ut_helper.h 6.8 KB
Newer Older
F
flame 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

17
#include <gtest/gtest.h>
F
flame 已提交
18
#include <map>
F
flame 已提交
19 20 21 22 23 24 25 26 27
#include <memory>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <vector>

#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/tensor_util.h"
28
#include "paddle/fluid/inference/anakin/convert/op_converter.h"
F
flame 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
#include "paddle/fluid/inference/anakin/engine.h"
#include "paddle/fluid/inference/analysis/helper.h"
#include "paddle/fluid/inference/utils/singleton.h"
#include "paddle/fluid/platform/enforce.h"

using anakin::graph::GraphGlobalMem;
using anakin::AK_FLOAT;
using anakin::Precision;
using anakin::saber::NV;
using anakin::saber::X86;
using anakin::saber::Shape;
using anakin::PBlock;
using anakin::PTuple;

namespace paddle {
namespace inference {
namespace anakin {

/*
 * Get a random float value between [low, high]
 */
float random(float low, float high) {
  static std::random_device rd;
  static std::mt19937 mt(rd());
  std::uniform_real_distribution<double> dist(low, high);
  return dist(mt);
}

void RandomizeTensor(framework::LoDTensor* tensor, const platform::Place& place,
                     const platform::DeviceContext& ctx) {
  auto dims = tensor->dims();
  size_t num_elements = analysis::AccuDims(dims, dims.size());
  PADDLE_ENFORCE_GT(num_elements, 0);

  platform::CPUPlace cpu_place;
  framework::LoDTensor temp_tensor;
  temp_tensor.Resize(dims);
  auto* temp_data = temp_tensor.mutable_data<float>(cpu_place);

  for (size_t i = 0; i < num_elements; i++) {
    *(temp_data + i) = random(0., 1.);
  }

  TensorCopySync(temp_tensor, place, tensor);
}

/*
 * Help to validate the correctness between Fluid Op and the corresponding
 * anakin
 * layer.
 */
class AnakinConvertValidation {
  using AnakinNvEngineT = AnakinEngine<NV, Precision::FP32>;

 public:
  AnakinConvertValidation() = delete;

  AnakinConvertValidation(const std::unordered_set<std::string>& parameters,
N
nhzlx 已提交
87
                          framework::Scope* scope)
F
flame 已提交
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
      : parameters_(parameters), scope_(scope), place_(0) {
    PADDLE_ENFORCE_EQ(cudaStreamCreate(&stream_), 0);
    engine_.reset(new AnakinEngine<NV, Precision::FP32>(true));
  }

  // Declare a Variable as input with random initialization.
  void DeclInputVar(const std::string& name,
                    const std::vector<int> tensor_dims) {
    DeclVar(name, tensor_dims);
    // should decalre anakin input here.
  }

  void DeclParamVar(const std::string& name, const std::vector<int> dim_vec) {
    DeclVar(name, dim_vec);
  }

  void DeclOutputVar(const std::string& name, const std::vector<int> dim_vec) {
    DeclVar(name, dim_vec);
    // should declare anakin output here.
  }

  void DeclVar(const std::string& name, const std::vector<int> dim_vec) {
    platform::CUDADeviceContext ctx(place_);
N
nhzlx 已提交
111
    auto* x = scope_->Var(name);
F
flame 已提交
112 113 114 115 116 117 118 119 120 121 122
    auto* x_tensor = x->GetMutable<framework::LoDTensor>();
    x_tensor->Resize(framework::make_ddim(dim_vec));
    RandomizeTensor(x_tensor, place_, ctx);
  }

  void SetOp(const framework::proto::OpDesc& desc) {
    op_ = framework::OpRegistry::CreateOp(desc);
    op_desc_.reset(new framework::OpDesc(desc, nullptr));
    // should init anakin engine here.

