output during inference.
  void Execute(int batch_size,
               std::unordered_set<std::string> neglected_output = {}) {
    // Execute Fluid Op
    platform::CUDADeviceContext ctx(place_);
N
nhzlx 已提交
164
    op_->Run(*scope_, place_);
F
flame 已提交
165

F
flame 已提交
166 167 168 169 170
    // std::vector<framework::LoDTensor> input_vector;
    // std::vector<framework::LoDTensor> output_vector;
    std::map<std::string, framework::LoDTensor*> inputs;
    for (const auto& input : op_desc_->InputArgumentNames()) {
      if (parameters_.count(input)) continue;
N
nhzlx 已提交
171
      auto* var = scope_->FindVar(input);
F
flame 已提交
172 173 174 175 176 177
      auto tensor = var->GetMutable<framework::LoDTensor>();
      inputs.insert({input, tensor});
    }

    std::map<std::string, framework::LoDTensor*> outputs;
    std::vector<std::vector<float>> fluid_outputs;
F
flame 已提交
178 179 180
    for (const auto& output : op_desc_->OutputArgumentNames()) {
      if (neglected_output.count(output)) continue;
      std::vector<float> fluid_out;
N
nhzlx 已提交
181
      auto* var = scope_->FindVar(output);
F
flame 已提交
182
      auto tensor = var->GetMutable<framework::LoDTensor>();
F
flame 已提交
183
      framework::TensorToVector(*tensor, ctx, &fluid_out);
F
flame 已提交
184
      fluid_outputs.push_back(fluid_out);
F
flame 已提交
185

F
flame 已提交
186 187 188
      outputs.insert({output, tensor});
    }

189
    engine_->Execute(inputs, outputs, stream_);
F
flame 已提交
190 191 192 193
    int i_output = 0;
    for (const auto& output : op_desc_->OutputArgumentNames()) {
      if (neglected_output.count(output)) continue;
      std::vector<float> anakin_out;
N
nhzlx 已提交
194
      auto* var = scope_->FindVar(output);
F
flame 已提交
195 196 197 198 199 200
      auto tensor = var->GetMutable<framework::LoDTensor>();
      framework::TensorToVector(*tensor, ctx, &anakin_out);

      size_t anakin_out_size = anakin_out.size();
      auto fluid_out = fluid_outputs[i_output++];
      for (size_t i = 0; i < anakin_out_size; i++) {
201
        EXPECT_LT(std::abs(fluid_out[i] - anakin_out[i]), 1e-3);
F
flame 已提交
202 203 204 205 206 207 208 209 210
      }
    }
  }

 private:
  std::unique_ptr<AnakinNvEngineT> engine_{nullptr};
  cudaStream_t stream_;
  std::unique_ptr<framework::OperatorBase> op_;
  std::unique_ptr<framework::OpDesc> op_desc_;
211
  framework::ProgramDesc program_desc_;
F
flame 已提交
212
  const std::unordered_set<std::string>& parameters_;
N
nhzlx 已提交
213
  framework::Scope* scope_;
F
flame 已提交
214 215 216 217 218 219
  platform::CUDAPlace place_;
};

}  // namespace anakin
}  // namespace inference
}  // namespace paddle