ut_helper.h 6.8 KB
Newer Older
F
flame 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

F
flame 已提交
17
#include <map>
F
flame 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
#include <memory>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <vector>

#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/inference/anakin/engine.h"
#include "paddle/fluid/inference/analysis/helper.h"
#include "paddle/fluid/inference/utils/singleton.h"
#include "paddle/fluid/platform/enforce.h"

using anakin::graph::GraphGlobalMem;
using anakin::AK_FLOAT;
using anakin::Precision;
using anakin::saber::NV;
using anakin::saber::X86;
using anakin::saber::Shape;
using anakin::PBlock;
using anakin::PTuple;

namespace paddle {
namespace inference {
namespace anakin {

/*
 * Get a random float value between [low, high]
 */
float random(float low, float high) {
  static std::random_device rd;
  static std::mt19937 mt(rd());
  std::uniform_real_distribution<double> dist(low, high);
  return dist(mt);
}

void RandomizeTensor(framework::LoDTensor* tensor, const platform::Place& place,
                     const platform::DeviceContext& ctx) {
  auto dims = tensor->dims();
  size_t num_elements = analysis::AccuDims(dims, dims.size());
  PADDLE_ENFORCE_GT(num_elements, 0);

  platform::CPUPlace cpu_place;
  framework::LoDTensor temp_tensor;
  temp_tensor.Resize(dims);
  auto* temp_data = temp_tensor.mutable_data<float>(cpu_place);

  for (size_t i = 0; i < num_elements; i++) {
    *(temp_data + i) = random(0., 1.);
  }

  TensorCopySync(temp_tensor, place, tensor);
}

/*
 * Help to validate the correctness between Fluid Op and the corresponding
 * anakin
 * layer.
 */
class AnakinConvertValidation {
  using AnakinNvEngineT = AnakinEngine<NV, Precision::FP32>;

 public:
  AnakinConvertValidation() = delete;

  AnakinConvertValidation(const std::unordered_set<std::string>& parameters,
                          const framework::Scope& scope)
      : parameters_(parameters), scope_(scope), place_(0) {
    PADDLE_ENFORCE_EQ(cudaStreamCreate(&stream_), 0);
    engine_.reset(new AnakinEngine<NV, Precision::FP32>(true));
  }

  // Declare a Variable as input with random initialization.
  void DeclInputVar(const std::string& name,
                    const std::vector<int> tensor_dims) {
    DeclVar(name, tensor_dims);
    // should decalre anakin input here.
  }

  void DeclParamVar(const std::string& name, const std::vector<int> dim_vec) {
    DeclVar(name, dim_vec);
  }

  void DeclOutputVar(const std::string& name, const std::vector<int> dim_vec) {
    DeclVar(name, dim_vec);
    // should declare anakin output here.
  }

  void DeclVar(const std::string& name, const std::vector<int> dim_vec) {
    platform::CUDADeviceContext ctx(place_);
    auto* x = scope_.Var(name);
    auto* x_tensor = x->GetMutable<framework::LoDTensor>();
    x_tensor->Resize(framework::make_ddim(dim_vec));
    RandomizeTensor(x_tensor, place_, ctx);
  }

  void SetOp(const framework::proto::OpDesc& desc) {
    op_ = framework::OpRegistry::CreateOp(desc);
    op_desc_.reset(new framework::OpDesc(desc, nullptr));
    // should init anakin engine here.

    Singleton<AnakinOpConverter>::Global().ConvertOp(
        desc, parameters_, scope_, engine_.get(), true /*test_mode*/);
    engine_->Freeze();
    for (const auto& input : op_desc_->InputArgumentNames()) {
      if (parameters_.count(input)) continue;
      auto& t = inference::analysis::GetFromScope<framework::LoDTensor>(scope_,
                                                                        input);
      auto t_shape = framework::vectorize2int(t.dims());
      engine_->SetInputShape(input, t_shape);
    }
    engine_->Optimize();
F
flame 已提交
131
    engine_->InitGraph();
F
flame 已提交
132 133 134 135 136 137 138 139 140 141 142
  }

  // We use the set 'neglected_output' here, because some Ops like batch norm,
  // the outputs specified in the op des are only used during training,
  // so we should neglect those output during inference.
  void Execute(int batch_size,
               std::unordered_set<std::string> neglected_output = {}) {
    // Execute Fluid Op
    platform::CUDADeviceContext ctx(place_);
    op_->Run(scope_, place_);

F
flame 已提交
143 144 145 146 147 148 149 150 151 152 153 154
    // std::vector<framework::LoDTensor> input_vector;
    // std::vector<framework::LoDTensor> output_vector;
    std::map<std::string, framework::LoDTensor*> inputs;
    for (const auto& input : op_desc_->InputArgumentNames()) {
      if (parameters_.count(input)) continue;
      auto* var = scope_.FindVar(input);
      auto tensor = var->GetMutable<framework::LoDTensor>();
      inputs.insert({input, tensor});
    }

    std::map<std::string, framework::LoDTensor*> outputs;
    std::vector<std::vector<float>> fluid_outputs;
F
flame 已提交
155 156 157 158
    for (const auto& output : op_desc_->OutputArgumentNames()) {
      if (neglected_output.count(output)) continue;
      std::vector<float> fluid_out;
      auto* var = scope_.FindVar(output);
F
flame 已提交
159
      auto tensor = var->GetMutable<framework::LoDTensor>();
F
flame 已提交
160
      framework::TensorToVector(*tensor, ctx, &fluid_out);
F
flame 已提交
161
      fluid_outputs.push_back(fluid_out);
F
flame 已提交
162

F
flame 已提交
163 164
      // size_t fluid_out_size = fluid_out.size();
      /*for (size_t i = 0; i < fluid_out_size; i++) {
F
flame 已提交
165
        std::cout << fluid_out[i] << std::endl;
F
flame 已提交
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
      }*/
      outputs.insert({output, tensor});
    }

    engine_->Execute(inputs, outputs);
    int i_output = 0;
    for (const auto& output : op_desc_->OutputArgumentNames()) {
      if (neglected_output.count(output)) continue;
      std::vector<float> anakin_out;
      auto* var = scope_.FindVar(output);
      auto tensor = var->GetMutable<framework::LoDTensor>();
      framework::TensorToVector(*tensor, ctx, &anakin_out);

      size_t anakin_out_size = anakin_out.size();
      auto fluid_out = fluid_outputs[i_output++];
      for (size_t i = 0; i < anakin_out_size; i++) {
        LOG(INFO) << "Output[" << i << "]: anakin[" << anakin_out[i] << "], "
                  << "fluid[" << fluid_out[i] << "]";
F
flame 已提交
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
      }
    }
  }

  framework::Scope& scope() { return scope_; }

 private:
  std::unique_ptr<AnakinNvEngineT> engine_{nullptr};
  cudaStream_t stream_;
  std::unique_ptr<framework::OperatorBase> op_;
  std::unique_ptr<framework::OpDesc> op_desc_;
  const std::unordered_set<std::string>& parameters_;
  framework::Scope& scope_;
  platform::CUDAPlace place_;
};

}  // namespace anakin
}  // namespace inference
}  // namespace paddle