    Singleton<AnakinOpConverter>::Global().ConvertOp(
N
nhzlx 已提交
123
        desc, parameters_, *scope_, engine_.get(), true /*test_mode*/);
F
flame 已提交
124
    engine_->Freeze();
125 126

    std::map<std::string, std::vector<int>> temp_max_input_shape;
F
flame 已提交
127 128
    for (const auto& input : op_desc_->InputArgumentNames()) {
      if (parameters_.count(input)) continue;
N
nhzlx 已提交
129
      auto& t = inference::analysis::GetFromScope<framework::LoDTensor>(*scope_,
F
flame 已提交
130 131
                                                                        input);
      auto t_shape = framework::vectorize2int(t.dims());
132 133 134
      while (t_shape.size() < 4) {
        t_shape.push_back(1);
      }
F
flame 已提交
135
      engine_->SetInputShape(input, t_shape);
136
      temp_max_input_shape[input] = t_shape;
F
flame 已提交
137
    }
138
    engine_->SetMaxInputShape(temp_max_input_shape);
F
flame 已提交
139
    engine_->Optimize();
F
flame 已提交
140
    engine_->InitGraph();
F
flame 已提交
141 142 143 144 145 146 147 148 149
  }

  // We use the set 'neglected_output' here, because some Ops like batch norm,
  // the outputs specified in the op des are only used during training,
  // so we should neglect those output during inference.
  void Execute(int batch_size,
               std::unordered_set<std::string> neglected_output = {}) {
    // Execute Fluid Op
    platform::CUDADeviceContext ctx(place_);
N
nhzlx 已提交
150
    op_->Run(*scope_, place_);
F
flame 已提交
151

F
flame 已提交
152 153 154 155 156
    // std::vector<framework::LoDTensor> input_vector;
    // std::vector<framework::LoDTensor> output_vector;
    std::map<std::string, framework::LoDTensor*> inputs;
    for (const auto& input : op_desc_->InputArgumentNames()) {
      if (parameters_.count(input)) continue;
N
nhzlx 已提交
157
      auto* var = scope_->FindVar(input);
F
flame 已提交
158 159 160 161 162 163
      auto tensor = var->GetMutable<framework::LoDTensor>();
      inputs.insert({input, tensor});
    }

    std::map<std::string, framework::LoDTensor*> outputs;
    std::vector<std::vector<float>> fluid_outputs;
F
flame 已提交
164 165 166
    for (const auto& output : op_desc_->OutputArgumentNames()) {
      if (neglected_output.count(output)) continue;
      std::vector<float> fluid_out;
N
nhzlx 已提交
167
      auto* var = scope_->FindVar(output);
F
flame 已提交
168
      auto tensor = var->GetMutable<framework::LoDTensor>();
F
flame 已提交
169
      framework::TensorToVector(*tensor, ctx, &fluid_out);
F
flame 已提交
170
      fluid_outputs.push_back(fluid_out);
F
flame 已提交
171

F
flame 已提交
172 173 174
      outputs.insert({output, tensor});
    }

175
    engine_->Execute(inputs, outputs, stream_);
F
flame 已提交
176 177 178 179
    int i_output = 0;
    for (const auto& output : op_desc_->OutputArgumentNames()) {
      if (neglected_output.count(output)) continue;
      std::vector<float> anakin_out;
N
nhzlx 已提交
180
      auto* var = scope_->FindVar(output);
F
flame 已提交
181 182 183 184 185 186
      auto tensor = var->GetMutable<framework::LoDTensor>();
      framework::TensorToVector(*tensor, ctx, &anakin_out);

      size_t anakin_out_size = anakin_out.size();
      auto fluid_out = fluid_outputs[i_output++];
      for (size_t i = 0; i < anakin_out_size; i++) {
187
        EXPECT_LT(std::abs(fluid_out[i] - anakin_out[i]), 1e-3);
F
flame 已提交
188 189 190 191 192 193 194 195 196 197
      }
    }
  }

 private:
  std::unique_ptr<AnakinNvEngineT> engine_{nullptr};
  cudaStream_t stream_;
  std::unique_ptr<framework::OperatorBase> op_;
  std::unique_ptr<framework::OpDesc> op_desc_;
  const std::unordered_set<std::string>& parameters_;
N
nhzlx 已提交
198
  framework::Scope* scope_;
F
flame 已提交
199 200 201 202 203 204
  platform::CUDAPlace place_;
};

}  // namespace anakin
}  // namespace inference
}  // namespace paddle